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Abstract

A class of problems modelling the contact between nonlinearly elastic materials
and rigid foundations is analysed for static processes under the small deformation
hypothesis. In the present paper, the contact between the body and the foundation can be
frictional bilateral or frictionless unilateral. For every mechanical problem in the class
considered, we derive a weak formulation consisting of a nonlinear variational equation
and a variational inequality involving dual Lagrange multipliers. The weak solvability
of the models is established by using saddle-point theory and a fixed-point technique.
This approach is useful for the development of efficient algorithms for approximating
weak solutions.
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1. Introduction

There is an abundance of literature in engineering, geophysics and biomechanics
involving contact models, covering both frictionless and frictional contact.
Publications often focus on specific settings, geometries or materials [3–5, 7, 12, 13].
Attempting to establish the existence, uniqueness or nonuniqueness, and stability of
solutions is in general a difficult task due to the nonlinear nature of the problems.
The nonlinearity arises from the contact conditions or from the nonlinearity of the
constitutive laws; many researchers [8, 15, 17–19, 22] give details on modelling and
analysis in contact mechanics. Due to the complexity of the contact models, we cannot
hope to find classical solutions. Thus there is much interest in weak solvability of the
problems and in the approximation of weak solutions.
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[2] Contact problems for nonlinearly elastic materials 161

Weak formulations of contact problems involve the theory of variational
inequalities [8, 17–19]. Once well-posedness is established, approximation of the
weak solutions is a challenging task. Often the approximation is performed after a
regularization of the contact condition. We skip the regularization by using weak
formulations with Lagrange multipliers. If the materials are linearly elastic, such a
weak formulation is equivalent to a saddle-point problem [1, 2, 9]. Wohlmuth [20, 21]
has reviewed modern numerical techniques that can be used to approximate weak
solutions of contact problems via weak formulations with dual Lagrange multipliers.

The purpose of the present paper is to draw attention to the weak solvability of
frictionless unilateral and frictional bilateral contact problems for nonlinearly elastic
materials by using a technique involving dual Lagrange multipliers. The considered
models were already analysed in the framework of elliptic variational inequalities by,
for example, Han and Sofonea [8] (see also references therein). The novelty of the
present paper lies in a new variational approach to the envisaged models for nonlinear
constitutive laws. The weak formulations of the proposed models in this paper are not
equivalent to saddle-point problems. However, in the study of well-posedness for the
derived variational problems, saddle-point theory plays a crucial role. To complete the
study, a fixed-point technique is used. A background in functional analysis involving
Sobolev spaces is necessary, together with a background in mechanics of solids.

The rest of the paper is structured as follows. In Section 2 we introduce some
notation and preliminaries. In Section 3 we state the mechanical models. In Section 4
we state hypotheses and derive weak formulations with dual Lagrange multipliers. In
Section 5 we obtain abstract results that are applied in Section 6, where we prove the
weak solvability of the models considered.

2. Notation and preliminaries

Let us denote by S3 the space of second-order symmetric tensors on R3. Every field
in R3 or S3 is typeset in boldface. By · and | · | we denote the inner product and the
Euclidean norm on R3 and S3. Thus

u · v = uivi, |v| = (v · v)1/2, u, v ∈ R3;

σ · τ = σi jτi j, |τ| = (τ · τ)1/2, σ, τ ∈ S3.

Here and below, the indices i and j run between 1 and 3 and the summation convention
over repeated indices is adopted.

Let Ω ⊂ R3 be a bounded domain. We introduce the following functional spaces
on Ω:

H = {u = (ui) | ui ∈ L2(Ω)}, H = {σ = (σi j) | σi j = σ ji ∈ L2(Ω)},

H1 = {u ∈ H | ε(u) ∈ H}, H1 = {σ ∈ H | Div σ ∈ H},

where
ε(u) = (εi j(u)), εi j(u) = 1

2 (ui, j + u j,i), Div σ = (σi j, j).
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Here an index that follows a comma indicates a partial derivative with respect to the
corresponding component of the independent variable. The spaces H,H , H1 and H1

are real Hilbert spaces endowed with the inner products

(u, v)H =

∫
Ω

uivi dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H ,

(σ, τ)H =

∫
Ω

σi jτi j dx, (σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H .

The associated norms on the spaces H, H , H1 and H1 are denoted by ‖ · ‖H , ‖ · ‖H ,
‖ · ‖H1 and ‖ · ‖H1 , respectively.

We assume that the boundary of Ω, denoted by Γ, is Lipschitz continuous,
and denote by n the unit outward normal vector on the boundary, defined almost
everywhere.

Let us denote by γ the Sobolev trace operator,

γ : H1→ L2(Γ)3.

We recall that γ is a linear, continuous and compact operator. We denote by HΓ the
image of H1 under γ, that is, HΓ = γ(H1). The subspace HΓ is continuously embedded
into the space L2(Γ)3; thus, there exists c > 0 such that

‖v‖L2(Γ)3 ≤ c‖v‖HΓ
for all v ∈ HΓ. (2.1)

Moreover, it is known that the space HΓ is a Hilbert space. In addition, we recall that
there exists a linear and continuous operator

Z : HΓ→ H1

such that
γ(Z(ζ)) = ζ for all ζ ∈ HΓ. (2.2)

The operator Z is called the inverse to the right of the operator γ.
Let Γ1 be a measurable part of Γ such that meas(Γ1) > 0. We consider the Hilbert

space
V = {v ∈ H1 | γv = 0 almost everywhere on Γ1}.

