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THE STABILITY OF SOLUTIONS
IN AN INITIAL-BOUNDARY REACTION-DIFFUSION SYSTEM

E. TuMa AND C.M. BLAZQUEZ

We study the asymptotic behaviour as ¢ — oo of solutions of the initial-boundary
value problem v, = G(u, v), 4t = uzz + F(u,v),and t > 0, z €R or z € R* for
a wide class of initial and boundary values, where F and G are smooth functions
so that the system has three rest points.

1. INTRODUCTION

In this paper we study the system
(1.1) Ut = Uz + Fu,v), ve=G(u,v), (=,t)€D

where D = R x R* or D = Rt x R¥, with G(u, v) = y(u)(k(u) —v), v >0, v 20
(see [2, 6]) and we assume:
1. There is an interval [a, b] C [0, co) such that F(u,v) is analytic on
[a, 8] x [0, o), and v(u), k(u) are analytic and positive on [a, b].
2. F,<0,F,<0,G,<0, Gy, <0VY(u, v)E [a, b] x [0, 00).
3. There exists a function h(u), analytic and positive on [a, b] such that
F(u,v) =0 v =h(u).
4. The equation h(u) = k(u) has exactly three roots, uo < u; < u2 in (a, b)
such that: h'(uo) < k'(uo), h'(u1) > K'(v1), h'(u2) < k(uz).
5. I(uz) = f:o’ F(u, k(u))du > 0.
If v; = h(u;), i =1, 2, 3, then, from the above assumptions we have:
(a) A'(u) <0, k¥'(u) <0 on [a, b];
(b) (FuGy — FyGy) l(us,9)>0,1=0,2;
(¢) F(u,v)>0for v < h(u),
G(u, v) > 0 for v < k(u), Yu € (a, b).
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This system appears in equations of nerve conduction models, chemical reaction et
cetera (2, 3).

We investigate the asymptotic behaviour, as ¢ — oo, of solutions of (1.1) under
the initial-boundary conditions:

(1.3) u(z, 0) = f(z) v(z,0)=g(z), z>0,
(1.4) u(0, t) = h(t), t>0.

Since u and v represent chemical concentration, it is natural to impose the conditions
(1.5) uo € f(z), h(f)<uz, v2<g(z)<v, 220, t=0.

We are interested in the stability of the equilibrium states (u;, v;), ¢ = 0,1, 2,
and to show that (o, vo), (u2, v2) are stable states while (u;, v;) is unstable. So we
may expect to have a threshold phenomenon in this case.

The main tool to be used is the following comparison principle: let N(u, v) =:
U — Uzz — F(u, v), M(u, v) =:vs — G(u, v).

COMPARISON PRINCIPLE. (see [5]) Let U(z,t) = (u(z,t), v(z, 1)), Ulz,t) =
(@(z, t), 9(=, t)) be bounded and of class C? with N(U) <0, M(U) >0, N(U) >0
and M(U) €0 on R* x R*. If u(z, 0) < %(z, 0), v(=, 0) > o(z, 0) and u(0, t) <
(0, t) Vz € R*, Vt € R*, then

u(z, t) <w(z,t) and ¥(z,t) <v(z,t), VY(z,t)e Rt xR*.
REMARK. A similar comparison principle holds for the pure initial value problem (1.1)-
(1.2) (see [5]).
In Section 2 of this paper we analyse the stability of the rest points for the pure

initial value problem, while in Section 3 we study its stability for the initial boundary
value problem.

2. INITIAL VALUE PROBLEM

A steady state solution of (1.1) in (a, b) is a solution (7(z), s(z)) of the equation
(2.1) ™ (2) + F(r(2), k(7(2))) =0

where s(z) = k(7(z)).

