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THE EFFECT OF UNEQUAL IONIC SIZE ON THE 
SWELLING PRESSURE IN CLAYS 
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Department of Chemistry and the Institute of Theoretical Dynamics 
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Abstract--In this paper, we use the unequal radius modified Gouy-Chapman theory to evaluate the effect 
of the ionic size of the electrolyte on the swelling pressures (H) in different clay systems immersed in 
electrolytic solutions. First the model is applied to a l:l electrolyte to show that the coion size is only 
important at surface charge densities much lower than those found in typical clay systems. The swelling 
pressure is calculated and the results are compared with experimental data. Literature ionic radii values 
are used to show the dependence of the swelling pressure on the specific counterions present. Next the 
model is applied to a 1:1 and 2:1 electrolyte mixture with unequal-sized counterions to show the swelling 
pressure is highly dependent on both counterion sizes. The unequal and same-sized cases are compared. 
Key Words--Clay, Swelling pressure, Unequal ion size. 

I N T R O D U C T I O N  

Clay swelling is important in many applications in- 
cluding petroleum engineering, soil permeability, waste 
disposal liner design and the development of  many 
commercially available consumer products. Swelling 
is thought to be caused primarily by hydration of  the 
clay surfaces at small separations and electrical double 
layer overlap at large separations. Most of  the electro- 
lyte ions in the electrical double layer are found in a 
narrow region near the charged surface. Finite ion size 
effects are expected to be most significant in this region. 
Finite size is usually accounted for by modifying the 
Poisson-Boltzmann formalism to allow for a region the 
width of  a hydrated ion near the surface in which no 
charge is found. Given that ionic species are of  different 
size, we will investigate the effect of  the unequal size 
of  the electrolyte within the Poisson-Boltzmann theory 
in the study of  clay swelling. 

Some effort to understand the effect of  unequal ionic 
sizes of  the electrolyte on the electrostatic properties 
of  the electrical double layer has been made in the last 
ten years. A non-zero potential at the electrode in the 
absence of  a surface charge (potential-of-zero-charge) 
was found for a one-wall system by Valleau and Torrie 
(1982). That phenomenon was usually attributed to 
specific adsorption at the electrode, but it seems that 
it can be accounted for, at least in part, by introducing 
unequal ionic diameters. Bhuiyan et al. (1983) also 
reported the effect of  considering different sizes in the 
electrolyte in a one-wall system using the nonlinear 
Poisson-Boltzmann equation and found results in 
agreement with Valleau and Torrie (1982). 

However  the corresponding problem of  the inter- 
action between two planar surfaces has just recently 
received attention. McBroom and McQuarrie (1987) 
reported the effect of  the unequal size of  the electrolyte 
on the electrostatic force between two planar surfaces 
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in a 1:1 electrolyte using the nonlinear Poisson-Boltz- 
mann equation. The prediction of  a non-zero force 
between two uncharged walls was an interesting result. 

We will use the unequal-radius-modified-Gouy- 
Chapman (URMGC) approach to the interaction of  
two charged surfaces, introduced by McBroom and 
McQuarrie (1987), to describe the electrostatic inter- 
action of  two clay surfaces that are immersed in an 
electrolytic solution. First we consider a 1:1 electrolyte 
with an unequal-sized cation and anion. We will show 
that the anion size is not important  in clay swelling. 
Secondly, due to the importance of  clay stability prob- 
lems, we apply the unequal radius model to a 1"1 and 
2:1 electrolyte mixture such as NaC1 and CaC12 to show 
the dependence of  the swelling pressure on both coun- 
teflon sizes. 

T H E O R Y  

Unequal radius model for  a 1:1 electrolyte 
We model the clay surfaces as a two-wall system 

with a uniform surface charge density ao (ao < 0) im- 
mersed in an aqueous electrolyte solution. The solution 
is modelled by the unrestricted primitive model, where 
the ions are considered as hard spheres with the cation 
of  radius R+ with a charge z+e and the anion of  radius 
R_ with a charge z_e, where e (e > 0) is the protonic 
charge. In the first case we will consider a symmetrical, 
univalent salt with z+ = - z  = 1. 

The Poisson-Boltzmann equation for this system is 

d2~b zi 
- -- ~ ~exp(-zi th)  (1) 

i 

where ~ = Kx, with ~ the distance from one of  the walls 
and K 2 = 2e2c0/eo&T the usual Debye-Hfickel param- 
eter, co is the bulk number density of  electrolyte, 4~ = 
eff/kT is a reduced electrostatic potential, e is the di- 
electric constant, k is the Boltzmann constant, and T 
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II III 
I ! 

I '  ! ! 
Figure 1. The model and geometry used in the 1:1 electrolyte 
system. The large cation case is shown. 

is the Kelv in  temperature .  Fo r  the case o f  unequal-  
sized ions, Eq. (1) must  be solved separately in three 
different regions. We choose x as the distance f rom the 
wall to the point  o f  interest,  as shown in Figure 1. The  
two cases where e i ther  the cat ion or  an ion  is the larger 
ion mus t  be considered separately. We shall treat  the 
case in which the cat ion is larger first. 