Let us recall the Korn inequality: there exists cK = cK(Ω, Γ1) > 0 such that

‖ε(v)‖H ≥ cK‖v‖H1 for all v ∈ V.

Using this inequality, it follows that V is a Hilbert space endowed with the following
scalar product:

(·, ·)V : V × V → R, (u, v)V = (ε(u), ε(v))H for all u, v ∈ V.

We note that
γ(Z(γv)) = γv for all v ∈ V.

For a vector field v, we denote by vn and vτ the normal and the tangential
components on the boundary, defined by

vn = γv · n, vτ = γv − vnn for all v ∈ H1.
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Let Γ3 be another measurable part of Γ, such that Γ3 ∩ Γ1 = ∅. We introduce the
space

V1 = {v ∈ V | vn = 0 almost everywhere on Γ3}.

Then (V1, (·, ·)V1 , ‖ · ‖V1 ) is a Hilbert space, where

(·, ·)V1 : V1 × V1→ R, (u, v)V1 = (u, v)V for all u, v ∈ V1.

Keeping in mind (2.2), it is straightforward to verify that

Z(ζ) ∈ V for all ζ ∈ γ(V),

Z(ζ) ∈ V1 for all ζ ∈ γ(V1).

Furthermore,

R : γ(V)→ V, R(ζ) = Z(ζ), (2.3)

R1 : γ(V1)→ V1, R1(ζ) = Z(ζ) (2.4)

are linear and continuous operators.

P 2.1. The spaces γ(V) and γ(V1) are closed subspaces of HΓ.

P. Let us prove that γ(V) is a closed subspace of HΓ. To this end, let (γvm)m ⊂ HΓ

be a sequence such that
γvm→ w in HΓ.

Due to (2.1),
γvm→ w in L2(Γ)3.

Since
‖R(γvm)‖V ≤ k‖γvm‖HΓ

,

we deduce that (R(γvm))m is a bounded sequence in V. Consequently, passing
eventually to a subsequence but keeping the notation for simplicity,

R(γvm) ⇀ v in V.

Due to the fact that γ is a compact operator, we obtain

γ(R(γvm))→ γv in L2(Γ)3.

On the other hand,
γ(R(γvm)) = γ(Z(γvm)) = γvm

and, due to the uniqueness of the limit, we have w = γv. Thus w ∈ γ(V).
With a similar technique, but using the operator R1, it can be proved that γ(V1) is a

closed subspace of HΓ. �

R 2.2. Proposition 2.1 allows us to conclude that γ(V) and γ(V1) are Hilbert
spaces endowed with the inner products

(·, ·)γ(V) : γ(V) × γ(V)→ R, (ζ, φ)γ(V) = (ζ, φ)HΓ
for all ζ, φ ∈ γ(V),

(·, ·)γ(V1) : γ(V1) × γ(V1)→ R, (ζ, φ)γ(V1) = (ζ, φ)HΓ
for all ζ, φ ∈ γ(V1).
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For a regular (say, C1) stress fieldσ, the application to n of its trace on the boundary
is the Cauchy stress vector σn. Furthermore, we define the normal and tangential
components of the Cauchy vector on the boundary by the formulas

σn = (σn) · n, στ = σn− σnn,

and note that the following identity holds:

σn · γv = σnvn + στ · vτ for all v ∈ H1. (2.5)

Finally, we recall Green’s useful formula,

(σ, ε(v))H + (Div σ, v)H =

∫
Γ

σn · γv da for all v ∈ H1. (2.6)

Han and Sofonea [8] provide a proof of (2.6) and more details related to this section.
We recall some elements of convex analysis.

D 2.3. Let A and B be nonempty sets. A pair (u, λ) ∈ A × B is said to be a
saddle point of a functional L : A × B→ R if and only if

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all v ∈ A, µ ∈ B.

We use the following existence result.

T 2.4. Let (X, (·, ·)X , ‖ · ‖X), (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces and let
A ⊆ X, B ⊆ Y be nonempty, closed, convex subsets. Assume that a real functional
L : A × B→ R satisfies the following conditions:

v 7→ L(v, µ) is convex and lower semicontinuous for all µ ∈ B,

µ 7→ L(v, µ) is concave and upper semicontinuous for all v ∈ A.

Moreover, assume that

A is bounded or lim
‖v‖X→∞,v∈A

L(v, µ0) =∞ for some µ0 ∈ B

and
B is bounded or lim

‖µ‖Y→∞, µ∈B
inf
v∈A
L(v, µ) = −∞.

Then the functional L has at least one saddle point.

More details on saddle-point theory and its applications are given by several
researchers [1, 2, 6, 9].

