
LMS J. Comput. Math. 14 (2011) 254–270 Ce2011 Authors
doi:10.1112/S146115701000029X
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Abstract

Our focus in this work is to investigate an efficient state estimation scheme for a singularly
perturbed stochastic hybrid system. As stochastic hybrid systems have been used recently in
diverse areas, the importance of correct and efficient estimation of such systems cannot be
overemphasized. The framework of nonlinear filtering provides a suitable ground for on-line
estimation. With the help of intrinsic multiscale properties of a system, we obtain an efficient
estimation scheme for a stochastic hybrid system.

1. Introduction

The theory of filtering gives a recursive procedure for estimating an evolving signal or state
from a noisy observation process. Since the state is usually hidden and evolves according to
its own dynamics, the objective is to compute the conditional distribution of the state given
noisy observations. Aside from several special cases where the distribution of the state can
be described with a finite number of moments or modes (for example, the celebrated Kalman
filter [11] for linear systems and Benes̆ [2] and Daum [4] filters for special nonlinear systems),
filtering problems in general deal with infinite-dimensional objects such as stochastic partial
differential equations (PDEs) for posterior densities and, thus, require enormous amounts of
computation.

In this work, our interest lies in a filtering problem for stochastic hybrid systems. As
stochastic hybrid systems have been used in diverse areas to model complex random phenomena
which were not captured by state models with either continuous or discrete dynamics alone,
their estimation has become an active research field for the last decade (cf. [9, 13, 19, 20, 23]
and references therein).

The computation required to solve multidimensional nonlinear filtering problems might be
quite intensive. This may hinder the practical implementation of stochastic hybrid systems
in time-critical applications such as target tracking, fault detection, volatility estimation in
financial markets, etc. However, if the system can be cast into a multiscale setting, significant
reduction in the computational complexity may be available.

Singularly perturbed dynamical systems are a natural framework for dealing with multiscale
systems [12, 14, 21]. In several riveting areas including biology [3], optimal control [6],
and finance [25], various phenomena have been successfully modeled by singularly perturbed
stochastic hybrid systems.

We here consider nonlinear filtering for continuous–discrete state processes given by a pair of
fast–slow processes. More specifically, we choose a fast diffusion process with a slow switching
process [23]. Both the fast and slow processes are coupled so that neither process on its own
is Markovian.

More specifically, we will consider a state process (Xε
t ,Θ

ε
t ), where ε is a small parameter,

Xε
t is the Rd-valued diffusion process governed by the following stochastic differential equation
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(SDE):

dXε
t =−1

ε
ΛΘε

t
(Xε

t −Θε
t ) dt+

1√
ε
dWt, (1.1)

and Θε
t is a (continuous-time) conditionally Markov process taking values in a finite set S.

Namely,
P{Θε

t+∆ = θ1 |Θε
t = θ2, X

ε
t = x}= qθ1,θ2(x)∆ + o(∆),

where

qθ1,θ2(x) > 0 if θ1 6= θ2,

qθ,θ(x) =−
∑
θ′∈S
θ′ 6=θ

qθ,θ′(x), θ ∈ S.

In the literature, the process Θε
t is often called the parameter process or simply the ‘parameter’

and we will use this term as well.
We assume that the qθ,θ′ are all bounded and measurable. We also assume that for each

θ ∈ S, the eigenvalues of the matrix Λθ = (λθi,i′)16i,i′6d are all strictly positive, and dW in (1.1)
is a d-dimensional Brownian motion†.

Note that under these assumptions, the distribution of Xε
t quickly relaxes to a locally

‘invariant’ distribution centered at the current value of the parameter process. Parameter
process Θε

t evolves on a much slower scale, and its dynamics depend on Xε. The small
parameter ε measures the ratio of slow and fast scales.

We observe a corrupted function of Xε; that is, the n-dimensional observation process Y ε is
given by

dY εt = h(Xε
t ,Θ

ε
t ) dt+ dVt (1.2)

for some bounded and continuous sensor function h from Rd × S to Rn and where V is a
standard n-dimensional Brownian motion. We also assume that (Xε

0 ,Θ
ε
0) is independent of the

other sources of randomness in our system and that there is a ρ ∈ C0(Rd × S) such that

P{Xε
0 ∈A,Θε

0 ∈A′}=
∑
θ∈A′

∫
x∈A

ρ(x, θ) dx

for all A ∈B(Rd) and A′ ⊂ S. Let us also assume that Y ε0 = 0. Based on the observation
process, we want to reconstruct the law of Θε; that is, to compute

P{Θε
t ∈A | Y ε

t },
where

Y ε
t

def= σ{Y εs : 0 6 s6 t}.
We want to do this efficiently ; that is, to find an effective filter which works as the scaling
parameter ε↘ 0.

