Direct Observation of Li₂O₂ Nucleation and Growth with *In-Situ* Liquid ec-(S)TEM B. Layla Mehdi¹, Eduard N. Nasybulin², Wu Xu², Edwin Thomsen², Mark H. Engelhard³, Robert C. Massé^{2,4}, Meng Gu³, Wendy Bennett², Zimin Nie², Chongmin Wang³, Ji-Guang Zhang², Nigel D. Browning¹ ² Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, USA The rapidly growing field of high energy density rechargeable batteries for large-scale renewable energy applications has generated wide range of *in-situ/operando* experimental techniques that can provide significant insights into the battery operation [1, 2]. The recent development of the *in-situ* liquid electrochemical stages for (scanning) transmission electron microscopes (*in-situ* liquid ec-(S)TEM) enables fabrication of a "nano-battery" to study the details of electrochemical processes providing real-time information on the dynamic structural changes and processes that occur locally at the electrode/electrolyte interface during charge/discharge cycles. Here, we demonstrate application of an *in-situ* ec-(S)TEM cell to study the formation and decomposition mechanisms of lithium peroxide (Li₂O₂) in the rechargeable Li-O₂ battery system as an alternative to Li-ion batteries. Li-O₂ batteries are currently considered for application in the next-generation electrochemical energy storage technologies and electric vehicles [3-5] due to their high theoretical energy densities, which are comparable to gasoline [6]. The principal operation of Li-O₂ battery is based on the mechanisms of reversible formation/oxidation of lithium peroxide (Li₂O₂) at the porous carbon-based cathode, the efficiency of which determines overall battery performance. However, Li-O₂ batteries exhibit a wide range of significant challenges that limit their practical application - such as low rate capability, limited charge-discharge cycles resulting from decomposition of both the electrolyte and the electrode material during oxygen reduction and evolution. This leads to accumulation of insulating side products, which causes a high overpotential and fast capacity fading during cycling. Here, we use an *in-situ* ec-(S)TEM cell to investigate fundamental differences in the growth mechanism of Li₂O₂ nanoparticles and decomposition of the side products, which are strongly dependent on the current rate and significantly contribute to the cycling performance of Li-O₂ batteries. The quantitative analysis of the charge/discharge products in the standard coin-cell Li-O₂ battery show dynamic transition from predominant formation of Li₂O₂ nanoparticles to predominant formation of side products during the first few cycles as illustrated by in Figure 1 and Figure 2. We observe similar behavior while using the *in-situ* ec-(S)TEM cell approach with the Pt-single walled carbon nanotubes (SWCTs) microelectrode as a cathode and Pt-Li metal-anode submersed in aprotic electrolyte (1 M LiTf in tetraglyme). This Li-O₂ "nano-battery" design provides significant understanding to the origin of Li₂O₂ nanoparicles formation/oxidation, which leads to fundamental understanding of the long-term cycling stability of high capacity Li-O₂ batteries. ## References: [1] B. R. Long, M. K. Y. Chan, J. P. Greeley, A. A. Gewirth, *J Phys Chem* C, 115, (2011), p. 18916 ¹ Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, USA ³ Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, USA ^{4.} Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, USA - [2] C. A. Bridges, X-G. Sun, J. Zhao, M. P. Paranthaman, S. Dai, *J Phys Chem C*, 116, (2012), p. 7701 - [3] M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Adv. Energy Mat., 2, (2012), 780 - [4] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Matt. 11, (2012), 19 - [5] L. Zhong, R. R. Mitchell, Y. Liu, B. M. Gallant, C. V. Thompson, J. Y. Huang, S. X. Mao, Y. Shao-Horn, *Nano Lett.* **13**, (2013), 2209 - [6] G. Girishkumar, et al, *J.Phys. Chem. Lett.*, (2010), 1, p. 2193 - [7] The research described in this presentation is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory under Contract DE-AC05-76RL01830 operated for DOE by Battelle. This work is supported in part by the United States Department of Energy, Basic Energy Sciences Grant No. DE-FG02-03ER46057. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. **Figure 1.** SEM images of discharge cycles of Li-O₂ batteries.(a) Pristine carbone nanotubes modified with ruthenium nanoparticles (CNTs/Ru electrode); and discharge cycles of CNTs/Ru electrodes after the (b) 1^{st} , (c) 2^{nd} , (d) 3^{rd} , (e) 5^{th} , (f) 10^{th} , (g) 20^{th} and (h) 50^{th} cycles in the LiTf-Tetraglyme electrolyte. The significant transition of the Li₂O₂ particles occurs after the 1^{st} discharge cycle leading to formation of the thick layer (c-h). **Figure 2.** SEM images of discharge cycles of Li-O₂ batteries. (a) Pristine CNTs/Ru electrode and charging process of CNTs/Ru electrodes after the (b) 1st, (c) 2nd, (d) 3rd, (e) 5th, (f) 10th, (g) 20th and (h) 50th cycles in the LiTf-Tetraglyme electrolyte. The inset shows structural changes at the CNTs/Ru surface after consecutive charging cycles.