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THE EFFECT OF UNEQUAL IONIC SIZE ON THE
SWELLING PRESSURE IN CLAYS
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Abstract—In this paper, we use the unequal radius modified Gouy-Chapman theory to evaluate the effect
of the ionic size of the electrolyte on the swelling pressures (II) in different clay systems immersed in
electrolytic solutions. First the model is applied to a 1:1 electrolyte to show that the coion size is only
important at surface charge densities much lower than those found in typical clay systems. The swelling
pressure is calculated and the results are compared with experimental data. Literature ionic radii values
are used to show the dependence of the swelling pressure on the specific counterions present. Next the
model is applied to a 1:1 and 2:1 electrolyte mixture with unequal-sized counterions to show the swelling
pressure is highly dependent on both counterion sizes. The unequal and same-sized cases are compared.
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INTRODUCTION

Clay swelling is important in many applications in-
cluding petroleum engineering, soil permeability, waste
disposal liner design and the development of many
commercially available consumer products. Swelling
is thought to be caused primarily by hydration of the
clay surfaces at small separations and electrical double
layer overlap at large separations. Most of the electro-
lyte ions in the electrical double layer are found in a
narrow region near the charged surface. Finite ion size
effects are expected to be most significant in this region.
Finite size is usually accounted for by modifying the
Poisson-Boltzmann formalism to allow for a region the
width of a hydrated ion near the surface in which no
charge is found. Given that ionic species are of different
size, we will investigate the effect of the unequal size
of the electrolyte within the Poisson-Boltzmann theory
in the study of clay swelling.

Some effort to understand the effect of unequal ionic
sizes of the electrolyte on the electrostatic properties
of the electrical double layer has been made in the last
ten years. A non-zero potential at the electrode in the
absence of a surface charge (potential-of-zero-charge)
was found for a one-wall system by Valleau and Torrie
(1982). That phenomenon was usually attributed to
specific adsorption at the electrode, but it seems that
it can be accounted for, at least in part, by introducing
unequal ionic diameters. Bhuiyan er al. (1983) also
reported the effect of considering different sizes in the
electrolyte in a one-wall system using the nonlinear
Poisson-Boltzmann equation and found results in
agreement with Valleau and Torrie (1982).

However the corresponding problem of the inter-
action between two planar surfaces has just recently
received attention. McBroom and McQuarrie (1987)
reported the effect of the unequal size of the electrolyte
on the electrostatic force between two planar surfaces
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in a 1:1 electrolyte using the nonlinear Poisson-Boltz-
mann equation. The prediction of a non-zero force
between two uncharged walls was an interesting resuit.

We will use the unequal-radius-modified-Gouy-
Chapman (URMGC) approach to the interaction of
two charged surfaces, introduced by McBroom and
McQuarrie (1987), to describe the electrostatic inter-
action of two clay surfaces that are immersed in an
electrolytic solution. First we consider a 1:1 electrolyte
with an unequal-sized cation and anion. We will show
that the anion size is not important in clay swelling.
Secondly, due to the importance of clay stability prob-
lems, we apply the unequal radius model to a 1:1 and
2:1 electrolyte mixture such as NaCl and CaCl, to show
the dependence of the swelling pressure on both coun-
terion sizes.

THEORY
Unequal radius model for a 1:1 electrolyte

We model the clay surfaces as a two-wall system
with a uniform surface charge density o, (5, < 0) im-
mersed in an aqueous electrolyte solution. The solution
is modelled by the unrestricted primitive model, where
the ions are considered as hard spheres with the cation
of radius R, with a charge z, e and the anion of radius
R_ with a charge z_e, where e (¢ > 0) is the protonic
charge. In the first case we will consider a symmetrical,

univalent salt with z, = —z_= 1.
The Poisson-Boltzmann equation for this system is
d¢

= 2 Jen(-z9) M

dg?
where £ = kx, with £ the distance from one of the walls
and «? = 2e2C,/e,ekT the usual Debye-Hiickel param-
eter, ¢, is the bulk number density of electrolyte, ¢ =
ey/kT is a reduced electrostatic potential, ¢ is the di-
electric constant, k is the Boltzmann constant, and T

i
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Figure 1. The model and geometry used in the 1:1 electrolyte
system. The large cation case is shown.

is the Kelvin temperature. For the case of unequal-
sized ions, Eq. (1) must be solved separately in three
different regions. We choose x as the distance from the
wall to the point of interest, as shown in Figure 1. The
two cases where either the cation or anion is the larger
ion must be considered separately. We shall treat the
case in which the cation is larger first.

