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THE STABILITY OF SOLUTIONS
IN AN INITIAL-BOUNDARY REACTION-DIFFUSION SYSTEM

E. T U M A AND C M . BLAZQUEZ

We study the asymptotic behaviour as t —» oo of solutions of the initial-boundary
value problem vt = G(u, v), ut = u , , + F(u, v), and t > 0 , s e G R o r x g R + for
a wide class of initial and boundary values, where F and G are smooth functions
so that the system has three rest points.

1. INTRODUCTION

In this paper we study the system

(1.1) ut = uxx + F(u, v), vt = G{u,v), (x,t)£D

where D = R x R+ or D = R+ x R+, with G(w, v) = f(u){k(u) -v), u > 0, v ^ 0

(see [2, 6]) and we assume:

1. There is an interval [a, 6] C [0, oo) such that F{u, v) is analytic on

[a, b] x [0, oo), and 7(w), k(u) are analytic and positive on [a, b].

2. Fu < 0, Fv < 0, <?„ < 0, Gv < 0 V(u, v) e [a, b] x [0, oo).
3. There exists a function h(u), analytic and positive on [a, 6] such that

F(u, v) = 0<&v = h(u).

4. The equation h(u) = k(u) has exactly three roots, iio < «i < «2 in (o, 6)
such that: h'(u0) < k'(u0), fc'(«i) > k'(ui), h'(u2) < k(u2).

5- I{u2) = J^F(u,k(u))du>0.

If Vi = h(ui), i — 1, 2, 3, then, from the above assumptions we have:

(a) h'(u)<0, k'{u)<0 on [a, 6];

(b) (FuG,-FvG,)\lni,v.)>0,i = 0,2;
(c) F(u, v) > 0 for v <h{u),

G(u, v) > 0 for v < k(u), Vw G (a, 6).
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This system appears in equations of nerve conduction models, chemical reaction et

cetera [2, 3].

We investigate the asymptotic behaviour, as t —» oo, of solutions of (1.1) under

the initial-boundary conditions:

(1.3) u{x,0) = f(x) v{x,0) = g{x), x > 0,

(1.4) u(0, t) = hit), t > 0.

Since u and v represent chemical concentration, it is natural to impose the conditions

(1.5) « 0 < / ( * ) , h(t)^u2, v2^g{x)^v0, x ^ 0, t^O.

We are interested in the stability of the equilibrium states (u;, V{), i — 0, 1, 2,
and to show that (uo, Vo), {u2, v2) are stable states while («i, -Uj) is unstable. So we
may expect to have a threshold phenomenon in this case.

The main tool to be used is the following comparison principle: let N(u, v) =:
ut - uxx - F(u, v), M(u, v) =: vt - G(u, v).

COMPARISON PRINCIPLE, (see [5]) Let U(x, t) = (u(x,t),v(x,t)), U(x,t) =

(u(x, t), v(x, t)) be bounded and of class C2 with N(U) ^ 0, M(U) > 0, N(U) > 0
and M(U) < 0 on K+ x K+. If u(x, 0) ^ u(x, 0), v(x, 0) ^ iJ(a;, 0) and u(0, <) ^
w(0, t) Va; e K+, Vt G R+, then

u(s, <) < u(z, <) and w(z, t) ^ v(a:, t), V(x, ( ) e l + x R+.

REMARK. A similar comparison principle holds for the pure initial value problem (1.1)-
(1.2) (see [5]).

In Section 2 of this paper we analyse the stability of the rest points for the pure
initial value problem, while in Section 3 we study its stability for the initial boundary
value problem.

2. INITIAL VALUE PROBLEM

A steady state solution of (1.1) in (a, 6) is a solution (r(x), s(x)) of the equation

(2.1) r"{x) + F(r(x),k(r(x)))=0

where s(x) = k(r(x)).