We require the following lemma.
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LEMMA 1. Let (7(z), k(7(2))) € [uo, u2] X [v2, vo] be a steady state solution
of (1.1) on (a,b) with —c0 € @ < b < +00. If a > —oo we suppose that
7(a) = uo, k(7(e)) = vo, and if b < oo suppose that 7(b) = wuo, k(7(b)) = vo. I
(wi(z, t), wa(z, t)) is a solution of (1.1) with initial conditions:

Ug otherwise,
o0y [ HED) e,
way(z =
w5 vy otherwise,

then wy(z, t) (respectively ws(2, t) ) is nondecreasing (nonincreasing) in t, for each z,
fixed. Furthermore

Lim (wi(z, 1), wa(=, t)) = (4(=), (=)

uniformly in each z-bounded interval, where q(z) (respectively r(z)) is the smallest
(biggest) steady state solution of (1.1) in [ug, up] (respectively [vs, vo]) in the sense
that:

g(z) > 7(z), r(z) <k(r(z)) in(a,b).

PRroOF: The proof of this lemma mimics that in [1], for a single equation, and we
have omitted it for sake of brevity. 1]

REMARK. Since I(uz) > 0, there exists K € [u;, u2) such that I(K) = 0. Moreover
I(q(z)) > 0 and I'(q) = F(q, k(g)) > 0 for ¢ € (K, uz). Then for any 8 € (K, u,)
the solution gg(z) of (2.1) with first integral g2+ 2I(q) = 2I(B) such that ¢(0) = uy,
¢'(0) = /2I(B) satisfy: gg > uo on (0, bg) gs(0) = gs(bg) = uo, and gg(z) <
48(bg/2) = B on [0, bg] where

y]
bo =2 | {21(8) - T())}2du.

Then with this remark, we can state:

THEOREM 2.1. Let (u(z,t), v(z,t)) be a solution of (1.1) on R x R* such
that I(uz) > 0. If for some B € (K, uz) and some z, so that u(z, 0) > gg(z — z0),
v(z, 0) < k(gs(z — o)) on (zo, o + bg), then we have

tl_i_'rgo (u(=, 1), v(z, t)) = (u2, v2).

PROOF: Since (ug, v9) is a solution of (1.1) and u(z, 0) > ug v(z, 0) < v,
Vz € R. Then by the comparison theorem we have that u(z, t) > uo, v(z,t) < v,
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VY(z, t) € R x Rt. Let u;(z, t), vi(z, t) be a solution of (1.1) such that:

gp(z — zo) on (2o, zo + bg)

ui(z, 0) = {

up otherwise,

k(gp(z — 20)) on (2o, zo + bp)

v otherwise.

vi(z, 0) = {

Then by Lemma 1 there exists a stationary solution (11(z), si1(z)) so that
lim (us(z, 8), 02, 1)) = ( (), (=)
uniformly in each z-bounded interval, where for some z;:
ni(z) 2 g(z — zo), s1(z) < k(ga{z — o)) in (xo, zo + bg).

Then by the hypothesis on the initial conditions and the comparison principle we have:
u(z, t) 2 ui(z, t) and v(z,t) < vi(z,t). On the other hand uy < u(z, t) < uz,
vy < v(z, t) € vo so it is sufficient to prove that 7(z) = uz and s;(z) = k(u2) = v2.
Let us suppose that 71(z) < uz. Since 7i(z) satisfies: T{z(z)/Z + I(r1(z)) = P for
some constant P > I(8) > 0, we may assume that there exists z; such that n(z,) =
v € [uo, uz) so we have:

z—2 =F /:{2(13 - I(u))} " Y?du

where the sign depends on the sign of 7{(z). From this it follows that for finite z*,
7(2*) = uo with 7'(z*) # 0, hence 71(z) takes values smaller than g, which is not
possible. Therefore 71(z) = u, and so

}anlo (u(z, t), v(z, t)) = (u2, k(u2)) = (u2, v2).