In region I of Figure 1, no charges are present be-
tween the wall x = 0 and the radius of the (smaller)
anion, R_, and so Eq. (1) reads

o
d¢?

In region II, only negative charges are present, and
so we have

d?¢p e

e 2

0 <¢E<E =«R_. @)

§- <E<é& =kR,. 3)

In region III, both positive and negative charges are
allowed, and so we have
d%

— =sinh ¢

dg? £, <& < £ =«d 4

where 2d is the distance between the plates. It is only
necessary to work from x = 0 to x = d because of the
symmetry of the system.

The boundary conditions are given by:

de¢! _esp _

2) d_‘g’ - eoexkkT % £=0 ©)
d¢' _  do" -

b) NFTRR T £=¢ ©)
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where 1 and II represent region I and region II, re-
spectively;

d¢ll dd)lll
€E—~— = ¢

dg d§
where II and III represent region II and region III,
respectively;

<)

£=¢&, )

d - = £=%a ®
The continuity of electrostatic potential at x = R_

and at x = R, is also used. The dielectric constant e is

considered to be the same for all three regions.

In the case in which the anion is the larger ion, Eqs.
(2), (3), and (4) are

d¢

aPE 0<&<E, )
d2¢>__e_‘“’

w2 §Lo<E<E (10
d_gl=smh¢ E.<E<E, (1D

with R, and R_ interchanged in Eqs. (5) through (8).

We shall use the large cation case to illustrate the
solution to the above equations. Using boundary con-
ditions (5) the solution of Eq. (2) is

#(E) = ¢(0) — 0B & 0<E<ig. (12)
The first integration of Eq. (3) gives
=l Al <x<i (13)

where A is a constant of integration. We must explicitly
consider two possibilities for the sign of A. For the two
cases A < Oand A > Orespectively, we write Eq. (13) as

% = [ed> — 62]]/2

A<0
d¢

(14)
and

gd_) = [eq& + aZ]l/Z

A >
d¢ 0

(15)
where a and § are real constants. These two equations

can be integrated once more to give, Gradshteyn and
Ryzhik (1980),

€= %tan-' (——(e" _662)”2) A<0 (16)
and
_ _ l e+ a)'? —«a
t 7)‘a‘“{—(e¢ T a} A>0 (7

where v is another integration constant.
Egs. (16) and (17) should transform into one another
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under the transformation o = i or 8 = ia. To see that
this is so, we let « = i8 in Eq. (17) and use the identity
tan~'z = (i2)In{(1 ~ iz)/(1 + iz)} with z = 8/(e®* — §)”
to obtain:
1l (e? + a?)!2 — al

n (e* + a?)V2 + aJ

(24
2 B
= —=tan'{—————. 1
Btan {(e‘” — 52)“2} (18)
By using the identity
tan—'(1/z) = n/2 — tan~!'z (19)
Egs. (17) and (18) become
2 ¢ 23172
& - 7)=B{tan‘[(e—§6—)—] - g} 20)

which is equivalent to Eq. (16). Furthermore, by using
the two expansions In{(1 — z)/(1 + z)} = —2z + O(z?)
and tan~'z = n/2 — 1/z + 1/32® + ..., we see that
both Egs. (17) and (20) reduce to

f—y=—2e" Q1)
in the limits « —» 0 and 8 - 0.
By starting with
2 B
¢t-m-= —gtan ‘{m} (22)

and subtracting it at £_ from it at £, , and then using
Eq. (6), we obtain

e = Han] B
E‘ - 6|:tan {(64,+ _ 62)1/2}

el

where ¢, represents ¢(xR,) = ey(R,.YkT.
The integration constant v is obtained by evaluating
Eq. (22) at £ = £, and subtracting it from Eq. (33) to