3. Contact problems

We consider a body that occupies the bounded domain Ω ⊂ R3, with the boundary
partitioned into three measurable parts, Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The unit
outward normal vector to Γ is denoted by n and is defined almost everywhere. The
body Ω is clamped on Γ1, body forces of density f 0 act on Ω, and surface traction
of density f 2 acts on Γ2. On Γ3 the body can be in contact with a rigid foundation.
We denote by u = (ui) the displacement field, by ε = ε(u) the infinitesimal strain tensor,
and by σ = (σi j) the Cauchy stress tensor.
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In order to describe the behaviour of the materials, we use the constitutive law

σ = F (ε(u)) in Ω, (3.1)

where F denotes an elastic operator. This kind of constitutive law can be found in the
literature [8]. As an example, we may consider

σ = λ0(tr ε)I3 + 2µ0ε + β(ε − PKε), (3.2)

where λ0 and µ0 denote Lame’s constants, tr ε(u) = εkk, I3 = (δi j) is the unit in S3,
K denotes a closed, convex subset of S3 that contains the zero element 0S3 ,
PK : S3→ K is the projection operator onto K, and β is a strictly positive constant.
A second example is the constitutive law

σ = k(tr ε)I3 + ψ(|εD|2)εD, (3.3)

where k > 0 is a coefficient of the material, ψ : R→ R is a constitutive function, and
εD = ε − 1

3 (tr ε)I3 is the deviator of the tensor ε.
Assuming that on Γ3 the body is in frictional bilateral contact with a rigid

foundation, we use Tresca’s law to state the following mechanical problem.
Everywhere below, Ω̄ denotes Ω ∪ ∂Ω.

P 3.1. Find u : Ω̄→ R3 and σ : Ω̄→ S3 such that

Div σ + f 0 = 0 in Ω,

σ = F (ε(u)) in Ω,

u = 0 on Γ1,

σn = f 2 on Γ2,
un = 0, |στ| ≤ ζ,
if |στ| < ζ then uτ = 0,
if |στ| = ζ then there exists ψ > 0 such that στ = −ψuτ

 on Γ3, (3.4)

where ζ > 0 denotes the friction bound.

If we assume that on Γ3 the body can be in frictionless unilateral contact with a rigid
foundation, we model the contact by Signorini’s condition with zero gap, yielding the
second problem.

P 3.2. Find u : Ω̄→ R3 and σ : Ω̄→ S3 such that

Div σ + f 0 = 0 in Ω, (3.5)
σ = F (ε(u)) in Ω, (3.6)
u = 0 on Γ1, (3.7)

σn = f 2 on Γ2, (3.8)
στ = 0, σn ≤ 0, un ≤ 0, σnun = 0 on Γ3. (3.9)

Finally, if we model the contact on Γ3 by Signorini’s condition with nonzero gap,
we have to replace (3.9) with the following contact condition:

στ = 0, σn ≤ 0, un − g ≤ 0, σn(un − g) = 0 on Γ3, (3.10)
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where g : Γ3→ R is the gap between the deformable body and the foundation,
measured along the outward normal n. Thus, we formulate the third problem.

P 3.3. Find u : Ω̄→ R3 and σ : Ω̄→ S3 such that (3.5)–(3.8) and (3.10) hold.

Additional details on this section, including a description of the physical
significance of the contact conditions (3.4), (3.9) and (3.10), are given by Han and
Sofonea [8].

Once the displacement field u is determined, the stress tensor σ is determined by
relation (3.1).

4. Hypotheses and weak formulations

In this section we state hypotheses and derive weak formulations with dual
Lagrange multipliers for each of the models described in the previous section.

4.1. Hypotheses We assume that F is a given nonlinear function that satisfies the
following properties:

F : Ω × S3→ S3; (4.1)
there exists M > 0 such that |F (x, ε1) − F (x, ε2)| ≤ M|ε1 − ε2|

for all ε1, ε2 ∈ S
3, almost everywhere in Ω;

(4.2)

there exists m > 0 such that for all ε1, ε2 ∈ S
3, almost everywhere in Ω,

(F (x, ε1) − F (x, ε2)) · (ε1 − ε2) ≥ m|ε1 − ε2|
2;

(4.3)

for all ε ∈ S3, x 7→ F (x, ε) is Lebesgue measurable in Ω; (4.4)
x 7→ F (x, 0S3 ) belongs to L2(Ω)3×3. (4.5)

Referring to (3.2), we note that, using the nonexpansivity property of the projection
map, it can be proved that

F : Ω × S3→ S3, F (x, ε) = λ0(tr ε)I3 + 2µ0ε + β(ε − PKε)

satisfies (4.1)–(4.5). Moreover, referring to (3.3), under appropriate assumptions on
the constitutive function ψ [8, p. 125], the map

F : Ω × S3→ S3, F (x, ε) = k(tr ε)I3 + ψ(|εD|2)εD

satisfies (4.1)–(4.5).
Furthermore, we assume that the density of the volume forces and the density of the

traction have the following regularity:

f 0 ∈ L2(Ω)3, f 2 ∈ L2(Γ2)3. (4.6)

In addition, we assume that there exists gext : Ω→ R such that

gext ∈ H1(Ω), γgext = 0 almost everywhere on Γ1,

γgext ≥ 0 almost everywhere on Γ \ Γ1, g = γgext almost everywhere on Γ3. (4.7)

Here γ denotes the well-known Sobolev trace operator, γ : H1(Ω)→ L2(Γ).
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Finally, we assume that

the unit outward normal to Γ3, n3, is a constant vector. (4.8)

4.2. Weak formulation of Problem 3.1 We define an operator A : V1→ V1 such
that, for each u ∈ V1, Au is the element of V1 that satisfies

(Au, v)V1 =

∫
Ω

F ε(u) · ε(v) dx for all v ∈ V1. (4.9)

Using Riesz’s representation theorem, we define f ∈ V1 such that

( f , v)V1 =

∫
Ω

f 0 · v dx +

∫
Γ2

f 2 · γv da for all v ∈ V1.