In region I o f  Figure 1, no charges are present  be- 
tween the wall x = 0 and the radius o f  the (smaller) 
anion,  R_, and so Eq. (1) reads 

d24~ 
- 0  0 < ~ < ~ = K R _ .  (2) 

d~ 2 

In region II, only  negat ive  charges are present,  and 
so we have  

d24 ~ _ e ~ 
d t  2 2 ~ < ~ < t+ = KR+. (3) 

In region III, both  posi t ive  and negat ive  charges are 
al lowed, and so we have  

d24) 
dr---- 5- = sinh r t+ < ~ < td = Kd (4) 

where 2d is the dis tance be tween the plates. It  is only  
necessary to work  f rom x = 0 to x = d because o f  the 
symmet ry  o f  the system. 

The  boundary  condi t ions  are g iven by: 

a) dq~I - ca----2---~ - a* ~ = 0 (5) 
d~ e0erkT 

de '  d~b n 
b) ~-dff = r d} } = }-  (6) 

where I and II represent  region I and region II, re- 
spectively; 

d~b II d~b m 
c) e = e - -  t = t+ (7) 

d t  d~ 

where II and III  represent  region II and region III, 
respectively;  

d~b 
d) - 0 ~ = to. (8) dt 

The  cont inui ty  o f  electrostatic potent ial  at x = R_ 
and at x = R+ is also used. The  dielectric constant  e is 
considered to be the same for all three regions. 

In the case in which the an ion  is the larger ion, Eqs. 
(2), (3), and (4) are 

d2~b 
- 0 0 < t < 4+ (9) 

d} ~ 

d2r e-~ 
. . . .  t+ < t < ~- (10) d~ 2 2 

d2r 
- s i n h r  t -  < t  < t o  (11) 

d t  2 

with R+ and R_ interchanged in Eqs. (5) through (8). 
We shall use the large cation ease to il lustrate the 

solut ion to the above  equat ions.  Using boundary  con-  
di t ions (5) the solut ion o f  Eq. (2) is 

~b(t) = r - cr0* t 0 < t < ~-- (12) 

The  first integrat ion o f  Eq. (3) gives 

de 
- [e* + A ]  ' /2 t -  < x < t +  ( 1 3 )  

dt 

where A is a constant  o f  integration.  We mus t  explicit ly 
consider  two possibil i t ies for the sign o f  A. For  the two 
cases A < 0 and A > 0 respect ively,  we write Eq. (13) as 

de 
- [e * - 32] ':2 A < 0 (14) 

d~ 

and 

de 
- - =  [e* + a2] '~2 A > 0 (15) 
d~ 

where a and 3 are real constants.  These two equat ions  
can be integrated once more  to give, Gradsh teyn  and 
Ryzhik  (1980), 

( ~ - 3 ' ) = ~ t a n  -~ �9 A< 0 (16) 

and 

( ~ -  3 " ) = a  [(e * + a2) ' / z 7  A > 0 (17) 

where 7 is another  integrat ion constant .  
Eqs. (16) and (17) should t ransform into one another  
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under  the t ransformat ion  a = ifl or fl = is .  To see that 
this is so, we let a = ifl in Eq. (17) and  use the identi ty 
t a n - ' z  = (i2)ln{(1 - iz)/(1 + iz)} with z = 3/(e ~' - B2) 'j2 
to obtain:  

1. [(e* + a 2 )  ' / 2  - -  a [  

a J n / ( - ~  + a2) '/2 T ~ J  

2 3 
= - - ~ t a n  '{(e~ _--~2)~ 2 /" (18) 

By using the ident i ty  

tan ~(l/z) = 7r/2 - tan-~z  (19) 

Eqs. (17) and  (18) become 

(~-3")=~{tan '[(-e~--flfl2)l/21 - 2} (20) 

which is equiva lent  to Eq. (16). Fur thermore ,  by using 
the two expansions  In{(1 - z)/(1 + z)} = - 2 z  + O(z 3) 
and  tan lz = 7r/2 - 1/z + 1/3z 3 + . . . .  we see that 
both  Eqs. (17) and  (20) reduce to 

- 3" = - 2 e  ~2 (21) 

in the l imits  a ~ 0 and  3 ~ 0. 
By starting with 

(~ - 3') = - - t a n  I, 2)~/2 (22) 
3 /(e ~ 

and  subtract ing it at (_ from it at (+, and  then using 
Eq. (6), we obta in  

= _ 2 1 _ 

~ + - ~ _  ~ [ t an -{ (e*+  /~ ~2)'/2[ 

{  23, - t a n  

where ~+ represents q~(~R+) = e~b(R+)/kT. 
The integrat ion cons tant  3" is obta ined  by evaluat ing 

Eq. (22) at ( = (+ and  subtracting it from Eq. (33) to 
get 

2 
3" = (_ + ~ t a n - '  . (24) 

We can use Eq. (23) to write 

32 e*+ = A < 0 (25) 
sin2x 

where 

= -2(~+~ - ~_) + t a n - '  . (26) X 

Solving Eq. (22) for ~o(0, we write the electrostatic 
potent ial  in  Region II for A < 0 as 

4~(~) = In ~ ~_ < ~ < ~+ ( 2 7 )  

where 

B 
0 = - '--(~ - 3"). (28) 

2 

The potential  at x = R_ is obta ined  by using the bound-  
ary condi t ions  (5) and  (6) and  Eq. (14) 

~o = ln[(_ao*)2 + 32]. (29) 