The standard equations of filtering (which we will develop in a moment) require us to evolve
a conditional law for the full state; that is, the pair (Xε,Θε). Since the fast Xε quickly relaxes
to its local invariant measure, it should not have too much information. Our objective is to
show that we can track Θε without fully resolving the conditional density of Xε. Thus, instead
of solving an Rd × S-dimensional Zakai equation, we can effectively solve an approximate Zakai
equation whose state space is the finite set S. The resulting equation can be used in place of
the original more complex equations to provide qualitatively accurate and computationally
feasible descriptions either for simulation and prediction or for real-time control.

† By means of various coordinate changes, we can transform the problem so that dW can have any positive-
definite covariance matrix, which may, in fact, depend on Θε

t . Note that we have included Θε
t -dependence in

our sensor function in (1.2).
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This type of result has been covered in the literature within the framework of homogenization
theory; we refer to [16] and the references therein for more detail. Methodologically, this study
is similar to [15] and [16]. In the former work, the observation becomes independent of the
system in the limit, while the latter has an explicit dependence on the slow variable in the
limit. In [15, 16], the fast motion was a fast angular drift. In contrast to these papers, the
fast motion (1.1) has both drift and diffusion, so the speed of averaging depends on a spectral
gap. In this work, we show that the observation in the limit still has crucial information for
estimation even though there is no explicit dependency on the system. This property is quite
useful in many practical applications such as molecular motors [22] and rare-event simulations,
where the observation could be given in terms of the fast variable. To the authors’ knowledge,
there is no previous work in this setting.

2. The Zakai equation

Our first step is to recall the known framework of nonlinear filtering; that is, the Zakai
equation [1, 18, 24]. Let us start with the generator of the fast motion for a fixed value
of the parameter. For each θ ∈ S, define the second-order partial differential operator

(Lθf)(x) def= −
∑

16i,j6d

λθi,j(xj − θj)
∂f

∂xi
(x) +

1
2

∑
16i6d

∂2f

∂x2
i

(x)

for f ∈ C∞(Rd) and x= (x1, x2, . . . , xd). We also define the generator of the parameter process
as

(Qf)(x, θ) def=
∑
θ′∈S

f(θ′)qθ,θ′(x)

for all f ∈B(Rd × S), x ∈ Rd, and θ ∈ S. These are the generators of the fast and slow motions,
and we propagate densities by their adjoints; define

(L ∗θ f)(x) def=
∑

16i,j6d

λθi,j
∂

∂xi
((xj − θj)f)(x) +

1
2

∑
16i6d

∂2f

∂x2
i

(x)

for f ∈ C∞(Rd) and x= (x1, x2 . . . xd) and

(Q∗f)(x, θ) def=
∑
θ′∈S

f(θ′)qθ′,θ(x)

for all f ∈B(Rd × S), x ∈ Rd, and θ ∈ S.
The Zakai equation in our setting is given by

duε(t, x, θ) =
1
ε
L ∗θ u

ε(t, x, θ) dt+ Q∗uε(t, x, θ) dt+ uε(t, x, θ)h(x, θ)T dY εt

=
1
ε
L ∗θ u

ε(t, x, θ) dt+ Q∗uε(t, x, θ) dt+ uε(t, x, θ)h(x, θ)T dVt

+ uε(t, x, θ)h(x, θ)Th(Xε
t ,Θ

ε
t ) dt,

uε(0, x, θ) = ρ(x, θ).

(2.1)

Under the assumptions of this paper, one could show that for every ε > 0,

P{Xε
t ∈A,Θε

t ∈A′ | Y ε
t }=

∑
θ∈A′

∫
x∈A u

ε(t, x, θ) dx∑
θ∈S

∫
x∈Rd uε(t, x, θ) dx

, A ∈B(Rd), A′ ⊂ S

with probability 1.
Note that in the literature on nonlinear filtering the Zakai equation is usually considered

on a new probability space, where Y εt is a Brownian motion. This space changes when the
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parameter ε changes. This is inconvenient for our purposes. Therefore, we will consider (2.1)
on a fixed probability space for all ε.

To see the asymptotic behavior of the solution of (2.1) as ε↘ 0, we construct the invariant
measure of the fast motion. For θ ∈ S, define

Bθ
def=

∫∞
s=0

exp[−Λθs] exp[−ΛTθ s] ds

and

µθ(x) def=
1√

(2π)d detBθ
exp
[
−1

2
(x− θ)′B−1

θ (x− θ)
]
, x ∈ Rd

Then

L ∗θ µθ(x) = 0 and
∫

Rd

µθ(x) dx= 1

for all θ ∈ S. We want to find the effective behavior of the jumps by averaging over the invariant
distribution of the fast motion. For each θ1 and θ2 in S, define

q̄θ1,θ2
def=

∫
x∈Rd

qθ1,θ2(x)µθ1(x) dx;

we still have that q̄θ1,θ2 > 0 if θ1 6= θ2 and q̄θ,θ =−
∑
θ′∈S
θ′ 6=θ

q̄θ,θ′ for all θ ∈ S. Define

(Q̄∗f)(θ) def=
∑
θ′∈S

f(θ′)q̄θ′,θ

for all f ∈B(S). We also need to average the sensor function and the initial condition; for each
θ ∈ S, define

h̄(θ) def=
∫
x∈Rd

h(x, θ)µθ(x) dx and ρ̄(θ) def=
∫
x∈Rd

ρ(x, θ)µθ(x) dx. (2.2)