£,

(23)

get
- 2.8
y=§_+ Btan {“63‘}. (24)
We can use Eq. (23) to write
oo = ,322 A <0 (25)
sin?y
where
x= 5@ e+ tan/*{_id*}. 26)

Solving Eq. (22) for ¥(£), we write the electrostatic
potential in Region II for A < 0 as

52

sin?f

o) = ln[ ] £ <E<§, @7

where
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- B
6= . (28)

The potential at x = R _ is obtained by using the bound-
ary conditions (5) and (6) and Eq. (14)
¢ =In[(—ad) + 5. (29)

Similarly, starting with Eq. (17) for the A > O case, we

can write
and
o2
edr = Sinbin A>0 (€23
where
n=-S@ —£)+1n ——“—“‘i——} (32)
2 [(—o%? = o'

Solving Eq. (17) for ¢(£), we write the electrostatic po-
tential in Region II for A > 0 as

. <E<§& (33)

_ a
o= ln[sinhzT}

with

T=-2¢+. (34)

Now the electrostatic potential at £ = £_ is given by
¢_ =In((—a¥)? — o). 35)

Eqgs. (25) and (31) are converted one into the other by
considering 8 real (A < Q) or pure imaginary, i« (A >
0).

Eq. (6) can be solved using boundary conditions (5~
8), so that

dé

at = 2Y2[cosh ¢ — cosh ¢4]"?

(36)
where ¢, is the (reduced) electrostatic potential at the
midpoint, d. Letting y = cosh ¢, Eq. (36) can be in-
tegrated to give

f()’+'3/d) dy _ 21/2K(d 3 R+) (37)
o vy + va)* — DI'?
where

Yo = cosh ¢4 and y, =cosh ¢, .

Using the boundary condition given by Eq. (7) to
equate Eqgs. (36) and (14), we eventually obtain y, and
(y. — Ya4), the integration limit in Eq. (37) in terms

of 3:
_l sin?x ,
Yd“2< iZ +B>

(38)
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with x(8) given by Eq. (26) and

i
Yy —va) = 5 (sin2x 1)-

Likewise, using Eq. (7) to equate Eqs. (36) and (15),
we can also write y, and (y, — y4) in terms of o

(39)

(40)

Y (R T @a1)
Y+ T YeT 3 sinh2y )

The only independent variable in Eq. (37) is either «
or 3, through y, and y4. To avoid the singularity at y
= 0, we add and subtract the factor

1

yl/Z(yd2 —_ 1)1/2
in the integrand. Eq. (37) is then rewritten

J"’”‘" dyly2 — 112 = [y + yo* — 1]'2
o Iy Wy + vo)* — 1ys — 1117

+ 2[2—__—y1] —22@-R). @3

d

(42)

In order to solve Eq. (43) iteratively, the value of the
integration constant « or § is varied until the left-hand
side and right-hand side of the equation are equal each
to the other. The problem can be solved by writing y,
and y, — y, in terms of either « or §. For instance, in
using the solution as written in Eqs. (38) through (39),
8 is real for A < 0 and imaginary for A > 0. On the
other hand, if the solution is written in terms of « as
in Eqgs. (40) and (41), « will be real for A > 0 and
imaginary for A < 0. The integral on the left-hand side
of Eq. (43) was evaluated using the Composite Simpson
rule algorithm. Once the value of o or 8 is obtained
the values of ¢(£) in Region III are found by solving

[Tl = 117 - [+ x4
: B0+ v — 1y — 117

y — Y 1/2_ 12 _
+2[F} =217, — 9

for each value of £ between £ = kR_ and £ = «d. This
is done by varying y until both sides of Eq. (44) are
the same for each £.

We found that A is less than zero for small values
of charge density and A is greater than zero for large
values of charge density. The equations with A > 0
involve a numerical subtlety. To appreciate this sub-
tlety, consider Eq. (35), which we can write as

(44)

et = (—o¥) - @

45)

where a is to be determined numerically. For typical
values of the clay minerals that we are considering, ¢_
is of the order —10 and —o% is of the order 200. Con-
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sequently, Eq. (30) demands that the difference be-
tween « and o% must be of the order 10-. In order to
find a good initial guess for «, Eq. (32) is rewritten as

- %y 1 jCo)* +a
n= =S s_)+21n{(_%)*_a}. (46)

But because (o — a) is O(10-7), we write this equa-
tion as

_ 1 {_(_—Q_
! (

—o¥

2 ¢ —E)+ 2111 —or = a)}- 47)
Eq. (47) is solved for a and this value is used as an
initial guess in the unmodified Eqs. (40) and (41). The
iteration is carried out until Eq. (43) is satisfied.