Similarly, starting with Eq. (17) for the A > 0 case, we 
can write 

3"=- ,~ :  - 2 1 n /  __a+_-a0*_ / _ . 2 ]  ( 3 0 )  

and  

OL 2 
e ~§ = ~ A > 0 (31) 

sinh2~ 

where 

1"/ = - - ~ ( ~ +  -- ~_)  + ln][(_ff--~)2---~2t2]l /2 / . (32)  

Solving Eq. (17) for ~b(O, we write the electrostatic po- 
tential  in Region II for A > 0 as 

q ~ ( ( ) = l n ~  ( < ( <  (+ (33) 

with 

T = - 2 (  ~ + 3'). (34) 

Now the electrostatic potent ial  at ~ = ~ is given by 

~_ = ln((-ao*) 2 - a2). (35) 

Eqs. (25) and  (31) are conver ted one into the other  by 
considering 3 real (A < 0) or pure imaginary,  ia  (A > 
0). 

Eq. (6) can be solved using boundary  condi t ions  (5-  
8), so that 

d~b 
- -  = 21/2[cosh ~b - cosh ~ d ]  1/2 (36) a~ 

where q~d is the (reduced) electrostatic potential  at the 
midpoin t ,  d. Letting y = cosh q~, Eq. (36) can be in-  
tegrated to give 

~o (Y + -- Yd) dy 
[Y((Y + Ya) 2 _ 1)]1/2 = 2l/2K(d -- R+) (37) 

where 

Yd = cosh q~a and  y+ = cosh q~+. 

Using the boundary  condi t ion  given by Eq. (7) to 
equate Eqs. (36) and  (14), we eventual ly  ob ta in  Yd and  
(Y+ - Yd), the integrat ion l imit  in  Eq. (37) in terms 
of  r :  

1 (sin2x + 
Ya = ~ \ - - - ~ "  32) (38) 
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with X(fl) given by Eq. (26) and  

) (Y+ - Y a ) =  2 \ s i n 2 •  1 . (39) 

Likewise, using Eq. (7) to equate Eqs. (36) and  (15), 
we can also write Ya and  (y+ - ya) in  terms of  a: 

/ 
= 1 (sin2~ + 

Yd ~ \ - - - ~  a2] (40) 

Y+ -- Y a = ' ~ -  + 1 . (41) 

The  only independen t  variable in  Eq. (37) is either a 
or/3, through y+ and  Ya. To  avoid  the singularity at y 
= 0, we add and  subtract  the factor 

1 
(42) yl/2(yd2 -- 1)1/2 

in  the integrand.  Eq. (37) is then  rewritten 

0 (y+-yd) dy[yd 2 -- 1]t/2 -- [(y + yd) 2 -- 1]a/2 

2/Y+ -- Yd[ = 2,/zK( d _ R+). (43) 
+ L y e _  l j  

In  order to solve Eq. (43) iteratively, the value of  the 
integrat ion constant  a or 3 is var ied unt i l  the lef t-hand 
side and  r ight-hand side of  the equat ion  are equal each 
to the other. The p rob lem can be solved by writ ing Yd 
and  y+ - Ya in  terms o f  either a or 3- For instance, in 
using the solut ion as writ ten in Eqs. (38) through (39), 
/3 is real for A < 0 and  imaginary  for A > 0. On  the 
other hand,  if  the solut ion is wri t ten in terms of  a as 
in Eqs. (40) and  (41), a will be real for A > 0 and  
imaginary  for A < 0. The  integral on the lef t-hand side 
of  Eq. (43) was evaluated using the Composi te  S impson  
rule algorithm. Once the value of  a or /3  is obta ined  
the values of  q~(0 in  Region III  are found  by solving 

f t 2 l/2 t 2 1/2 ~Y-Y~)dy[[ya - 1] - [(Y + Ya) - 1] ] 

- 

+ [ya 2 -  lJ  = 2 ' /2 (~d-  4) (44) 

for each value of  ~ between ~ = KR and  ~ = ~d. This  
is done by varying y unt i l  bo th  sides of  Eq. (44) are 
the same for each 4- 

We found that  A is less than  zero for small  values 
o f  charge density and  A is greater than  zero for large 
values of  charge density.  The equat ions  with A > 0 
involve  a numer ica l  subtlety. To appreciate this sub- 
tlety, consider  Eq. (35), which we can write as 

e ~- = ( - a * ) :  - a 2 (45) 

where a is to be de te rmined  numerical ly .  For  typical 
values of  the clay minera ls  that  we are considering, ~_ 
is o f  the order - 1 0  and  - a *  is o f  the order 200. Con-  

sequently, Eq. (30) demands  that  the difference be- 
tween a and  a* mus t  be o f  the order  10 -7. In  order  to 
find a good ini t ia l  guess for a, Eq. (32) is rewrit ten as 

a 1 /(-ao)* + ~} 
n = - ~ ( ~ +  - 4-) + F In [ ( -ao)*  - . (46) 

But because (a* - a) is O(10-7), we write this equa- 
t ion as 

1, [ / 
-_a* (4+ - 4-) + 5 m / ( _ a ,  _ a)~" (47) 

Eq. (47) is solved for a and  this value is used as an  
init ial  guess in the unmodi f ied  Eqs. (40) and  (41). The 
i terat ion is carried out  unt i l  Eq. (43) is satisfied. 