Assuming that the functions u and σ that solve Problem 3.1 are sufficiently regular,
using (2.5) and (2.6) we obtain

(Au, v)V1 = ( f , v)V1 +

∫
Γ3

στ · vτ da for all v ∈ V1.

Let DT be the dual of the space γ(V1). We define λ ∈ DT such that

〈λ, γv〉T = −

∫
Γ3

στ · vτ da for all γv ∈ γ(V1),

where 〈·, ·〉T denotes the duality pairing between DT and γ(V1). Furthermore, we define
a bilinear form

b : V1 × DT → R, b(v, µ) = 〈µ, γv〉T for all v ∈ V1, µ ∈ DT . (4.10)

Let us introduce the following subset of DT :

Λ =

{
µ ∈ DT | 〈µ, γv〉T ≤

∫
Γ3

ζ |γv| da for all γv ∈ γ(V1)
}
. (4.11)

We observe that λ ∈ Λ. Moreover, by (3.4) we deduce that

b(u, λ) =

∫
Γ3

ζ |γu| da,

and by (4.11),

b(u, µ) ≤
∫

Γ3

ζ |γu| da for all µ ∈ Λ.

Consequently, we are led to the following weak formulation of Problem 3.1.
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P 4.1. Find u ∈ V1 and λ ∈ Λ such that

(Au, v)V1 + b(v, λ) = ( f , v)V1 for all v ∈ V1,

b(u, µ − λ) ≤ 0 for all µ ∈ Λ.

A solution of Problem 4.1 is called a weak solution of Problem 3.1.

4.3. Weak formulation of Problem 3.2 We define an operator A : V → V such that,
for each u ∈ V, Au is the element of V that satisfies

(Au, v)V =

∫
Ω

F ε(u) · ε(v) dx for all v ∈ V. (4.12)

Next, we define f ∈ V such that

( f , v)V =

∫
Ω

f 0 · v dx +

∫
Γ2

f 2 · γv da for all v ∈ V. (4.13)

For sufficiently regular functions u and σ that solve Problem 3.2,

(Au, v)V = ( f , v)V +

∫
Γ3

σnvn da for all v ∈ V. (4.14)

Let DS be the dual of the space γ(V) and let us denote by 〈·, ·〉S the duality pairing
between DS and γ(V). We define λ ∈ DS such that

〈λ, γv〉S = −

∫
Γ3

σnvn da for all γv ∈ γ(V). (4.15)

In addition, we define a bilinear form

b : V × DS → R, b(v, µ) = 〈µ, γv〉S for all v ∈ V, µ ∈ DS . (4.16)

We introduce the following subset of DS :

Λ = {µ ∈ DS | 〈µ, γv〉S ≤ 0 for all γv ∈ K}, (4.17)

where
K = {γv ∈ γ(V) | vn ≤ 0 almost everywhere on Γ3}. (4.18)

Then λ ∈ Λ. Moreover, by (3.9) we obtain

b(u, λ) = 0,

and, using (4.17),

b(u, µ) ≤ 0 for all µ ∈ Λ.

We arrive at the following weak formulation of Problem 3.2.

P 4.2. Find u ∈ V and λ ∈ Λ such that

(Au, v)V + b(v, λ) = ( f , v)V for all v ∈ V,

b(u, µ − λ) ≤ 0 for all µ ∈ Λ.

A solution of Problem 4.2 is called a weak solution of Problem 3.2.
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4.4. Weak formulation of Problem 3.3 We keep (4.12)–(4.18). By (3.10), we
deduce that

b(u, λ) = b(gextn3, λ),

and, by (4.17), we obtain

b(u, µ) ≤ b(gextn3, µ) for all µ ∈ Λ.

Thus, we obtain the following weak formulation of Problem 3.3.

P 4.3. Find u ∈ V and λ ∈ Λ such that

(Au, v)V + b(v, λ) = ( f , v)V for all v ∈ V,

b(u, µ − λ) ≤ b(gextn3, µ − λ) for all µ ∈ Λ.

A solution of Problem 4.3 is called a weak solution of Problem 3.3.
In the next section we analyse an abstract variational problem that is used to recover

each of the weak problems formulated in this section, for appropriate functional
spaces.