The effective Zakai equation for θε should be given by averaging the coefficients of (2.1) with
respect to the invariant measure of the fast motion; that is,

dvε(t, θ) = Q̄∗vε(t, θ) dt+ vε(t, θ)h̄(θ)T dY εt ,
vε(0, θ) = ρ̄(θ) (2.3)

(see also Il’in et al. [10]). Note that while we can find the effective behavior of the x variable
in the coefficients of the Zakai equation (2.1), we cannot really average the observations since
they are the inputs to the system. Thus, (2.3) is not a true Zakai equation; this is clear upon
writing

dvε(t, θ) = Q̄∗vε(t, θ) dt+ vε(t, θ)h̄(θ)T {h(Xε
t ,Θ

ε
t ) dt+ dVt}

= Q̄∗vε(t, θ) dt+ vε(t, θ)h̄(θ)T {h̄(Θε
t ) dt+ dVt}

+ vε(t, θ)h̄(θ)T {h(Xε
t ,Θ

ε
t )− h̄(Θε

t )} dt.

The last term captures the deviation from a true Zakai equation.
Let us now collect our thoughts and formulate our results. For each t > 0, define

πεt (A) def=

∑
θ∈A

∫
x∈Rd u

ε(t, x, θ) dx∑
θ∈S

∫
x∈Rd uε(t, x, θ) dx

; A⊂ S;

then πεt (A) = P{Θε
t ∈A | Y ε

t }. Let us also define

π̄εt (A) def=
∑
θ∈A v

ε(t, θ)∑
θ∈S v

ε(t, θ)
; A⊂ S.

We note that the evolution of vε is essentially an |S|-dimensional SDE, whereas that of uε is a
stochastic partial differential equation (SPDE). Thus, π̄εt is a much simpler process to compute.
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Note also that the only dependence of π̄ε on ε is through the observation process Y ε; the actual
dynamics are ε-independent. Our main result is that as ε↘ 0, π̄ε is a good substitute for πε.

Theorem 2.1. For each t > 0,

lim
ε→0

E[dP(S)(πεt , π̄
ε
t )] = 0.

Here dP(S) is the Prohorov metric on P(S).

3. Asymptotic analysis

Several preliminary steps will help make the proof of Theorem 2.1 more natural. Firstly, we
will consider a slightly more intrinsic formulation of the Zakai equation. Secondly, we will
rewrite (2.3) in a way which facilitates comparison to the dynamics of the original problem.

To begin, let us define

ũε(t, x, θ) def=
uε(t, x, θ)
µθ(x)

; t> 0, x ∈ Rd, θ ∈ S;

then ∫
x∈Rd

uε(t, x, θ)f(x) dx=
∫
x∈Rd

ũε(t, x, θ)f(x)µθ(x) dx, t> 0, θ ∈ S

for all f ∈ C∞c (Rd) and

πεt (A) def=

∑
θ∈A

∫
x∈Rd ũ

ε(t, x, θ)µθ(x) dx∑
θ∈S

∫
x∈Rd ũε(t, x, θ)µθ(x) dx

, A⊂ S.

In other words, let us make our reference measure the invariant measure of the fast motion. If
we define

L̃ ∗θ f
def=

1
µθ

(L ∗θ (fµθ))

for f ∈ C∞(Rd) and x= (x1, x2, . . . , xd) and

(Q̃∗f)(x, θ) def=
1

µθ(x)

∑
θ′∈S

µθ′(x)f(θ′)qθ′,θ(x)

for all f ∈B(Rd × S), x ∈ Rd, and θ ∈ S, we then have that

dũε(t, x, θ) =
1
ε
L̃ ∗θ ũ

ε(t, x, θ) dt+ Q̃∗ũε(t, x, θ) dt+ ũε(t, x, θ)h(x)T dY εt

=
1
ε
L̃ ∗θ ũ

ε(t, x, θ) dt+ Q̃∗ũε(t, x, θ) dt+ ũε(t, x, θ)h(x)Th(Xε
t ,Θ

ε
t ) dt

+ ũε(t, x, θ)h(x)T dVt,

ũε(0, x, θ) =
ρ(x, θ)
µθ(x)

.

(3.1)

We next observe that vε satisfies a similar SPDE. Since µθ is the invariant measure for
the generator Lθ, L ∗θ µθ ≡ 0. Defining 1 : Rd→ R as 1 : Rd 7→ 1, we thus have that L̃ ∗θ 1≡ 0.
Hence, the function (t, x, θ) 7→ vε(t, θ) = vε(t, θ)1(x) from R+ × Rd × S satisfies

dvε(t, θ) =
1
ε

(L̃ ∗θ v
ε)(t, x, θ) dt+ Q̄∗vε(t, θ) dt+ vε(t, θ)h̄(θ)T dY εt ,

vε(0, θ) = ρ̄(θ).
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We also note, of course, that

π̄εt (A) =

∑
θ∈A

∫
x∈Rd v

ε(t, θ)µθ(x) dx∑
θ∈S

∫
x∈Rd vε(t, θ)µθ(x) dx

; A⊂ S.