In  the large anion ease, only the equat ions  invo lv ing  
A < 0 needed to be solved in order to calculate elec- 
trostatic potent ial  profiles for all distances between the 
walls, surface charge densities, and  concentrat ions.  The 
key equat ions  for this case are: 

2 ~ /3 
3 ' - 4  = - ~ t a n - { ( e - * - - / 3 2 ) , , ~ }  (48) 

and  

/3 2 
e * = (49) 

sin2x 

with x still given by Eq. (26). 
The electrostatic potential  profile in Region I is given 

by Eq. (12) with 4- replaced by 4+- The equat ions  for 
electrostatic potential  profile in Region II can be de- 
r ived by using Eq. (48) and  solving for q~(~) 

q~(0 = - I n  ~ 4+ < ~ < 4- (50) 

where 
3 

= - ~(3" - 0 .  (51) 

We can evaluate 3' by equat ing e-~ from Eq. (49) and  
Eqs. (50) and  (51) evaluated at 4- = KR_: 

3' = ~+ -- ~ t a n - '  . (52) 

The values for q~(0 in Region III  are ob ta ined  by solving 
Eq. (44) as in  the large cat ion case. 

The  pressure between the surfaces due to the elec- 
trical double  layer in teract ion is given by  

P = 2cokT(cosh 4~d - 1) (53) 

where q~a = ~bde/kT; ffa is the electrostatic potent ia l  
midway  between the surfaces. The total  in teract ion 
between the surfaces is the sum of  this electrostatic 
force and  the (attractive) van  der Waals  force 

- B  
f = - -  (54) 

67rh 3 

where h = 2d is the separat ion between the surfaces 
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a n d  B is the  H a m a k e r  cons tan t ,  usual ly  t aken  as 2.2 
• 10-2o joules .  

Unequal radius model for a 1:1 and 2:1 mixture 

In  th i s  case we will cons ide r  a m i x t u r e  c o m p o s e d  o f  
a smal l  d i v a l e n t  ca t ion ,  z2+ = 2, a large m o n o v a l e n t  
ca t ion ,  z+ = 1, a n d  a c o m m o n  an ion ,  z_ = - 1 ,  the  
s ame  size as the  large ca t ion  s h o w n  in Figure 2. T he  
to ta l  e lectrolyte  concen t r a t i on ,  nto,al, is the  s um  o f  the  
d iva len t ,  n2+, a n d  the  m o n o v a l e n t ,  n~ +, bu lk  electro-  
lyte concen t r a t i ons .  T h e  p a r a m e t e r  t = n2 +/n~o,a, is the  
pe rcen tage  o f  d i v a l e n t  e lect rolyte  present .  T h e  sys tem 
is o the rwise  as desc r ibed  for  the  l: 1 sys tem.  T he  Pois-  
s o n - B o l t z m a n n  is aga in  so lved  in th ree  regions.  

In  Reg ion  I o f  F igure  2, n o  charges  are p resen t  be-  
tween  the  wall  x = 0 a n d  the  rad ius  o f  the  d i v a l e n t  
ca t ion ,  R2§ a n d  so Eq. (1) reads  

d2~b 
- -  = 0 0 < ~ < ~2+ = ~ R 2 + .  ( 5 5 )  
d~: 

In  Reg ion  II, on ly  pos i t ive  d i v a l e n t  charges  are pres-  
ent ,  a n d  so we h a v e  

d2--~ = - t  exp(-2q~)  ~2+ < ~ < ~+ = KR2+. (56) 
d~: 

In  Reg ion  III, all e lect rolyte  species are a l lowed a n d  
so we h a v e  

d2~ 
- t ( -  e x p ( -  2~) + exp q~) 

d~ 2 

+ (1 - t ) s i n h  q~ ~+ < ~ < ~a (57) 

whe re  Eq. (4) for  a 1:1 e lectrolyte  is r ecove red  w h e n  t 
= 0. T h e  b o u n d a r y  c o n d i t i o n s  are g iven  by  Eq. (5) a n d  
(8). Add i t iona l ly ,  t he  electr ic  field dMd~ a n d  the  elec- 
t ros ta t ic  po ten t i a l  are c o n t i n u o u s  t h r oughou t .  

T h e  Reg ion  I so lu t ion  is g iven  by  Eq. (12). In  Reg ion  
II af ter  the  first i n t eg ra t i on  we h a v e  

dO 
- -  = [t exp(-2q~)  + A] '/2. (58) 
d~ 

Once  aga in  we m u s t  cons ide r  the  two poss ib i l i t ies  for 
the  sign o f  A: 

d~ 
- - =  [t exp(-2~b)  - 32] '/2 A < 0 (59) 
d f  

d 4  
- - =  [t exp(-24~)  + 0 / 2 1 1 / 2  A > 0. (60) 
d~ 

Fol lowing  the  d e r i v a t i o n  o f  Eqs. (25), (26), (31), a n d  
(32), we de r ive  c o r r e s p o n d i n g  express ions  for  the  mix-  
tu re  case 

3~ 
t e x p ( -  2~) = - -  (61) 

sin2x 
A < 0  

/ _ _ x  

X = ~ ( ~ l -  ~ 2 ) +  t an  ' ( ~ - - ~ )  (62) 
\ - ~ ? I  

i i /  

. 1  i 

Figure 2. The model and geometry used in the mixed 1:1 
and 2:1 electrolyte system. 