We require the following lemma.
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LEMMA 1 . Let (T(X), k(r(x))) e [uQ, u2] x [«2> vo] be a steady state solution
of (1.1) on (a, b) with —oo ̂  a < 6 ^ +00. If a > -co we suppose that
T(O) = uo> MT(a)) = vo, and if b < 00 suppose that r(b) — uo, k(r(b)) = VQ . If
(w\(x, t), W2(x, t)) is a solution of (1.1) with initial conditions:

. 0) = \ , . .
y uo otherwise,
j k{r(x)) x G ( a , 6 ) ,

, 0) = i .
[ «o otherwise,

then wi(x, t) (respectively 102(2, t) ) is n on decreasing (nonincreasing) in t, for each x,

fixed. Furthermore

lim (tui(s, t), w2(x, t)) = (q(x), r(x))

uniformly in each x-bounded interval, where q(x) (respectively T(X}) is the smallest
(biggest) steady state solution of (1.1) in [uo, 112] (respectively [V2, vo]) in the sense
tiat:

q(x)>r(x), r(«) <%(«)) in (a, b).

PROOF: The proof of this lemma mimics that in [1], for a single equation, and we
have omitted it for sake of brevity. U

REMARK. Since I(u2) > 0, there exists K 6 [u\, u2] such that I{K) = 0. Moreover
I(q{x)) > 0 and I'(q) - F(q, k(q)) > 0 for q € (K, u2). Then for any /3 € (K, u2)

the solution qp(x) of (2.1) with first integral q'2 + 2I(q) = 2I(/3) such that 9(0) = u0,
q'(0) = y/2I(fi) satisfy: qp > u0 on (0, bp) qp{Q) = qp(bp) — u0, and qp{x) ^
qpibp/2) = /3 on [0, bp) where

= 2 [0{2{I{/3)-I(u))}-^du.

Then with this remark, we can state:

THEOREM 2 . 1 . Let (u(x, t), v(x, t)) be a solution of (1.1) on K x R + such
tiat /(u2) > 0. If for some /3 6 (K, u2) and some xo so that u(x, 0) ̂  9^(* — xo)i
v[x, 0) ^ k{qp{x — xo)) on (xo, Xo + bp), then we have

lim (w(x, t), v(x, t)) = (u2, v2).
t—>OO

PROOF: Since (u0, v0) is a solution of (1.1) and u(x, 0) ^ u0 »(«, 0) < v0,
Vz G K. Then by the comparison theorem we have that u(x, t) ^ u0, v(x, t) ^ v0,

https://doi.org/10.1017/S0004972700012107 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012107


444 E. Tuma and C M . Blazquez [4]

V(s:, t ) e l x t + . Let ux{x, i), v^x, t) be a solution of (1.1) such that:

, , (^(i»-*o) on (x0, x0 +bp)
u^x, 0) = i .

y uo otherwise,

Vl{x, 0) = <
^ VQ otherwise.

Then by Lemma 1 there exists a stationary solution (TI(X), «I(X)) so that

uniformly in each x-bounded interval, where for some Xo :

Ti(x) ^ i{x ~ xo)i 8i{x) ^ k{Qp{x ~ xo)) in (^o, xo + 6/9)-

Then by the hypothesis on the initial conditions and the comparison principle we have:
u(x, t) ^ iti(x, t) and u(x, t) ^ vi(x, t). On the other hand uo ^ u(x, t) ^ u2,
v2 ^ v(x, t) ^ VQ so it is sufficient to prove that Ti(x) = U2 and si{x) = ^(^2) = v2.
Let us suppose that Ti(x) < U2. Since TI(X) satisfies: T1

2(x)/2 + I(T\(X)) = P for
some constant P ^ /(/?) > 0, we may assume that there exists xi such that Ti(xi) =
7 G [uo, U2) so we have:

x — Xi =

where the sign depends on the sign of r[(x). From this it follows that for finite x*,
r(x*) = uo with T'(X*) ^ 0, hence Ti(x) takes values smaller than uo, which is not
possible. Therefore T\(x) = u2 and so

lim (u(x, t), v(x, t)) = (u2, fc(u2)) = (u2, v2).
t—»oo

REMARK. In order to study the stability of the equilibrium point (u0, v0) and to esti-
mate "how big" the initial condition must be to obtain the stability of this point, we
use contracting rectangles for the vector field

H(p, r) = (F(p + uo, v0 - r), G(p + u0, v0 - r))\

of equation (1.1), in the following sense.
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DEFINITION: A bounded convex set R C R2 is contracting for the vector field
H(p, r) if for any point (p, r) £ dR and every outward unit normal n at (p, r ) :
H(p,r) • n < 0.