In the large anion case, only the equations involving
A < 0 needed to be solved in order to calculate elec-
trostatic potential profiles for all distances between the
walls, surface charge densities, and concentrations. The
key equations for this case are:

P S B
vy — & 6tan {(e‘“’ — 32)”2} 48)
and
e = .622 49)
sin?x

with x still given by Eq. (26).

The electrostatic potential profile in Region Iis given
by Eq. (12) with £_ replaced by £, . The equations for
electrostatic potential profile in Region II can be de-
rived by using Eq. (48) and solving for ¢(¢)

¢(s)=—1n[3 ] Lo<t<t (50)

sin?6
where

- B _
b=—30r -9 (51

We can evaluate vy by equating ¢ ~¢- from Eq. (49) and
Eqgs. (50) and (51) evaluated at . = «R_:

-y _ 2., 8
vy=E, 6tan {_03}.

The values for ¢(£) in Region I1I are obtained by solving
Eq. (44) as in the large cation case.

The pressure between the surfaces due to the elec-
trical double layer interaction is given by

P = 2¢.kT(cosh ¢y — 1)

(52)

(53)

where ¢4 = Y.e/kT; ¥, is the electrostatic potential
midway between the surfaces. The total interaction
between the surfaces is the sum of this electrostatic
force and the (attractive) van der Waals force

"B
67h?

where h = 2d is the separation between the surfaces

f (54)
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and B is the Hamaker constant, usually taken as 2.2
x 10729 joules.

Unequal radius model for a 1:1 and 2:1 mixture

In this case we will consider a mixture composed of
a small divalent cation, z,, = 2, a large monovalent
cation, z, = 1, and a common anion, z_ = —1, the
same size as the large cation shown in Figure 2. The
total electrolyte concentration, n,,, is the sum of the
divalent, n, ., and the monovalent, n, ., bulk electro-
lyte concentrations. The parameter t = n,, /n,,,,; 1s the
percentage of divalent electrolyte present. The system
is otherwise as described for the 1:1 system. The Pois-
son-Boltzmann is again solved in three regions.

In Region I of Figure 2, no charges are present be-
tween the wall x = 0 and the radius of the divalent
cation, R, , and so Eq. (1) reads

2
0

dg 0 <& <&, =xRy,.

(55)
In Region II, only positive divalent charges are pres-
ent, and so we have
d?¢
- = —t exp(—2
a p(—2¢)
In Region III, all electrolyte species are allowed and
so we have
d2¢

aPE = t(—exp(—2¢) + exp ¢)

b <E<E, =kRy,. (56)

+ (1 —-tsinhg £ <§E<g (57

where Eq. (4) for a 1:1 electrolyte is recovered when t
= 0. The boundary conditions are given by Eq. (5) and
(8). Additionally, the electric field d¢/d¢ and the elec-
trostatic potential are continuous throughout.

The Region I solution is given by Eq. (12). In Region
11 after the first integration we have

d¢ —_ — 1/2
d_E = [t exp(—2¢) + AJ2

Once again we must consider the two possibilities for
the sign of A:

(58)

99 ltexp(-2¢) — B2 A <O  (59)
a
4 _ [texp(—2¢) + o212 A > 0. (60)

dg

Following the derivation of Egs. (25), (26), (31), and
(32), we derive corresponding expressions for the mix-
ture case

2

t exp(—2¢) = Sinx (61)

A<O

x =B — &) + tan™! <_ﬁa*> (62)

0
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Figure 2. The model and geometry used in the mixed 1:1
and 2:1 electrolyte system.