Our immediate goal is then the following lemma.

Lemma 3.1. For each t > 0, we have that

lim
ε↘0

∑
θ∈S

E
[∫
x∈Rd

|ũε(t, x, θ)− vε(t, θ)|2µθ(x) dx
]

= 0.

This will be a crucial step towards the proof of Theorem 2.1; see Section 4.
The value of the linear dynamics of (1.1) is that they allow us to get explicit rates at which

the fast motion achieves its stationary behavior (if the dynamics of Xε had nonlinearities,
one could in general get only abstract bounds on the rate of convergence to a stationary
distribution). To formalize the notation surrounding this, fix θ ∈ S. For each x ∈ Rd, define

X̃θ,x
t

def= θ + exp[−Λθt]x+
∫ t
s=0

exp[−Λθ(t− s)] dWs, t > 0.

Then X̃θ,x satisfies the SDE

dX̃θ,x
t = −Λθ(X̃

θ,x
t − θ) dt+ dWt,

X̃θ,x
0 = x;

(3.2)

this is a Markov process with generator Lθ. For t > 0 and f ∈B(Rd), define

(P θt f)(x) def= E[f(X̃θ,x
t )].

This is the semigroup on B(Rd) generated by Lθ (and of course limt↘0 P
θ
t f = f pointwise).

We can write a kernel representation for P θt . For every t > 0, define

Bθ(t)
def=

∫ t
s=0

exp[−Λθ(t− s)] exp[−ΛTθ (t− s)] ds=
∫ t
s=0

exp[−Λθs] exp[−ΛTθ s] ds.

Of course, limt→∞ Bθ(t) =Bθ. Define

pθx(t, z) def= (2π)−d/2(detBθ(t))−1/2

× exp[− 1
2 (z − (θ + exp[−Λθt]x))TB−1

θ (t)(z − (θ + exp[−Λθt]x))]

for all t > 0 and x and z in Rd. Then

(P θt f)(x) =
∫
z∈Rd

pθx(t, z)f(z) dz

for all t > 0, x ∈ Rd, and f ∈B(Rd). For each f ∈ C∞c (Rd), let us next define

(Sθt f)(x) def=
1

µθ(x)

∫
z∈Rd

f(z)pθz(t, x)µθ(z) dz

for all t > 0 and x ∈ Rd, so that∫
x∈Rd

(Sθt f)(x)g(x)µθ(x) dx=
∫
z∈Rd

f(z)µθ(z)(P θt g)(z) dz (3.3)

for all f and g in C∞c (Rd) and all t > 0. In fact, we should think of Sθt as the adjoint of P θt .
For all f and g in Cc(Rd), define

〈f, g〉θ
def=

∫
x∈Rd

f(x)g(x)µθ(x) dx
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and define ‖f‖θ
def=
√
〈f, f〉θ for all f ∈ Cc(Rd); this is a norm on Cc(Rd). Define L2(µθ) as the

closure of Cc(Rd) with respect to this norm; then 〈·, ·〉θ can uniquely be extended to an inner
product on L2(θ). Then (3.3) can be written as

〈Sθt f, g〉θ = 〈f, P θt g〉θ
for all f and g in Cc(Rd) and all t > 0.

Lemma 3.2. Fix f ∈ C∞c (Rd). For t > 0 and x ∈ Rd, define w(t, x) def= (Sθt f)(x). Then w
satisfies the PDE

∂w

∂t
(t, x) = L̃ ∗θ w(t, x), t > 0, x ∈ Rd,

w(0, ·) = f.

Proof. The proof is fairly standard, but, for the sake of completeness, we will outline it.
Fix g ∈ C∞c (Rd) and set

ξt
def=

∫
x∈Rd

w(t, x)g(x)µθ(x) dx= 〈f, P θt g〉θ

for all t > 0. Clearly,

lim
t↘0

ξt =
∫
x∈Rd

f(x)g(x)µθ(x) dx.

Secondly,

ξ̇t = 〈f, (P θt (Lθg))〉θ
= 〈Sθt f,Lθg〉θ

=
∫
x∈Rd

w(t, x)µθ(x)(Lθg)(x) dx

=
∫
x∈Rd

(L̃ ∗θ w)(t, x)g(x)µθ(x) dx.

Collecting things together, we get the result.

An important result which will form the basis for our averaging estimates is the following.

Lemma 3.3. There are a K > 0 and a ν > 0 such that, for all t > 0,

‖P θt f − 〈f, 1〉θ1‖θ ≤Ke−νt‖f‖θ
for all f ∈ L2(θ) and all θ ∈ S.

Proof. This is Proposition 4.3 of [7].