O/2 
t exp(-2~b)  = - -  (63) 

sinh2n 
A > 0  

, = 0/(& - ~2) 

�9 {. h 
+ m t l ( ( _ a . ) 2  _ 0/211~2}" (64) 

Eq. (57) can  be  so lved  us ing  b o u n d a r y  c o n d i t i o n s  (5 ) -  
(8) so t h a t  

de 
- It exp(-2q5)  + 2t exp  ~b 

d~ 

+ 2(1 - t )cosh q~ + C] (65) 

where  C is an  in t eg ra t ion  cons tan t .  Equa t i ng  the  Reg ion  
II a n d  III  de r i va t i ve s  o f  the  po t en t i a l  a t  the  b o u n d a r y  
o f  the  large ca t ion ,  the  in t eg ra t ion  c o n s t a n t  can  be  wri t -  
t en  

C = O/2 - -  2t  s inh  4~+ - 2 cosh  ~b+ A > 0 (66) 

C = _f12 _ 2t s inh  q~+ - 2 cosh  qS+ A < 0. (67) 

Le t t ing  z = exp th a n d  y = z - za, Eq. (65) can  be  
in teg ra ted  to give 

f (~+ - ~d) dy  
/~o [y(y - B 0 ( y  - B2)(t + 1)] '/2 

where  

a + b  a - b  
B, 2(t + 1) '  B2 2(t + 1) '  

a = - [ 3 ( t  + 1)za + C] 

= r (d  - R+)  

(68) 

(69) 
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0.5 

0.0 

-0.5 

t~ 

-i.0 

i - - - - - : - - - - - : - - - - - - - - - - - - - - - - - ~ . ~  _ ~  ~ ~ -~ 

r~ 

- 1 . 5  

i 
- 2 " 0 . 0  2 .5  5.0 7.5 10.0 12.5 

D i s t a n c e  f r o m  s u r f a c e  (A) 

Figure 3. Electrostatic potential profiles in units of kT/e for 
several surface charge densities between two plates 25A apart 
in an electrolyte solution of 0.10 M. The surface charge den- 
sities are - 0.030 C/m 2 (solid line), - 0.010 C/m 2 (long dashed 
line), -0.0050 C/m 2 (medium dashed line) and 0.00 C/m 2 
(short dashed line). The large cation case (R§ = 2.0, R = 1.0) 
is marked with circles, the large anion case (R+ = 2.0, R = 
3.0) is marked with squares and the symmetric case (R. = 
2.0, R = 2.0) is unmarked. 

f (z§ dy[(y - B~)(y - B2)] ~/2 - (B~ .B2) 1/2 

�9 ~o [(y - a l ) (y  -- B2)y(t + 1)Bl" a2] 

[ Z+ --  Z d 
+ 2 (t T 1-)-B~-B2 = r(d - R+). (75) 

Eq. (75) is so lved  i terat ively in te rms  o f  ei ther a or  fl 
as descr ibed above  for the large an ion  case. The  integral 
was solved using M A T H C A D  on an IBM A T  c o m -  
patible desktop compu te r  and also using a Gauss ian  
quadra ture  a lgor i thm on a V A X  750. The  numer ica l  
difficulties encountered  in the large cat ion case were 
not  found in the mix ture  case since the an ion  was neve r  
considered to be the closest species to the wall. The  
electrostatic potent ia l  profile can be calculated by using 
the mix ture  equat ions.  The  electrostat ic  pressure be- 
tween the surfaces for a 1:1 and 2:1 mix ture  is 

P = kTnto t [(t + 1)Z d + 
t 
Zd 2 

- (t + 2)  + (1 - t ) /  ( 7 6 )  
Zd J 

and the swelling pressure is the sum of  the electrostatic 
force and the van  der  Waals  a t t ract ion given by Eq. 
(54). 

b = [ - 3 ( t  + 1)2za: - 2C(t + l)zo 

+ C2 - 4 ( - t :  + 1)] l/: (70) 

z+ = exp ~b+ and za = exp ~b d. 

Us ing  Eq. (61) and  (63), z§ can be wri t ten in terms o f  
a and 3: 

It  sin2x] 1/2 
z+ = L----Y-J (71) 

and 

I t  sinh27/] 1/2 (72) 
z+ = L - - g - -  j 

With the boundary  condi t ion  at the midpo in t  g iven by 
Eq. (8), Eq. (65) is rearranged to give a cubic equa t ion  
for za: 

(t + 1)za 3 + CZd 2 + (1 -- t)za + t = 0 (73) 

where the a or  fl dependence  is in the constant  C. There  
are three possible roots; however ,  only one root  gives 
a sensible value for za. Eq. (68) can be wri t ten in te rms  
o f  ei ther  ot or  3 v ia  the expressions for z+ and Zd. In 
order  to avo id  the singulari ty at y = 0 in the integrand 
o f  Eq. (68) we add and subtract  

~ (z§ dy 

- - , 0  [y[t + 1]BI'B2] 1'2 (74) 

so that  

R E S U L T S  A N D  D I S C U S S I O N  

The  impor tance  o f  the U n e q u a l  Radius  m o d e l  for a 
1:1 electrolyte depends  on the system condi t ions.  For  
cases o f  high surface charge density,  such as those en- 
countered  in clay systems ( - 0 . 1 0  to - 0 . 2 0  C / m 0 ,  the 
electrostatic profile depends  only on the cat ion size. 
The  calculated profiles using the unsymmet r i c  mode l  
consider ing the an ion  ei ther larger or  smaller  than the 
cat ion coincide  exactly wi th  the profile o f  a symmet -  
rical system consider ing the an ion  to be the same size 
as the cation. 