0

REMARK. In order to study the stability of the equilibrium point (u¢, v¢) and to esti-
mate “how big” the initial condition must be to obtain the stability of this point, we
use contracting rectangles for the vector field

H(p,r) = (F(p+ o, vo — 7), G(p + o, vo — "'))t,

of equation (1.1), in the following sense.
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DEFINITION: A bounded convex set R C R? is contracting for the vector field
H(p, r} if for any point (p, r} € OR and every outward unit normal 7 at (p,7):
H(p,7) -7 <0.

THEOREM 2.2. Let u(z,t), v(z,t) be a solution of (1.1) and let R be the

rectangle
R={(u,v) |uo—e<u<u; — v <v<v™, 0<e<u; — u,
1 1
vt = §(h+k)(u1 —€), v = 2 (h+k)(uo —€)}.

If (u(z, 0),v(z,0)) = U(z,0) € R, V2 € R and U(z, 0) tend to (uo,vo) as

z — oo, then there exist positive constants ¢, K such that:
[(u(=, t) — o, vo — v(z, t))]|, < Ke Vi > 0.

Proor: It is easy to check that R is a contracting set for the given vector field
and that TR = {(vp, 7r) | (p, r) € R} is a contraction of R about (uo, ve), for any
7 € (0, 1]. Since U(z, 0) € R Vz € R, there exists 7 € (0, 1] such that U(z, 0) € 7R.
If L is the largest side of the rectangle 7R then by the basic lemma of Rauch and Smoller
[4, Lemma 3.8] there exists s € Rt such that the upper Dini derivative satisfies:

Darr(U(,1) < ~(o/L)arg(U(,1);  4rr(U(=, 0)) =7 < 1.

where
ar(p(,t), v(, 1)) = Sgﬁ Inf{r > 0 | (p(=, t), r(=, t)) € TR}.
Then
g-r((U(,1))) < e /B p(U(,0)) < Ke= (/D)
and the theorem follows. g

REMARKS. (1) Since € > 0 is arbitrary, we may choose it sufficiently small so that
U(z,0) € R for all z € R. Hence letting € — 0" we see that the initial conditions are
bounded by

uo S u(z, 1) vy, v vz, t)<v.

(2) In the same manner we may prove that the steady state (uz, v2) is asymp-
totically exponentially stable with domain of stability given by u; < u(z, 0) < u,,
v2 Lv(z,0) < v

(3) From the above, we see that the steady state (u;, v1) is unstable, that is, it is
a threshold point.
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3. INITIAL-BOUNDARY VALUE PROBLEM

Let us consider the boundary value problem

(3.1) U = Uzz + F(u, v), ve=G(v,v), z>0,t>0
(3.2) u(z, 0) = uo, v(z, 0) = vo, z>0
(3.3) u(0, t) = h(t) € [uo, uz) vt > 0.

An analogous lemma to Lemma 1, reads:

LEMMA 2. Let (v(z), 8(z)) be a stationary solution of (3.1) in (a, b) with a >0
and let 7(a) = 7(b) = uo, 8(a) = s(d) = vo. Let (wi(z, t), wa(z, t)) be a solution of
(3.1) with initial-boundary conditions

7(z) in (a, d)

y  on R*\(e,bd),
_ s(z) in (a,d)

(e, 0) = { T on R\ (a, b)

wy(z,0) = () onRt.

l wy(z, 0) = {

Suppose that (%) in nondecreasing and ¥(0) = g with ¥(t) € [ug, u2]. Then
w1 (2, t) (respectively ws(z, t)) is non-decreasing (non-increasing) in ¢, for each = fixed.
Furthermore

Jim (wi(=, t), wa(z, t)) = (¢(z), 7(2))

uniformly in each z-bounded interval, where (g(z), r(z)) is a steady state solution of
(3.1) and they satisfy:

q(0) > lim 4(t) and g(z) > 7(2), 7(2) < 5(z) in (e, b).
REMARK. Consider the problem
(3.4) 7 (2) + F(r(z), k(r(z))) = 0 on R*, +(0) =g

This equation has a unique solution on {ug, uz] for each 8 € (K, u3], which converges
to uz as £ — oo, and it has two solutions for 8 € [ug, K), one of which converges to
uq as £ — 00.