5. Auxiliary results

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces. In addition, we
consider

A : X→ X, a nonlinear operator such that (5.1)

there exists mA > 0 such that (Au − Av, u − v)X ≥ mA‖u − v‖2X for all u, v ∈ X, (5.2)

there exists LA > 0 such that ‖Au − Av‖X ≤ LA‖u − v‖X for all u, v ∈ X, (5.3)

and

b : X × Y → R, a bilinear form such that (5.4)

there exists Mb > 0 such that |b(v, µ)| ≤ Mb‖v‖X‖µ‖Y for all v ∈ X, µ ∈ Y, (5.5)

there exists α > 0 such that inf
µ∈Y, µ,0Y

sup
v∈X,v,0X

b(v, µ)
‖v‖X‖µ‖Y

≥ α. (5.6)

Finally, in addition to the above, we consider

Λ, a closed, convex, unbounded subset of Y that contains 0Y . (5.7)

We are interested in the well-posedness of the following problem.

P 5.1. For given f , h ∈ X, find u ∈ X and λ ∈ Λ such that

(Au, v)X + b(v, λ) = ( f , v)X for all v ∈ X, (5.8)

b(u, µ − λ) ≤ b(h, µ − λ) for all µ ∈ Λ. (5.9)

The following existence and uniqueness result holds.

T 5.2. Assume (5.1)–(5.7). Then there exists a unique solution of Problem 5.1,
(u, λ) ∈ X × Λ.
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The proof of this theorem is divided into several steps. Let η ∈ X be arbitrarily fixed.
We consider the following auxiliary problem.

P 5.3. For given f , h ∈ X, find uη ∈ X and λη ∈ Λ such that

(uη, v)X +
mA

2L2
A

b(v, λη) =

( mA

2L2
A

f −
mA

2L2
A

Aη + η, v
)

X
for all v ∈ X, (5.10)

b(uη, µ − λη) ≤ b(h, µ − λη) for all µ ∈ Λ. (5.11)

We are interested in determining the solvability of Problem 5.3 using saddle-point
theory applied to the functional

Lη : X × Λ→ R,

Lη(v, µ) =
1
2

(v, v)X −

( mA

2L2
A

f −
mA

2L2
A

Aη + η, v
)

X
+

mA

2L2
A

b(v − h, µ). (5.12)

We prove three technical lemmas.

L 5.4. If Problem 5.3 has a solution (uη, λη) ∈ X × Λ then this solution is a saddle
point of the functional Lη. Conversely, if the functional Lη has a saddle point then this
saddle point is a solution of Problem 5.3.

P. Assume that (uη, λη) ∈ X × Λ is a solution of Problem 5.3. Inequality (5.11)
implies that Lη(uη, µ) ≤ Lη(uη, λη) for all µ ∈ Λ. Moreover, using (5.12) and (5.10),

Lη(uη, λη) − Lη(v, λη) =
1
2

(uη, uη)X −
1
2

(v, v)X +
mA

2L2
A

b(uη − v, λη)

−

( mA

2L2
A

f −
mA

2L2
A

Aη + η, uη − v
)

X

= −
1
2
‖uη − v‖2X ≤ 0.

Therefore, Lη(uη, λη) ≤ Lη(v, λη) for all v ∈ X.
Conversely, let (uη, λη) ∈ X × Λ be a saddle point of the functional Lη. It is

straightforward to observe that

Lη(uη, µ) ≤ Lη(uη, λη), for all µ ∈ Λ,

implies (5.11). Furthermore, we assume that

Lη(uη, λη) ≤ Lη(w, λη), for all w ∈ V,

and we prove (5.10). Using again (5.12), we deduce that, for all w ∈ X,

1
2

(uη, uη)X −
1
2

(w, w)X −

( mA

2L2
A

f −
mA

2L2
A

Aη + η, uη − w
)

X
+

mA

2L2
A

b(uη − w, λη) ≤ 0.
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Replacing w by uη ± tv, with an arbitrary v ∈ X and t > 0, we obtain the following
inequality:

∓t(uη, v)X −
t2

2
(v, v)X ± t

( mA

2L2
A

f −
mA

2L2
A

Aη + η, v
)

X
∓

mA

2L2
A

tb(v, λη) ≤ 0.

Dividing by t and passing to the limit as t→ 0, we obtain two inequalities that lead
to (5.10). �

L 5.5. Problem 5.3 has a unique solution (uη, λη) ∈ X × Λ.

P. The map v 7→ Lη(v, µ) is convex and lower semi-continuous for all µ ∈ Λ, and
µ 7→ Lη(v, µ) is concave and upper semi-continuous for all v ∈ X. In addition, we note
that

lim
‖v‖X→∞,v∈X

Lη(v, 0Y ) =∞.

Let us prove that
lim

‖µ‖Y→∞, µ∈Λ
inf
v∈X
Lη(v, µ) = −∞. (5.13)

To this end, let µ be an arbitrary element in Λ and let uµ ∈ X be the unique solution of
the equation

(uµ, v)X +
mA

2L2
A

b(v, µ) = ( fη, v)X for all v ∈ X, (5.14)

where
fη =

mA

2L2
A

f −
mA

2L2
A

Aη + η.

We have

inf
v∈X
Lη(v, µ) =

1
2

(uµ, uµ)X − ( fη, uµ)X +
mA

2L2
A

b(uµ, µ) −
mA

2L2
A

b(h, µ).

Let us put v = uµ in (5.14). Then

−( fη, uµ)X +
mA

2L2
A

b(uµ, µ) = −‖uµ‖
2
X .