In  order  to demons t ra te  that  the co ion  is only  im-  
por tant  at surface charge densit ies m u c h  lower than  
those typical  o f  swelling clays we compare  the unequal  
and same size cases at different charge densities.  In 
Figure 3 we present  reduced electrostat ic  potent ia l  pro-  
files for a concent ra t ion  o f  0.10 M, a dis tance be tween 
the walls o f  2d = 25A and at surface charge densit ies 
o f  0, - 0 . 0 0 5 0 ,  - 0 . 0 1 0  and - 0 . 0 3 0  C / m  2. At  each 
surface charge densi ty  we contrast  the results ob ta ined  
f rom the large an ion  (R+ = 2.0, R_ = 3.0) and large 
cat ion (R+ = 2.0, R_ = 1.0) cases with those o f  the 
symmetr ica l  (R+ = 2.0, R = 2.0) case. The  figure shows 
devia t ions  f rom the symmetr ica l  mode l  occur  at low 
surface charge densi ty with the greatest difference being 
a t a = 0 .  

In order  to contrast  the effect o f  concent ra t ion  on  
the model ,  the reduced electrostatic potent ia l  eva lua ted  
at the radius o f  the cat ion for the R+ > R_ case, r 
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Table 1. Reduced potential ~b+ at R+ for different values of 
surface charge density. 

Large cat ion case 
Unsymmet r i c a l  case corresponds  to R = 2.0 A and  R+ = 4.6 A. 

Symmet r ica l  case corresponds  to R = R~ = 4.6 ,~ 

c = 0 . 1 0 M  
d = 14.6 A 

Symmetr ica l  U n s y mmet r i c a l  

~o(C/m 2) 

-O.OOlO 
-0 .10  
-0.050 

-0.069 -0.208 
-0.669 -0.739 
-2.407 -2.407 

c = I 0 ~ M  
d = 14.6 

Symmet r ica l  U n s y mmet r i c a l  

~o(C/m 2) r ~ 

-0.00005 -1.682 -1.691 
-0.00010 -2.350 -2.352 
-0.050 -9.284 -9.284 

for different surface charge densit ies at c = 0 .10M is 
presented in Table  1 for both  the unsymmet r ica l  case 
with R+ = 4 . 6 ~  and R_ = 2.0/~ and for the symmetr ica l  
case wi th  R+ = 4.6,~ and R_ = 4.6,~. No te  that  ~b+ in 
the unsymmet r i ca l  case becomes  exactly equal  to the 
~b+ in the symmetr ica l  case when the surface charge 
densi ty  becomes  higher. In more  di lute  electrolytic so- 
lution, i.e., c = 10 * M, this effect occurs at even  lower 
values  o f  charge density. Thus,  for the clay systems in 
a 1:1 electrolyte, the system o f  two different size ions 
behaves  as a system o f  the same size ions, with the size 
being equal  to that  o f  the counter ion.  As one might  
expect,  the radius o f  the coion is irrelevant.  

It may  be desirable for systems other  than clays to 
be able to quant i ta t ive ly  de te rmine  when the coion size 
is impor tant .  The  following analysis is presented for 
that  purpose.  The  range in which the unsymmetr ica l  
mode l  is useful depends  on the surface charge density, 
electrolyte concentrat ion,  ionic radii  and the distance 
between the surfaces. In the l imi t  o f  the same size 
counter ion  and coion,  the integrat ion constant,  - 3 2  or  
0/2, in Eqs. (14) and (15) approaches  (-ao*) 2. We may  
use this to der ive  an equa t ion  which shows the con- 
di t ions under  which the unsymmet r i ca l  case is impor -  
tant. 

Eq. (45) may  be wri t ten 

e ~ = ( - a *  + a ) ( - t r*  -- a) -~ (--2tro*)(--a* - a ) (77)  

where a ~ - t r*  has been used. Rearranging,  

e e 
- -  ( - - o ' *  - -  ct) << 1 .  ( 7 8 )  

- -  2a0* 

I f  this condi t ion  is satisfied then the system behaves  
as a symmetr ica l  electrolyte. In a negat ively charged 
system qL is a negat ive  n u m b e r  so the condi t ion  is 
satisfied when  ei ther  14~- I or  I c~* I is large. 

In order  to de te rmine  i f  14~ I is large enough we use 

Table 2. The sets of ionic radii used to calculate swelling 
p r e s s u r e s .  