2

t exp(—2¢) = sinhZy 63)
A>0
n=of - &)
o — of
+ In lw> (64)

Eq. (57) can be solved using boundary conditions (5)-
(8) so that

do _
EE = [t exp(—2¢) + 2t exp ¢

+ 2(1 — t)cosh ¢ + C] (65)

where Cis an integration constant. Equating the Region
IT and III derivatives of the potential at the boundary
of the large cation, the integration constant can be writ-
ten

C=qa?>— 2tsinh ¢, — 2 cosh ¢, A>0 (66)
A <0. (67)

letting z = exp ¢ and y = z ~ z4, Eq. (65) can be
integrated to give

C= —32— 2tsinh ¢, — 2 cosh ¢,

(2, —79)
_fo TR
(68)
where
-ath - a-b
Y2+ 1) 20+ 1)
a=—[30t + )z, + C] (69)
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Figure 3. Electrostatic potential profiles in units of kT/e for
several surface charge densities between two plates 25A apart
in an electrolyte solution of 0.10 M. The surface charge den-
sities are —0.030 C/m? (solid line), —0.010 C/m? (long dashed
line), —0.0050 C/m? (medium dashed line) and 0.00 C/m?
(short dashed line). The large cation case (R, = 2.0, R_=1.0)
is marked with circles, the large anion case (R, = 2.0, R_ =
3.0) is marked with squares and the symmetric case (R,
2.0, R_ = 2.0) is unmarked.

b =[-3( + 1)’z — 2C(t + 1)z,

+ C? — 4(—t2 + D]V? (70)
Z, =€xp ¢, and Zq = €XD .
Using Eq. (61) and (63), z, can be written in terms of
o and §:
t sin%y 2
z, = [ S ] 1)
and
172
t sinh?y
z, = [T:| . (72)

With the boundary condition at the midpoint given by
Eq. (8), Eq. (65) is rearranged to give a cubic equation
for z,:

t+ Dzl +Cz2+ (1l =tz +t=0 (73)

where the « or 8 dependence is in the constant C. There
are three possible roots; however, only one root gives
a sensible value for z,. Eq. (68) can be written in terms
of either « or § via the expressions for z, and z,. In
order to avoid the singularity at y = 0 in the integrand
of Eq. (68) we add and subtract

(zy —24) dy
- S A— 74
J; Iyt + 1B, By 74)

so that
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- f “7* dyly — B)y ~ B)I"” ~ (B,"B)"”
o 6~ By ~ Byt + DB, B,]"”

7, — 24
+2l——
[(t + 1)B,-B,

1/2

] =x(d — R,). (75
Eq. (75) is solved iteratively in terms of either a or 8
as described above for the large anion case. The integral
was solved using MATHCAD on an IBM AT com-
patible desktop computer and also using a Gaussian
quadrature algorithm on a VAX 750. The numerical
difficulties encountered in the large cation case were
not found in the mixture case since the anion was never
considered to be the closest species to the wall. The
electrostatic potential profile can be calculated by using
the mixture equations. The electrostatic pressure be-
tween the surfaces for a 1:1 and 2:1 mixture is

t
P= anm[[(t + zg + —
Z4

—(t+2)+ “Z;t)] (76)

d
and the swelling pressure is the sum of the electrostatic

force and the van der Waals attraction given by Eq.
(54).

RESULTS AND DISCUSSION

The importance of the Unequal Radius model for a
1:1 electrolyte depends on the system conditions. For
cases of high surface charge density, such as those en-
countered in clay systems (—0.10 to —0.20 C/m?), the
electrostatic profile depends only on the cation size.
The calculated profiles using the unsymmetric model
considering the anion either larger or smaller than the
cation coincide exactly with the profile of a symmet-
rical system considering the anion to be the same size
as the cation.

In order to demonstrate that the coion is only im-
portant at surface charge densities much lower than
those typical of swelling clays we compare the unequal
and same size cases at different charge densities. In
Figure 3 we present reduced electrostatic potential pro-
files for a concentration of 0.10 M, a distance between
the walls of 2d = 25A and at surface charge densities
of 0, —0.0050, —0.010 and —0.030 C/m?2. At each
surface charge density we contrast the results obtained
from the large anion (R, = 2.0, R_ = 3.0) and large
cation (R, = 2.0, R_ = 1.0) cases with those of the
symmetrical (R, = 2.0, R_ = 2.0) case. The figure shows
deviations from the symmetrical model occur at low
surface charge density with the greatest difference being
ate = 0.