THEOREM 3.1. Let (u(z,t), v(z,t)) be a solution of (3.1) — (3.3) and let
(pp(z), k(ps(z))) be a steady state solution of (3.1) such that pg(0) = B, pj(0) = 0,
for some B € [K,uz]. For any B € (K, u,) there exist positive numbers ag and
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tg such that pg(tag) = uo and if h(t) > B, t € (1,1t +1tg), some t; > 0.
Then the solution (u(z,t), v(z,t)) of (3.1) satisfies u(z, t1 +tg) > pp(z —ag — 1),
v(z, t; +18) < k(pg(z — ag — 1)), for all z € (1,1 + 2ag), and

(3.6) im lm (Infu(z,t), Supv(z, t)) = (uz, v2).

z—oo t—o0

PROOF: Since (uo, vo) is a solution of (1.1)~(1.3) then by the comparison theorem:
u(z, t) > uo, v(z, 1) < vo on RT x Rt. Define s(t) as a smooth and nondecreasing
function so that s(t) = ug, for t € (—o0, 0), and s(t) = 8, for t € (1, +00). Let
(wi(=, t), wa(z, t)) be a solution of (3.1)—(3.3) on Rt x R* such that wy(0, t) =
s(t), t € R*. Then it is well-known that the solution (wy(z, t), wa(z, t)) converges,
uniformly in z, as ¢ — o0, to a steady state solution of (3.1)(3.3), (g(2), k(q(=)))
with ¢(0) > ‘11’11010 s(t) = B. Since 8 > K the problem:

(3.7) ¢ (2) + F(q(2), k(g(2))) =0, =z €R*, g(0) =

has a unique solution g(z) such that g(z) — u2, k(g(z)) — v2 as ¢ — oco. Furthermore,
from the phase portrait of (3.7) we learn that there exist a number ag and a solution
pp(z) defined on (0, ag) such that pg(0) = pg(a) = uo and pg(z) < pg(a/2) =7 on
(0, ag). Thus pg(z — 1) < s(z) and k(pg(z — 1)) > k(s(z)) on (1,1 + ag). Since the
convergence of (w, wa) to (s(z), k(s(z))) is uniform on [1, 1+ ag], there exist a time
tg for which, on [1, 1 + ag], we have:

wi(z, tg) 2 pp(z — 1), wa(z, tg) < k(ps(z — 1))
Then, by the comparison theorem, we have:

u(z, t + 1) > wi(z, t), v(z,t+t) <waz,t) on R x [0, tg).

Therefore JLim Infu(z, t) (respectively, Lim Supv(z, t)) is bounded below (respec-

tively, above) by a stationary solution s;(z) (respectively, k(si(z))) of (3.7), such
that

s1(z) 2 pe(z - 1), k(s1(2)) < k(pg(z — 1)) on [1, 1 + ag].
In particular, s;(z + ag/2) > 8 > K. Hence lim (81(2), k(81(2))) = (u2, v2) and the
theorem follows. T 1]
THEOREM 3.2. Let (u(z, t), v(z, t)) be a solution of (3.1)-(3.3) and let B =
Suph(t) < K. Then u(z, t) < gg(z), v(z, t) > pg(z). In particular,

lim lim (Supu(z,t), Infv(z, t)) = (ue, vo)

z— oo t—o0
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where (gg(z), pa(z)) is a steady state solution of (3.1).

PROOF: From the remark we have (gg(z), pg(z)) — (vo,v) as ¢ — oo and
the result follows directly from the comparison principle, because u(0, t) = h(t) < 8,
u(z, 0) = uo < gg(z), v(z, 0) = vy > pg(z) Vz € Rt. (B < K implies 1y < gg(z) <
K).
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