Source 

Radi i  (A,) 

Li*(aq) Na+(aq) K~(aq) Cs*(aq) 

Marcus (1983) 2.07 2.37 2.73 3.08 
Robinson and Stokes (1959) 3.7 3.3 1.33 1.69 
Celeda (1988) 4.51 3.9 3.36 3.07 
Coker (1976) 1.94 2.35 2.79 3.16 

the fol lowing argument .  Since I q~ I > 14~a I we may  
write 

eC~a 
<< 1. ( 7 9 )  

- 2 a *  

I f  4~d is large 

and 

e - ~ d  
cosh 4~d = Yd ~ (80) 

2 

4a*Y a >> 1. (81) 

I f  Ya >> 1 then the symmet r i c  case holds. To  obta in  
an es t imate  o f  Yd to use in Eq. (81) we suggest the 
fol lowing procedure.  In the symmet r i c  case, y+ - Ya = 
a2/2 and Eq. (37) can be wri t ten 

f o  ~2~2 = X/5-~(d - R . )  (82) 
dy 

yl/2(y + Yd) 

neglecting 1 compared  to Yd. This  integral is eva lua ted  
analytically and gives 

tanYdl/2"~(d -- R+) a 
(83) 2 (2yd) 1/2" 

I f  we define the fol lowing variables  

y~l/2r(d -- R+) 
p - ( 8 4 )  

2 

tr.K(d - R+) 
~' ( 8 5 )  

2 

then Eq. (83) may  be rewri t ten as 

O- ~ 
tan p - (86) p "  

Eq. (86) can be used as a tool to de te rmine  i f  the co ion  
is impor tan t  in swelling pressure calculations.  I f  the 
calculated value  o f  p for a g iven set o f  concentra t ion,  
ionic radii,  plate separation,  and surface charge densi ty  
is large, then the system behaves  as a symmetr ica l  case 
and the coion does not  approach  the surface. If, how-  
ever,  the value  o f  p is close to 1 and the surface charge 
is low, then the coion is near  the surface and the un- 
symmetr ica l  case is appropriate .  

Only the symmetr ica l  case is impor t an t  for clays. 
Us ing  a range o f  ionic  radii  f rom the li terature,  which 
are listed in Table  2, we show a dependence  o f  the 
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Figure 4. Swelling pressure vs separation for Cypern mont- 
morillonite (surface charge density #o = -0.103 C-m 2) in 
LiCl(aq) at concentrations of 10 z M and l0 -4 M. The solid 
curves are Lubetkin's Figure 7 experimental results (upper 
l0 -4 M and lower 10 -2 M). Theoretical results for a range of 
Li+(aq) radii are 10 -4 M (.--,)  and 10 2 M (---.). 

0., 0 
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Figure 5. Calculated Log (swelling pressure) vs separation 
for Wyoming bentonite (#0 = -0.115 C.m 2) in 10 4 M 
aqucous solutions of Li+(aq) (squares), Na+(aq) (triangles), 
K+(aq) (dots) and Cs+(aq) (circles). Solid lines are Lubctkin's 
Figure 5 experimental data with the order top to bottom; 
Li+(aq), Na+(aq), K+(aq), Cs+(aq). 

swelling pressure on the electrolyte counterion present. 
We compare our results with the experimental results 
of  Lubetkin et al. (1984) and Viani et al. (1983). In 
both cases the authors compared their results to the 
Gouy-Chapman model without accounting for finite 
size. In a later work Low (1987) compared the Viani 
results to a constant potential modified Gouy-Chap- 
man model and showed osmotic repulsion is negligible 
in swelling clays. We will show results obtained with 
a constant charge modified Gouy-Chapman model 
compare well with the experimental results. 

In Figure 4 we show the swelling pressures for Cy- 
pern montmoril lonite (a0 = - 0.103 C" m -  2) in LiCl(aq) 
at electrolyte concentrations of  10 2 M and 10 -4 M. 
The solid curves represent the experimental data of  
Lubetkin et al. (1984), with 10-4 M for the upper curve 
and 10 -2 M for the lower curve. The dots and asterisks 
represent calculations for 10 -2 M and 10 -4 M, respec- 
tively, using the range of  values of  the ionic radius of  
Li+(aq) given in Table 2. The two trends are similar, 
but the agreement in the case of  10-2 M is considerably 
better than for 10 -4 M. 

Huerta and McQuarrie (1991) used the constant sur- 
face charge modified Gouy-Chapman model to show 
the swelling pressure depends on counterion size. Fig- 
ure 5 shows swelling pressure vs separation for Wyo- 
ming bentonite in 10 -4 M aqueous solutions of  Li+(aq), 
Na+(aq), K+(aq), and Cs§ The solid curves repre- 
sent the experimental data of  Lubetkin et aL (1984) 
with the order from the top being Li§ Na+(aq), 
K§ and Cs+(aq). The modified Gouy-Chapman 
theory not only gives a size-dependence of  the cation, 
but in the correct order. However,  the calculated size 

dependence is not as strong as the data would indicate, 
particularly for the case of  Cs+(aq). 

It is important to point out, however, that mont-  
morillonite can associate in a stacked alignment to 
form a quasicrystal. A quasicrystal is a structure formed 
by n unit layers of  clay attached one to the other by 
attractive forces. Between each layer, swelling is not 
observed. However, swelling is observed between two 
quasicrystals. It is not clear to what extent quasicrystals 
form in montmoril lonite with monovalent  counter- 
ions. It is known, however, that the number of  unit- 
layer platelets per particle depends on the exchangeable 
cation in the order: K+(aq) > Na§ > Li§ Li- 
montmoril lonite does not form quasicrystals; it exists 
as dispersed unit-layer platelets. Definitive informa- 
tion about quasicrystal formation for Na-montmori l -  
lonite is not yet available. If  quasicrystal formation 
occurs in homoionie montmorillonites,  the determi- 
nation of  distances of  separation between clay platelets 
in swelling pressure measurements may have been er- 
roneously calculated. Lubetkin et al. (1984) report that 
there were some quasicrystals present in the Na+(aq) 
case, more in the K+(aq) case, and an even greater 
number in the Cs§ case. They additionally suggest 
that this effect may have contributed to lower swelling 
pressure results, particularly in the case of  Cs§ 