In order to contrast the effect of concentration on
the model, the reduced electrostatic potential evaluated
at the radius of the cation for the R, > R_ case, ¢,,
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Table 1. Reduced potential ¢, at R, for different values of
surface charge density.
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Table 2. The sets of ionic radii used to calculate swelling
pressures.

Large cation case
Unsymmetrical case corresponds to R. = 2.0 A and R, = 4.6 A.
Symmetrical case corresponds to R =R. = 4.6 A

c=0.10M
d=14.6 A
Symmetrical Unsymmetrical
o, (C/m?) & b,
~0.0010 —0.069 —0.208
—0.10 —0.669 -0.739
—0.050 —2.407 —2.407
c=10"M
d=146 A
Symmetrical Unsymmetrical
o, (C/m?) ¢ é.
~0.00005 —1.682 —1.691
—0.00010 —2.350 —2.352
~0.050 —9.284 —9.284

for different surface charge densities at ¢ = 0.10M is
presented in Table 1 for both the unsymmetrical case
with R, = 4.6A and R_ = 2.0A and for the symmetrical
case with R, = 4.6A and R_ = 4.6A. Note that ¢, in
the unsymmetrical case becomes exactly equal to the
¢, in the symmetrical case when the surface charge
density becomes higher. In more dilute electrolytic so-
lution, i.e., ¢ = 10~* M, this effect occurs at even lower
values of charge density. Thus, for the clay systems in
a 1:1 electrolyte, the system of two different size ions
behaves as a system of the same size ions, with the size
being equal to that of the counterion. As one might
expect, the radius of the coion is irrelevant.

It may be desirable for systems other than clays to
be able to quantitatively determine when the coion size
is important. The following analysis is presented for
that purpose. The range in which the unsymmetrical
model is useful depends on the surface charge density,
electrolyte concentration, ionic radii and the distance
between the surfaces. In the limit of the same size
counterion and coion, the integration constant, —32 or
o2, in Egs. (14) and (15) approaches (—o§)*. We may
use this to derive an equation which shows the con-
ditions under which the unsymmetrical case is impor-
tant.

Eq. (45) may be written

e =(—0f + a)—0¥ — a) = (=205)(~e§ — ) (77)
where o ~ —o¥ has been used. Rearranging,
ed’,
—20%
If this condition is satisfied then the system behaves
as a symmetrical electrolyte. In a negatively charged
system ¢_ is a negative number so the condition is

satisfied when either |¢_| or |o¥]| is large.
In order to determine if [¢_| is large enough we use

=(—0¥ —a) < 1. as)
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Radii (A)
Source Li‘(aq) Na‘(ag) K'(aq) Cs*(aq)
Marcus (1983) 207 237 273 3.08
Robinson and Stokes (1959) 3.7 3.3 1.33  1.69
Celeda (1988) 4.51 39 3.36  3.07
Coker (1976) 1.94 235 279 3.16

the following argument. Since |¢_| > |¢4]| we may
write

e%d
ey 1. (79)
If ¢, is large
cosh g = Yy ~ e;d (80)
and
403Y, > L. @n

If Y, > 1 then the symmetric case holds. To obtain
an estimate of Y, to use in Eq. (81) we suggest the
following procedure. In the symmetric case, y, — yy =
¢2/2 and Eq. (37) can be written

a2/2
—— =V2k(d - R
J; V2 + va) ?

neglecting | compared to Y. This integral is evaluated
analytically and gives

42 ~R) __a

(82)

t = .
S Ak ®3)
If we define the following variables
172 d —
= Yd «( R,) (84)
2
, _o«(d —R,)
5 (85)
then Eq. (83) may be rewritten as
(86)

tanp = —.
P

Eq. (86) can be used as a tool to determine if the coion
is important in swelling pressure calculations. If the
calculated value of p for a given set of concentration,
ionic radii, plate separation, and surface charge density
is large, then the system behaves as a symmetrical case
and the coion does not approach the surface. If, how-
ever, the value of p is close to 1 and the surface charge
is low, then the coion is near the surface and the un-
symmetrical case is appropriate.