This gives us our central averaging estimate (the proof of which is also fairly standard).

Proposition 3.4. There are a K > 0 and a ν > 0 such that

‖Sθt f‖θ ≤Ke−νt‖f‖θ
for all θ ∈ S, t > 0, and f ∈ Cc(Rd) such that 〈f, 1〉θ = 0.

Proof. Fix g ∈ C∞c (Rd). Then, since 〈f, 1〉θ = 0,

〈Sθt f, g〉θ = 〈f, P θt g〉θ − 〈f, P θt g − 〈g, 1〉θ1〉θ,
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so
|〈Sθt f, g〉θ| ≤Ke−νt‖f‖θ‖g‖θ.

Take g = Sθt f , and the claim follows.

To proceed, we make the decomposition

uε(t, x, θ) = vε(t, θ) + Φε(t, x, θ) +Rε(t, x, θ),

where

dΦε(t, x, θ) =
1
ε
L̃ ∗θ Φε(t, x, θ) dt+ {(Q̃∗v)(t, x, θ)− (Q̄∗v)(t, θ)} dt

+ vε(t, θ){h(x, θ)− h̄(θ)}h(Xε
t ,Θ

ε
t )
T dt

+ vε(t, θ){h(x, θ)− h̄(θ)}T dVt,
Φε(0, x) = ρ(x, θ)− ρ̄(θ),

dRε(t, x, θ) =
1
ε
L̃ ∗θ R

ε(t, x, θ) dt+ Q̃∗Rε(t, x, θ) dt

+Rε(t, x, θ)h(x, θ)h(Xε
t ,Θ

ε
t )
T dt

+Rε(t, x, θ)h(x, θ)T dVt + Q̃∗Φε(t, x, θ) dt

+ Φε(t, x, θ)h(x, θ)h(Xε
t ,Θ

ε
t )
T dt

+ Φε(t, x, θ)h(x, θ)T dVt,

Rε(0, x) = 0.

(3.4)

We want to show that Φε is small since it reflects an averaging correction. We will then use
standard SPDE estimates to show that Rε, which is driven by Φε, is also small.

Let us further split Φε into several parts, writing Φε =
∑4
i=1 Φεi , where

∂Φε1
∂t

(t, x, θ) =
1
ε
L̃ ∗θ Φε1(t, x, θ),

Φε1(0, x, θ) = ρ(x, θ)− ρ̄(θ),

∂Φε2
∂t

(t, x, θ) =
1
ε
L̃ ∗θ Φε2(t, x, θ) + {(Q̃∗v)(t, x, θ)− (Q̄∗v)(t, θ)},

Φε2(0, x, θ) = 0,

∂Φε3
∂t

(t, x, θ) =
1
ε
L̃ ∗θ Φε3(t, x, θ) + vε(t, θ){h(x, θ)− h̄(θ)}h(Xε

t ,Θ
ε
t )
T ,

Φε3(0, x, θ) = 0,

dΦε4(t, x, θ) =
1
ε
L̃ ∗θ Φε4(t, x, θ) + vε(t, θ){h(x, θ)− h̄(θ)}T dVt,

Φε4(0, x, θ) = 0.

(3.5)

Let us start to bound the various terms.

Lemma 3.5. For each t > 0, we have that

lim
ε↘0

max
θ∈S

E
[∫
x∈Rd

|Φε1(t, x, θ)|2µθ(x) dx
]

= 0.

Proof. For convenience, define

ρ̌(x, θ) def= ρ(x, θ)− ρ̄(θ).
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By definition, 〈ρ̌(·, θ), 1〉θ = 0. We then have that

Φε1(t, x, θ) = (Sθt/ερ̌(·, θ))(x),

so

‖Φε(t, ·)‖θ ≤Ke−νt/ε‖ρ̌(·, θ)‖θ.

This gives the claimed result.

Before proceeding, we need some uniform bounds on vε.

Lemma 3.6. For each t > 0, we have that

sup
ε∈(0,1)
θ∈S

0≤s≤t

E[|vε(s, θ)|2]<∞.

Proof. Define

V ε(t) def=
∑
θ∈S

(vε(t, θ))2.

We have that

dV ε(t) = 2
∑
θ,θ′∈S

vε(t, θ)q̄θ′,θvε(t, θ′) dt+ 2
∑
θ∈S

h̄(θ)(vε(t, θ))2 dY εt +
∑
θ∈S

(h̄(θ)vε(t, θ))2 dt.

Now define

Q
def= sup

{ ∑
θ,θ′∈S

q̄θ,θ′f(θ)f(θ′) : f ∈B(S),
∑
θ∈S

f2(θ) = 1
}

;

then Q<∞. Thus,

E[V ε(t)]≤
∑
θ∈S

ρ̄(θ)2 + {2Q+ 8‖h‖B}K
∫ t
s=0

E[V ε(s)] ds.

Gronwall’s inequality then implies the claim.