In Figure 6 we compare swelling pressure calcula- 
tions for a series of  sodium montmorillonites with dif- 
ferent degrees o f  isomorphic substitutions with exper- 
imental data of  Viani et al. (1983). The electrolyte 
concentration is 10-4 M, and the surface charge density 
r for the eight montmoril lonites ranges from -0 .0924  
C. m -2 to -0 .1868  C. m -2. The greatest value of  swell- 
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Figure 6. Swelling pressure for montmorillonites with dif- 
ferent degrees ofisomorphic substitution in 10 4 MNaCl(aq). 
Solid lines mark bounds of Viani et al. (1983) experimental 
data. The range of surface charge densities is -0.0924 C . m  2 
to -0.1868 C. m -2. The dots mark the range of the theoretical 
results considering a range of Na+(aq) radii. 

ing pressure corresponds to the montmoril lonite with 
the highest surface charge density. The solid lines give 
the range of  experimental data which was reproduced 
using the relation between swelling pressures and plate 
separation given by Eq. (4) ofViani  et  al. (1983). The 
trend of  the calculated values is the same as the trend 
observed experimentally. We observe that swelling 
pressure values tend to be independent of  the surface 
charge density for large distances between the two walls. 

In Figure 6 we have also plotted the Lubetkin et  al. 
(1984) data (dashed line) for sodium Wyoming ben- 
tonite (ao = - 0 . 1 1 6  C-m 2) for comparison. Interest- 
ingly, Lubetkin's Wyoming bentonite data is above the 
Viani et  al. (1983) data which is the opposite of  what 
would be expected if  the difference were due to the 
presence of  quasicrystals which do not contribute to 
the swelling pressure. 

We now use the unequal radius model to calculate 
the swelling pressure in a 1" 1 and 2:1 system in which 
the two counterions are of  unequal size. The coion size 
is not important as shown previously and therefore we 
consider it to be the same size as the larger counterion 
for the purpose of  calculation. In spite of  the impor- 
tance of  such systems, there exists very little experi- 
mental swelling pressure data in the literature for mixed 
electrolyte systems. Therefore we have chosen arbitary 
ionic radii to compare the unequal size and the same 
size models. We do not expect our results to be quan- 
titatively comparable with experiments at high diva- 
lent ion concentration, due to the well-known failure 
of  the Poisson-Boltzmann equation to accurately re- 
produce swelling pressure results for divalent electro- 
lytes. However,  we will show qualitatively that in a 

Table 3. The effect of ionic radii and divalent ion content 
on swelling pressure (atm). 

R > : R .  t = 0 . 5 0  1 = 0 . 0 1 0  t = 0 . 0 0 0 1  t = 0 . 0 0 0 0 0 1  

1.5:2.5 1.88 4.76 8.12 8.41 
2.5:2.5 2.26 5.30 8.28 8.41 
2.5:3.5 2.27 5.44 9.40 9.76 

mixed electrolyte both counterion sizes are important 
in theories of  clay swelling pressure. 

Table 3 contains results of  swelling pressure (atm) 
calculations for three sets of  radii (,~) at various values 
of  the parameter t, the divalent electrolyte fraction of  
the total bulk concentration of  0.0010 M. In the same 
size case, R2+ = R+, the counterion radius is 2.5A. We 
contrast the unequal size case by first varying the di- 
valent counterion radius (R2+ = 1.5A, R+ = 2.5/~) and 
secondly by varying the monovalent  counterion radius 
(R2+ = 2.5A, R+ = 3.5A). Clearly the unequal size 
model predicts results which are significantly different 
than those of  the same size model. At high divalent 
electrolyte fraction, t = 0.50, a variation of  R2+ by one 
angstrom to 1.5~ causes a 17 percent change in the 
swelling pressure while it is unaffected by a change in 
R+ to 3.5/~. At t = 10 -6 the variation of  R+ has a large 
effect while a variation in R2+ is not important. In the 
intermediate region in which significant amounts of  
both electrolyte species are present, a one angstrom 
variation of  either radius causes between a 2 to 13 
percent change in swelling pressure. 

S U M M A R Y  

The solution to the Poisson-Boltzmann equation for 
the Unequal Radius Modified Gouy-Chapman model 
was presented and the swelling pressure calculated. In 
the case of  a 1:1 electrolyte, only the counterion size 
is important for conditions typical of  clay systems. The 
swelling pressure is calculated for a constant surface 
charge density and the results are compared with ex- 
perimental data. Several sets of  ionic radii are used to 
show the swelling pressure depends on the specific 
counterion in the order Li+(aq) > Na+(aq) > K+(aq) 
> Cs+(aq). This is in qualitative agreement with ex- 
perimental data, however, the degree of  dependence of  
the model result is not nearly as strong. Next we applied 
the unequal radius model to a 1:1 and 2:1 electrolyte 
mixture to determine the difference in swelling pressure 
caused by the unequal size of  the two counterions. 
When the fraction of  divalent ion present is small, the 
monovalent  ion size is important. The opposite is true 
when the fraction of  divalent ion is high. 
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