Therefore,

inf
v∈X
Lη(v, µ) ≤ −

1
2
‖uµ‖

2
X +

mA

2L2
A

Mb‖h‖X‖µ‖Y .

Due to the inf–sup property (5.6), we deduce that there exists α > 0 such that

α‖µ‖Y ≤
mA

2L2
A

sup
v∈X,v,0X

b(v, µ)
‖v‖X

,

and, by (5.14), we obtain

α‖µ‖Y ≤ sup
v∈X,v,0X

( fη, v)X − (uµ, v)X

‖v‖X
≤ ‖ fη‖X + ‖uµ‖X .
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Therefore, there exists c > 0 such that

‖µ‖2Y ≤ c(‖ fη‖2X + ‖uµ‖
2
X).

Furthermore, there exists c̃ > 0 such that

inf
v∈X
Lη(v, µ) ≤ −c̃(‖µ‖2 − ‖ fη‖2X) +

mA

2L2
A

Mb‖h‖X‖µ‖Y .

Since µ was arbitrarily fixed in Λ, passing to the limit as ‖µ‖Y →∞ yields (5.13).
Consequently, based on Theorem 2.4, we deduce that the functional Lη has at least

one saddle point. Then, by Lemma 5.4, we conclude that Problem 5.3 has at least one
solution.

In fact, Problem 5.3 has a unique solution (uη, λη) ∈ X × Λ. Indeed, let (u1
η, λ

1
η) and

(u2
η, λ

2
η) be two solutions of Problem 5.3. Keeping in mind (5.10),

(u1
η − u2

η, u2
η − u1

η)X +
mA

2L2
A

b(u1
η − u2

η, λ
2
η − λ

1
η) = 0. (5.15)

Using (5.11), we deduce that

b(u1
η − u2

η, λ
2
η − λ

1
η) ≤ 0. (5.16)

Combining (5.15) and (5.16), we conclude that u1
η = u2

η. Moreover,

b(v, λ1
η − λ

2
η) = −

2L2
A

mA
(u1
η − u2

η, v)X for all v ∈ X.

By the inf–sup property (5.6), we conclude that λ1
η = λ2

η. �

Using the unique solution of Problem 5.3, we define an operator

T : X→ X, T (η) := uη.

L 5.6. The operator T has a unique fixed point.

P. Let us take η1, η2 ∈ X. Denoting by (uη1 , λη1 ) and (uη2 , λη2 ) the corresponding
solutions of Problem 5.3 and using (5.10),

(uη1 − uη2 , uη1 − uη2 )X =
mA

2L2
A

b(uη2 − uη1 , λη1 − λη2 )

+

(
η1 − η2 +

mA

2L2
A

(Aη2 − Aη1), uη1 − uη2

)
X
.

Taking into account (5.11), we obtain

mA

2L2
A

b(uη1 − uη2 , λη2 − λη1 ) ≤ 0.
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Then we deduce

‖uη1 − uη2‖X ≤

∥∥∥∥∥η1 − η2 −
mA

2L2
A

(Aη1 − Aη2)
∥∥∥∥∥

X
.

From this last inequality we obtain

‖uη1 − uη2‖
2
X ≤ ‖η1 − η2‖

2
X −

mA

L2
A

(Aη1 − Aη2, η1 − η2)X +
m2

A

4L4
A

‖Aη1 − Aη2‖
2
X ,

and, by (5.2) and (5.3), we obtain

‖uη1 − uη2‖
2
X ≤

(
1 −

3m2
A

4L2
A

)
‖η1 − η2‖

2
X .

Taking into account (5.2) and (5.3), it is straightforward to observe that mA ≤ LA.
Therefore,

0 < 1 −
3m2

A

4L2
A

.

Consequently,

‖Tη1 − Tη2‖X ≤

√
1 −

3m2
A

4L2
A

‖η1 − η2‖X .

Moreover, since 1 − (3m2
A)/(4L2

A) < 1, the operator T is a contraction. The conclusion
of Lemma 5.6 follows now from Banach’s fixed-point theorem. �

Let us now prove Theorem 5.2.

P. Denoting by η∗ the unique fixed point of the operator T, we observe that the
solution of Problem 5.3 with η = η∗ (uη∗, λη∗) is a solution of Problem 5.1. In order to
prove the uniqueness of the solution, we assume that Problem 5.1 has two solutions
(ui, λi), i = 1, 2. Using (5.8), we obtain

(Au1 − Au2, u2 − u1)X + b(u2 − u1, λ1 − λ2) = 0,

b(u2 − u1, λ1 − λ2) ≤ 0,

and taking into account (5.2), we obtain u1 = u2. Moreover,

(Au1 − Au2, v)X + b(v, λ1 − λ2) = 0 for all v ∈ X.