Lemma 3.7. For each t > 0, we have that

lim
ε↘0

sup
θ∈S

E
[∫
x∈Rd

|Φε2(t, x, θ)|2µθ(x) dx
]

= 0.

Proof. Let us start by writing

(Q̃∗vε)(t, x, θ)− (Q̄∗vε)(t, θ) =
∑
θ′∈S

q̌θ′,θ(x)vε(t, θ′),

where

q̌θ′,θ(x) def=
µθ′(x)
µθ(x)

qθ′,θ(x)− q̄θ′,θ

for all θ and θ′ in S and all x ∈ Rd. Note that 〈q̌θ′,θ, 1〉θ = 0 for all θ and θ′ in S. We then have
that

Φε2(t, x, θ) =
∑
θ′∈S

∫ t
s=0

(Sθ(t−s)/εq̌θ′,θ)(x)vε(s, θ′) ds.
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Thus,

‖Φε2(t, ·, θ)‖θ ≤ K
∑
θ′∈S

∫ t
s=0

e−ν(t−s)/ε‖q̌θ′,θ‖θ|vε(s, θ′)| ds

≤ Kε
∑
θ′∈S

‖q̌θ,θ′‖
∫ t/ε
s=0

e−νs|vε(t− sε, θ′)| ds.

The claim follows.

Let us next define the function

ȟ(x, θ) def= h(x, θ)− h̄(θ); x ∈ Rd, θ ∈ S;

from (2.2), we have that 〈ȟj(·, θ), 1〉θ = 0 for all j ∈ {1, 2, . . . , n}.
The bound on Φε3 follows from arguments similar to those of Lemma 3.7.

Lemma 3.8. For each t > 0, we have that

lim
ε↘0

max
θ∈S

E
[∫
x∈Rd

|Φε3(t, x, θ)|2µθ(x)
]
dx= 0.

Proof. We have that

Φε3(t, x, θ) =
n∑
j=1

∫ t
s=0

(Sθ(t−s)/εȟj)(x)hj(Xε
s ,Θ

ε
s)v

ε(s, θ) ds.

Thus,

‖Φε3(t, ·, θ)‖θ ≤
n∑
j=1

∫ t
s=0

‖Sθ(t−s)/εȟj‖|hj(X
ε
s ,Θ

ε
s)||vε(s, θ)| ds

≤ K

n∑
j=1

∫ t
s=0

e−ν(t−s)/ε‖ȟj‖θ|hj(Xε
s ,Θ

ε
s)||vε(s, θ)| ds

≤ Kε

n∑
j=1

‖ȟj‖θ
∫ t
s=0

e−νs|hj(Xε
t−sε,Θ

ε
t−sε)||vε(t− sε, θ)| ds.

This gives us the result.

The bound on Φε4 follows from similar arguments once we use Ito’s isometry.

Lemma 3.9. For each t > 0, we have that

lim
ε↘0

sup
θ∈S

E
[∫
x∈Rd

|Φε4(t, x, θ)|2µθ(x) dx
]

= 0.

Proof. We have that

Φε4(t, x, θ) =
n∑
j=1

∫ t
s=0

(Sθ(t−s)/εȟj)(x)vε(s, θ) dV js .

The Ito isometry thus gives us that

E[‖Φε4(t, ·, θ)‖2θ] ≤
n∑
j=1

∫ t
s=0

‖Sθ(t−s)/εȟj‖
2E[|vε(s, θ)|2] ds
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≤ K2
n∑
j=1

∫ t
s=0

e−2ν(t−s)/ε‖ȟj‖θE[|vε(s, θ)|2] ds

≤ Kε

n∑
j=1

‖ȟj‖2θ
∫ t/ε
s=0

e−2νsE[|vε(t− sε, θ)|2] ds.

The result follows.

Summarizing, we have that Φε is small.

Lemma 3.10. For each t > 0, we have that

lim
ε↘0

sup
θ∈S

E
[∫
x∈Rd

|Φε(t, x, θ)| dx
]

= 0.

Proof. Collect Lemmas 3.5, 3.7, 3.8, and 3.9.

3.1. Proof of Lemma 3.1

By standard SPDE methods [18], we have that∑
θ∈S

E[‖Rε(t, ·, θ)‖2θ] ≤
2
ε

∑
θ∈S

∫ t
s=0

E[〈LθR
ε(s, ·, θ), Rε(s, ·, θ)〉θ] ds

+ 2
∑
θ∈S

∫ t
s=0

E[〈QRε(s, ·, θ), Rε(s, ·, θ)〉θ] ds

+ 2
∑
θ∈S

1≤j≤n

∫ t
s=0

E[〈Rε(s, ·, θ), Rε(s, ·, θ)hj(·, θ)〉θhj(Xε
s ,Θ

ε
s)] ds

+ 2
∑
θ′∈S

∫ t
s=0

E[〈QRε(s, ·, θ), Φε(s, ·, θ)〉θ] ds

+ 2
∑
θ∈S

1≤j≤n

∫ t
s=0

E[〈Rε(s, ·, θ), Φε(s, ·, θ)hj(·, θ)〉θhj(Xε
s ,Θ

ε
s)] ds

+
∑

1≤j≤n

∫ t
s=0

E
[∥∥∥∥∑

θ∈S

{Rε(s, ·, θ) + Φε(s, ·, θ)}hj(·, θ)
∥∥∥∥2

θ

]
ds.