THEOREM 2 . 2 . Let u(x, t), v(x, t) be a solution of (1.1) and let R be the
rectangle

R = {(u, v) | uo — e ^ u ^ ui — e, v* ^ w < «**, 0 < e < ui — uo,

v* = l-{h + *)(«! - e), v** = \{h + k){u0 - e)} .

if (ii(x, 0), v(x, 0)) = i/(x, 0) € R, Vx £ R and U(x, 0) tend to (u0, v0) as
x —> oo, til en tiere exist positive constants c, K such that:

||(u(x, t) - wo, v0 - v(x, t ) ) ^ ^ Ke~ct \ft > 0.

PROOF: It is easy to check that R is a contracting set for the given vector field
and that TR = {(rp, rr) \ (p, r) £ R} is a contraction of R about (no, vo), for any
T e (0, 1]. Since U(x, 0) G R Vx £ R, there exists T 6 (0, 1] such that U{x, 0) £ T.R.
If L is the largest side of the rectangle TR then by the basic lemma of Rauch and Smoller
[4, Lemma 3.8] there exists s £ R+ such that the upper Dini derivative satisfies:

DqTR(U( ,<)) ^ -(s/L)qTR(U(,t)); qTR(U(x, 0)) = r ^ 1.

where

?fl(p( ,*), r( ,<)) = Suplnf{r ^ 0 | (p(x, t ) , r(x, t)) £ r i?} .

Then

,0)) < Ke-

and the theorem follows. D

REMARKS. (1) Since e > 0 is arbitrary, we may choose it sufficiently small so that
U(x, 0) £ R for all x £ R. Hence letting £ -»0 + we see that the initial conditions are
bounded by

u0 ^ u(x, t) ^ «x, vj ^u(x, t) ^ « 0 .

(2) In the same manner we may prove that the steady state (u2, W2) is asymp-
totically exponentially stable with domain of stability given by «i ^ w(x, 0) ^ wji
t>2 ^ v(x, 0) ^ «i.

(3) From the above, we see that the steady state (1*1, «i) is unstable, that is, it is
a threshold point.
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3. INITIAL-BOUNDARY VALUE PROBLEM

Let us consider the boundary value problem

(3.1) « t = « « + -F(«, v), vt = G(u, «), x > 0, i> 0

(3.2) u(x, 0) = u0, v ( x , 0 ) = v o , x > 0

(3.3) u(0, t) = h(t) € [«o, m] Vi>0 .

An analogous lemma to Lemma 1, reads:

LEMMA 2 . Let (T(X), S(X)) be a stationary solution of (3.1) in (a, b) with o > 0
and let r(a) = T(6) = ito, s(a) — s(b) = VQ . Let (iu>i(«, t), «)2(*, t)) be a solution of
(3.1) with initial-boundary conditions

, 0) = <
\«o onR+\(a,6),

_. / *{*) ™ (°. 6)
, 0) = <

\ DO on R+ \ (a, b)

u>i(x, 0) = ^(t) on R+.

ttMx

Suppose that rjj(t) in nondecreasing and V'(O) = u0 with ip(t) £ [u0,112]- Then
Wi (x, t) (respectively w2(x, t)) is non-decreasing (non-increasing) in t, for each x fixed.
Furthermore

Urn (T«I(X, t), wz(x, i)) = (q(x), r(x))

uniformly in each x-bounded interval, where (g(x), r(x)) is a steady state solution of
(3.1) and they satisfy:

9(0) ^ lim il>(t) and q(x) ^ T(X), r(x) ^ a(x) in (a, 6).
t—>oo

REMARK. Consider the problem

(3.4) T"(X) + F{T{X), k(r(x))) = 0 on R+, T(0) = /9.