By the inf–sup property (5.6) of the form b(·, ·),

α‖λ1 − λ2‖Y ≤ LA‖u1 − u2‖X ,

and from this we obtain λ1 = λ2. �

Following the techniques used by Matei et al. [11, 16], we establish stability results.
More precisely, in the homogeneous case, that is, h = 0X in Problem 5.1, the following
theorem applies.
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T 5.7. Assume (5.1)–(5.7). If (u1, λ1) and (u2, λ2) are two solutions of
Problem 5.1 in the homogeneous case, corresponding to the data f1, f2 ∈ X, then there
exists C = C(α, LA, mA) > 0 such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤C‖ f1 − f2‖X . (5.17)

P. Let us consider the data f1, f2 ∈ X and denote by (u1, λ1) and (u2, λ2) the
corresponding solutions, respectively. Using (5.8) and (5.9), we find

(Au1 − Au2, u1 − u2)X = ( f1 − f2, u1 − u2)X + b(u1 − u2, λ2 − λ1),

b(u1 − u2, λ2 − λ1) ≤ 0.

Moreover, using (5.2), we obtain

mA‖u1 − u2‖
2
X ≤ ‖ f1 − f2‖X‖u1 − u2‖X ,

and thus

‖u1 − u2‖X ≤
1

mA
‖ f1 − f2‖X . (5.18)

Since b(v, λ1 − λ2) = ( f1 − f2, v)X − (Au1 − Au2, v)X , due to the inf–sup property (5.6)
of the form b(·, ·) we have

‖λ1 − λ2‖Y ≤
LA

α
‖u1 − u2‖X +

1
α
‖ f1 − f2‖X . (5.19)

Combining (5.18) and (5.19), we deduce (5.17). �

In the nonhomogeneous case, that is, the case h , 0X , the following stability result
applies.

T 5.8. Assume (5.1)–(5.7). If (u1, λ1) and (u2, λ2) are two solutions of
Problem 5.1 in the nonhomogeneous case, corresponding to the data f1, h1 ∈ X and
f2, h2 ∈ X (hi , 0X , i ∈ {1, 2}), then there exists C = C(α, LA, mA, Mb) > 0 such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤C(‖ f1 − f2‖X + ‖h1 − h2‖X). (5.20)

P. Let us consider f1, h1 ∈ X and f2, h2 ∈ X. We denote by (u1, λ1) and (u2, λ2) the
corresponding solutions. Using (5.8) and (5.9),

(Au1 − Au2, u1 − u2)X = ( f1 − f2, u1 − u2)X + b(u1 − u2, λ2 − λ1),

b(u1 − u2, λ2 − λ1) ≤ b(h1 − h2, λ2 − λ1).

Moreover, using (5.2)–(5.6), we obtain

mA‖u1 − u2‖
2
X ≤ ‖ f1 − f2‖X‖u1 − u2‖X + Mb‖h1 − h2‖X‖λ1 − λ2‖Y ,

α‖λ1 − λ2‖Y ≤ ‖ f1 − f2‖X + LA‖u1 − u2‖X ,

and from this we deduce

mA‖u1 − u2‖
2
X ≤
‖ f1 − f2‖2X

2k1
+

k1‖u1 − u2‖
2
X

2
+

M2
b‖h1 − h2‖

2
Y

2k2
+

k2‖λ1 − λ2‖
2
Y

2
,

‖λ1 − λ2‖
2
Y ≤

2
α2

(‖ f1 − f2‖
2
X + L2

A‖u1 − u2‖
2
X), (5.21)
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where k1, k2 are strictly positive real constants. Let us choose k1 and k2 such that

mA −
k1

2
−

k2L2
A

α2
> 0.

Then

‖u1 − u2‖
2
X ≤ T

(‖ f1 − f2‖2X
2k1

+
M2

b‖h1 − h2‖
2
Y

2k2

)
+

2k2

2mAα2 − k1α2 − 2k2L2
A

‖ f1 − f2‖
2
X ,

where T = (mA − k1/2 − k2L2
A/α

2)−1. Combining with (5.21), we deduce (5.20). �

We note that in the homogeneous case, C depends on mA, LA and α, while in the
nonhomogeneous case, C depends in addition on Mb.

6. Weak solvability of the models

The purpose of this section is to investigate the well-posedness of the weak
problems formulated in Section 4. The well-posedness of Problem 4.1 is given by
the following theorem.

T 6.1. Assume (4.1)–(4.6). Then Problem 4.1 has a unique solution (u, λ) ∈
V1 × Λ. Moreover, if (u, λ) and (u∗, λ∗) are two solutions of Problem 4.1,
corresponding to the data f ∈ V1 and f ∗ ∈ V1, then there exists CT > 0 such that

‖u − u∗‖V1 + ‖λ − λ∗‖DT ≤CT ‖ f − f ∗‖V1 . (6.1)

P. Let us set X = V1, Y = DT and f = f . Then Λ defined by (4.11) is an
unbounded, closed, convex subset of DT . Moreover, 0DT ∈ Λ. By (4.2) and (4.3), we
deduce that the operator A defined in (4.9) has the properties

(Au − Av, u − v)V1 ≥ mF ‖u − v‖2V1
for all u, v ∈ V1,

‖Au − Av‖V1 ≤ MF ‖u − v‖V1 for all u, v ∈ V1.