The bound on the 1/ε term is standard. For any f ∈ C∞(Rd), we have that

Lθf
2 = 2fLθf +

∑
1≤i≤d

(
∂f

∂xi

)2

> 2fLθf

and, hence, since µθ is an invariant distribution,

〈Lθf, f〉θ =
∫
x∈Rd

f(x)Lθf(x)µθ(x) dx≤ 1
2

∫
x∈Rd

(Lθf
2)(x)µθ(x) dx= 0.

Let us also define

Q
def= sup

{ ∑
θ,θ′∈S

qθ,θ′(x)f(θ)g(θ′) : x ∈ Rd, f, g ∈B(S),
∑
θ∈S

f2(θ) =
∑
θ∈S

g2(θ) = 1
}

;
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then Q<∞. Hence,∑
θ∈S

E[‖Rε(t, ·, θ)‖2θ]

≤ 2Q
∑
θ′∈S

∫ t
s=0

E[‖Rε(s, ·, θ)‖2θ] ds

+ 2
{ ∑

1≤j≤n

‖hj‖2B
}∑
θ∈S

∫ t
s=0

E[‖Rε(s, ·, θ)‖2θ] ds

+Q

{∑
θ∈S

∫ t
s=0

E[‖Rε(s, ·, θ)‖2θ] ds+
∑
θ∈S

∫ t
s=0

E[‖Φε(s, ·, θ)‖2θ] ds
}

+
{ ∑

1≤j≤n

‖hj‖2B
}{∑

θ∈S

∫ t
s=0

E[‖Rε(s, ·, θ)‖2θ] ds+
∑
θ∈S

∫ t
s=0

E[‖Φε(s, ·, θ)‖2θ] ds
}

+ 2
{ ∑

1≤j≤n

‖hj‖2B
} ∫ t

s=0

{∑
θ∈S

∫ t
s=0

E[‖Rε(s, ·, θ)‖2θ] ds+
∑
θ∈S

∫ t
s=0

E[‖Φε(s, ·, θ)‖2θ] ds
}
.

Apply Gronwall’s inequality and use Lemma 3.10 to bound Rε. Combining things together,
the claim follows.

4. Proof of Theorem 2.1

We finally want to return to our analysis of πεt . We want to use Lemma 3.1 to show that πεt
and π̄εt are close. To start, define

V̄ ε(t) def=
∑
θ∈S

vε(t, θ).

From standard calculations, we have that vε(t, θ) > 0 for all t > 0 and θ ∈ S.

Lemma 4.1. For all t> 0, ε ∈ (0, 1), and L > 0,

dP(S)(πεt , π̄
ε
t )≤

2
V̄ ε(t)

∑
θ∈S

√∫
x∈Rd

|ũε(t, x, θ)− vε(t, θ)|2µθ(x) dx (4.1)

if V̄ ε(t)> 0.

Proof. For each t> 0 and ε > 0, define the random σ-finite measures π◦,εt and π̄◦,εt on
(Rd × S,B(Rd × S)) as

π◦,εt (A) def=
∑
θ∈A

∫
x∈Rd

ũε(t, x, θ)µθ(x) dx,

π̄◦,εt (A) def=
∑
θ∈A

vε(t, θ) =
∑
θ∈A

∫
x∈Rd

vε(t, θ)µθ(x)dx

for all A⊂ S. Then

πεt (A)− π̄εt (A) =
π◦,εt (A)
π◦,εt (S)

− π̄◦,εt (A)
π̄◦,εt (S)

=
π◦,εt (A)

π◦,εt (S)π̄◦,εt (S)
{π̄◦,εt (S)− π◦,εt (S)}+

1
π̄◦,εt (S)

{π̄◦,εt (A)− π◦,εt (A)}.
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For any A′ ⊂ S,

|π◦,εt (A′)− π̄◦,εt (A′)| =
∣∣∣∣∑
θ∈A′

∫
x∈Rd

{ũε(t, x, θ)− vε(t, θ)}µθ(x) dx
∣∣∣∣

≤
∑
θ∈S

∣∣∣∣∫
x∈Rd

{ũε(t, x, θ)− vε(t, θ)}µθ(x) dx
∣∣∣∣

≤
∑
θ∈S

√∫
x∈Rd

|ũε(t, x, θ)− vε(t, θ)|2µθ(x) dx.

Of course, π̄◦,εt (S) = V̄ ε(t). The claim follows.

Proof of Theorem 2.1. From Lemma 3.1, it suffices to show that

sup
ε∈(0,1)

E
[

1
(V̄ ε(t))2

]
<∞. (4.2)

In fact, we have that

dV̄ ε(t) =
{∑
θ∈S

h̄(θ)vε(t, θ)
}
dY εt .