This equation has a unique solution on [uo, u2] for each /? G (if, 1*2], which converges
to u2 a s i - + o o , and it has two solutions for 0 € [uo, K), one of which converges to
«o as x —• 00.

THEOREM 3 . 1 . Let (u(x, <), v(x, t)) be a soiution of (3.1) - (3.3) and Jet
(p^(z), fc(p0(x))) fee a steady slate solution of (3.1) such that p^(0) = 0, p'0(O) = 0,
for some 0 6 [K, 1*2]. For any 0 € (if, 1*2) there exist positive numbers ap and
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tp such that pp(±ap) = uo and if h(t) ^ j3, t G (<j, t\ + tp), some ti > 0.
Then the solution (u(x, t), v(x, t)) of (3.1) satisfies u(z, <i + tp) ^ pp(x -ap-1),
v(x, h +tp) ^ k{pp(x -ap- 1)), for all x€ (1, 1 + 2ap), and

(3.6) lim lim (Inf u(x, <), Supv(z, t)) = (112, t7j).
x—>oo t—>oo

PROOF: Since (wo, vo) is a solution of (1.1)-(1.3) then by the comparison theorem:
u(x, t) ^ uo, v(x, t) ^ w0 on R+ x R+. Define s(t) as a smooth and nondecreasing
function so that s(t) = UQ , for t £ (—oo, 0), and s(t) = 0, for t G (1, +00). Let
(ioi(z, <), w2(z, t)) be a solution of (3.1)-(3.3) on R+ x R+ such that iui(O, t) =
s(t), t G R+. Then it is well-known that the solution (UJI(Z) t), ^ ( z , 0) converges,
uniformly in z, as < -» 00, to a steady state solution of (3.1)-(3.3), (q{x), k(q(x)))
with q(0) > Um s(t) = /3. Since /3 > K the problem:

*

(3.7) 9"(z) + F(g(z), *(,(*))) =0 , z G R+, q{0) = p.

has a unique solution q(x) such that q(x) —* 112 , fc(g(z)) —» «2 as z —> 00. Furthermore,
from the phase portrait of (3.7) we learn that there exist a number ap and a solution
pp(x) defined on (0, ap) such that pp(O) = Pp{a) = Wo and pp{x) ^ pp(a/2) = r on
(0, ap). Thus p^(z - 1) < s{x) and fc(p^(z - 1)) > k(s(x)) on (1, 1 + ap). Since the
convergence of (101, 1̂ 2) to (a(x), k(a(x))) is uniform on [1, 1 + ap], there exist a time
tp for which, on [1,1 + ap], we have:

*/?) > pp(x - 1), tu2(a;, tp) ^ fc(p^(z - 1)).
Then, by the comparison theorem, we have:

u(x, t + *i) ^ tO!(z, <), v(z, t + ti) ^ WJ2(X, <) on R+ x [0, tp].

Therefore lim Inf u(x, t) (respectively, lim Supw(a;, t)) is bounded below (respec-
t—>oo t—•oo

tively, above) by a stationary solution «i(z) (respectively, fc(si(z))) of (3.7), such
that

*i(x) ^ pp(x - 1), ^(^(z)) ^ k(pp(x - 1)) on [1, 1 + ap].
In particular, 8\{x + ap/2) ^ 0 > K. Hence Um (si(x), k(ai(x))) — (1*2) ̂ 2) and the

X—>OO

theorem follows. D

THEOREM 3 . 2 . Let (u(z, t), v(x, t)) be a solution of (3.1)-(3.3) and let f3 =
Suph(t) < K. Then u(z, t) ^ qp(x), v(x, t) ^ Pp{x). In particular,

Um Um (Supu(z, t), Inf v(x, t)) = («o, "o)
Z—•OO t—»GO
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where (qp(x), pp(x)) is a steady state solution of (3.1).

PROOF: From the remark we have (qp(x), pp(x)) —» (uo, VQ) as x —» <x> and
the result follows directly from the comparison principle, because u(0, t) = h(t) < /?,
u(x, 0) = uo < qp{x), v(x, 0) = w0 ^ Pp{x) Vx 6 R+. (13 < K implies u0 < qp(x) <
K). D
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