In addition, the bilinear form b(·, ·) : V1 × DT → R defined by (4.10) satisfies

|bT (v, µ)| ≤ ‖µ‖DT ‖v‖γ(V1),

and therefore, due to properties of the Sobolev trace operator, there exists Mb > 0 such
that (5.5) is satisfied. Using the operator R1 (see (2.4) in Section 2), we prove that
there exists αT > 0 such that b(·, ·) satisfies (5.6). Indeed, there exists c̃ > 0 such that

‖µ‖DT = sup
w∈γ(V1),w,0γ(V1)

〈µ, w〉T
‖w‖γ(V1)

≤ c̃ sup
w∈γ(V1),w,0γ(V1)

b(R1w, µ)
‖R1w‖V1

≤ c̃ sup
v∈V1,v,0V1

b(v, µ)
‖v‖V1

.

Thus, we take αT = 1/c̃.
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Consequently, applying Theorem 5.2, we deduce that Problem 4.1 has a unique
solution. In addition, inequality (6.1) is a consequence of Theorem 5.7. �

Let us now prove the well-posedness of Problem 4.2.

T 6.2. Assume (4.1)–(4.6). Then Problem 4.2 has a unique solution (u, λ) ∈
V × Λ.Moreover, if (u, λ) and (u∗, λ∗) are two solutions of Problem 4.2, corresponding
to the data f ∈ V and f ∗ ∈ V, then there exists CS

1 > 0 such that

‖u − u∗‖V + ‖λ − λ∗‖DS ≤CS
1 ‖ f − f ∗‖V . (6.2)

P. Let X = V, Y = DS , f = f . Then Λ defined in (4.17) is an unbounded, closed,
convex subset of DS . Moreover, 0DS ∈ ΛS . Keeping in mind (4.2) and (4.3), we deduce
that the operator A defined in (4.12) has the properties

(Au − Av, u − v)V ≥ mF ‖u − v‖2V for all u, v ∈ V,

‖Au − Av‖V ≤ MF ‖u − v‖V for all u, v ∈ V.

For the bilinear form b(·, ·) : V × DS → R defined in (4.16), we obtain

|b(v, µ)| ≤ ‖µ‖DS ‖v‖γ(V),

and therefore, due to the fact that γ is a linear and continuous operator, we deduce
that there exists Mb > 0 such that (5.5) is satisfied. Using the operator R (see
(2.3)), we prove that there exists αS > 0 such that b(·, ·) satisfies (5.6). Indeed,
there exists c̄ > 0 such that

‖µ‖DS = sup
w∈γ(V),w,0γ(V)

〈µ, w〉S
‖w‖γ(V)

≤ c̄ sup
w∈γ(V),w,0γ(V)

b(Rw, µ)
‖Rw‖V

≤ c̄ sup
v∈V,v,0V

b(v, µ)
‖v‖V

,

and we take αS = 1/c̄.
The existence and uniqueness of the solution of Problem 4.2 follow again from

Theorem 5.2. To obtain (6.2), we apply Theorem 5.7. �

Finally, we prove the well-posedness of Problem 4.3.

T 6.3. Assume (4.1)–(4.8). Then Problem 4.3 has a unique solution (u, λ) ∈
V × Λ.Moreover, if (u, λ) and (u∗, λ∗) are two solutions of Problem 4.3, corresponding
to the data ( f , gextn3) ∈ V × V and ( f ∗, g∗extn3) ∈ V × V, then there exists CS

2 > 0 such
that

‖u − u∗‖V + ‖λ − λ∗‖DS ≤CS
2 (‖ f − f ∗‖V + ‖gextn3 − g∗extn3‖V ). (6.3)
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P. Let us take X = V, Y = DS , f = f , h = gextn3 and Λ given by (4.17). The
conclusion of this theorem follows by similar arguments to those used in the proof
of Theorem 6.2. We apply Theorem 5.2 to obtain the existence and uniqueness result.
In order to obtain (6.3), we apply Theorem 5.8. �

7. Conclusion

To conclude, we point out that by using weak formulations with dual Lagrange
multipliers, efficient algorithms can be written to approximate the weak solutions for
a class of contact problems. For example, Hüeber et al. [12] analysed the frictional
contact between two linearly elastic bodies subjected to antiplane shear deformation.
The weak formulation of their mechanical model is a version of the problem (5.8)–
(5.9) for appropriate functional spaces; we point out that their operator A is linear and
h = 0. To discretize the frictional problem, Hüeber et al. [12] used a mortar technique
on nonconforming meshes. Under some regularity assumptions on the solution, an
optimal a priori error estimate was obtained. In order to solve the discrete nonlinear
problem, a primal–dual active set strategy was applied. The strategy can be interpreted
as a semi-smooth quasi-Newton method. One advantage of the approach is that the
nonlinear friction conditions are applied as Dirichlet or Neumann boundary conditions
on the interface, and this makes the implementation simple. Hüeber et al. [12] also
presented numerical examples confirming the theoretical result and illustrating the
performance of the algorithm. We also refer the reader to other work of Hüeber et al.
[10, 11, 13, 14].

Acknowledgement

The work of the first author was supported by CNCSIS Grant PNII-420.

References

[1] D. Braess, Finite elements (Cambridge University Press, Cambridge, 2001).
[2] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods (Springer, New York, 1991).
[3] M. Burguera, J. R. Fernandez-Garcia and J. M. Viano, “A 3d-fem simulation of highest stress

lines in mandible fractures by elastic impact”, Comput. Methods Biomech. Biomed. Eng. 3 (2000)
273–285.
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