Of course, V̄ ε(0) = 1. For each n ∈ N, define

τn
def= inf

{
t> 0 : V̄ ε(t)≤ 1

n

}
.

Define τ def= limn→∞ τn = inf{t> 0 : V̄ ε(t) = 0}. For t ∈ [0, τ), define

a(t) def=
∑
θ∈S h̄(θ)vε(t, θ)∑
θ∈S v

ε(t, θ)
;

since the vε(t, θ) are non-negative, we have that

‖a(t)‖Rn ≤ sup
θ∈S
‖h̄(θ)‖Rn . (4.3)

For every n ∈ N, we have that

V̄ ε(t ∧ τn) = exp
[∫ t∧τn

s=0

a(s)Th(Xε
s ,Θ

ε
s) ds+

∫ t∧τn

s=0

a(s)T dVs −
1
2

∫ t∧τn

s=0

‖a(s)‖2 ds
]
.

Letting n→∞, we get that

V̄ ε(t ∧ τ) = exp
[∫ t∧τ
s=0

a(s)Th(Xε
s ,Θ

ε
s) ds+

∫ t∧τ
s=0

a(s)T dVs −
1
2

∫ t∧τ
s=0

‖a(s)‖2 ds
]
.

Since the exponential term is finite thanks to (4.3), we must have that τ > t. Thus,

1
(V̄ ε(t))2

= exp
[
−2

∫ t∧τ
s=0

a(s)Th(Xε
s ,Θ

ε
s) ds− 2

∫ t∧τ
s=0

a(s)T dVs +
∫ t∧τ
s=0

‖a(s)‖2 ds
]
.

This implies (4.2), completing the proof.

5. A numerical example

We consider a simple system in a continuous–discrete set-up; the fast variable Xε ∈ R2 is given
as a continuous process

dXε
t =−1

ε
ΛΘε

t
(Xε

t −Θε
t ) dt+

1√
ε
dWt, Xε

0 = ξ,
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4

(c) 1 : (2, 2), 2 : (–2, 2), 3 : (– 2, –2), 4 : (2, –2)
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Figure 1. Signal and observation.

while the slow variable Θε is a jump process with a finite state space S = {(2, 2),
(−2, 2), (−2,−2), (2,−2)}. The matrix Λθ is given for each θ ∈ S as

Λ(2,2)
def=
(

1 −2
2 1

)
, Λ(−2,2)

def=
(

2 −2
2 2

)
,

Λ(−2,−2)
def=
(

3 −2
2 3

)
, Λ(2,−2)

def=
(

4 −2
2 4

)
and the generator of Θε is defined as

Q(x) def=


−‖x‖2 ‖x‖2 0 0
‖x‖2 −2‖x‖2 0 ‖x‖2
‖x‖2 0 −2‖x‖2 ‖x‖2

0 0 ‖x‖2 −‖x‖2

× 10−5,

where ‖x‖ def=
√
x2

1 + x2
2.

In this example, observations are made at equally spaced discrete points as follows:

Y εtk = sinXε
tk

+Btk ,

where Btk is a standard Gaussian white noise sequence.
Figure 1(a) and (b) show typical plots for the fast process, Xε

t , of the above multiscale hybrid
system and the observation process Y εt , respectively. Figure 1(c) shows the evolution of the
slow process, Θε, in time, where the original state S is mapped into {1, 2, 3, 4}. To show the
validity and efficiency of the homogenized filter, we applied the particle filter (PF) [5] and the
homogenized hybrid particle filter (HHPF) [8, 17] algorithms for a comparison. Figure 2(a)
and (b) show maximum a posteriori (MAP) estimates with error bars representing one standard
deviation, where 400 particles are used.
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Figure 2. MAP and standard deviation.

We also compare the errors for PF and HHPF in Table 1. The errors are obtained from a
0–1 error estimate given by

E1
Θε

tk
6=Θ̂
{·}
k

≈ 1
T

T∑
l=1

1
Θε

tk
6=Θ̂
{·}
k

,

where Θ̂PF
k and Θ̂HHPF

k are MAP estimates at a discretized point k obtained respectively from
PF and HHPF algorithms and Θε

tk
represents the value of Θε at k. The values in Table 1 are

based on 50 Monte Carlo simulations. The mean times taken for these simulations with Intel
Xeon 5540 (2.53 GHz) quad-core Nehalem processors are given in the parentheses (the unit is
103 seconds). While the errors for both algorithms are comparable, the time taken for HHPF
is much less than that of PF.

Table 1. Errors of PF and HHPF (N = number of particles).

Algorithm/N 50 100 200 400 800

PF 0.2246 (0.26) 0.2061 (0.52) 0.2026 (1.07) 0.1972 (2.23) 0.1937 (4.86)
HHPF 0.2607 (0.007) 0.2187 (0.02) 0.2036 (0.07) 0.2010 (0.23) 0.1970 (0.89)
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