Only the symmetrical case is important for clays.
Using a range of ionic radii from the literature, which
are listed in Table 2, we show a dependence of the
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Figure 4. Swelling pressure vs separation for Cypern mont-
morillonite (surface charge density ¢, = —0.103 C-m~2) in
LiCl(aqg) at concentrations of 10-2 M and 10—* M. The solid
curves are Lubetkin’s Figure 7 experimental results (upper
10-4 M and lower 10-2 M). Theoretical results for a range of
Lit(aq) radii are 10-* M (»—+) and 1072 M (*—>).

swelling pressure on the electrolyte counterion present.
We compare our results with the experimental results
of Lubetkin ez al. (1984) and Viani et al. (1983). In
both cases the authors compared their results to the
Gouy-Chapman model without accounting for finite
size. In a later work Low (1987) compared the Viani
results to a constant potential modified Gouy-Chap-
man model and showed osmotic repulsion is negligible
in swelling clays. We will show results obtained with
a constant charge modified Gouy-Chapman model
compare well with the experimental results.

In Figure 4 we show the swelling pressures for Cy-
pern montmorillonite (g, = —0.103 C-m~2)in LiCl{aq)
at electrolyte concentrations of 1072 M and 10-* M.
The solid curves represent the experimental data of
Lubetkin et al. (1984), with 10—* M for the upper curve
and 10~2 M for the lower curve. The dots and asterisks
represent calculations for 1072 M and 10-* M, respec-
tively, using the range of values of the ionic radius of
Li*(aq) given in Table 2. The two trends are similar,
but the agreement in the case of 102 M is considerably
better than for 10-4 M.

Huerta and McQuarrie (1991) used the constant sur-
face charge modified Gouy-Chapman model to show
the swelling pressure depends on counterion size. Fig-
ure 5 shows swelling pressure vs separation for Wyo-
ming bentonite in 10-% M aqueous solutions of Li*(aq),
Na*(aq), K*(aq), and Cs*(aq). The solid curves repre-
sent the experimental data of Lubetkin et al. (1984)
with the order from the top being Li*(aq), Na*(aq),
K*(ag), and Cs*(aq). The modified Gouy-Chapman
theory not only gives a size-dependence of the cation,
but in the correct order. However, the calculated size
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Figure 5. Calculated Log (swelling pressure) vs separation

for Wyoming bentonite (¢, = —0.116 C-m~2) in 10* M
aqueous solutions of Li*(aq) (squares), Na*(aq) (triangles),
K+(aq) (dots) and Cs*(aq) (circles). Solid lines are Lubetkin’s
Figure 6 experimental data with the order top to bottom;
Li*(aq), Na*(aq), K*(aq), Cs*(aq).

dependence is not as strong as the data would indicate,
particularly for the case of Cs*(aq).

It is important to point out, however, that mont-
morillonite can associate in a stacked alignment to
form a quasicrystal. A quasicrystal is a structure formed
by n unit layers of clay attached one to the other by
attractive forces. Between each layer, swelling is not
observed. However, swelling is observed between two
quasicrystals. It is not clear to what extent quasicrystals
form in montmorillonite with monovalent counter-
ions. It is known, however, that the number of unit-
layer platelets per particle depends on the exchangeable
cation in the order: K*(aq) > Na*(aq) > Li*(aq). Li-
montmorillonite does not form quasicrystals; it exists
as dispersed unit-layer platelets. Definitive informa-
tion about quasicrystal formation for Na-montmoril-
lonite is not yet available. If quasicrystal formation
occurs in homoionic montmorillonites, the determi-
nation of distances of separation between clay platelets
in swelling pressure measurements may have been er-
roneously calculated. Lubetkin er al. (1984) report that
there were some quasicrystals present in the Na*(aq)
case, more in the K*(aq) case, and an even greater
number in the Cs*(aq) case. They additionally suggest
that this effect may have contributed to lower swelling
pressure results, particularly in the case of Cs*(aq).

In Figure 6 we compare swelling pressure calcula-
tions for a series of sodium montmorillonites with dif-
ferent degrees of isomorphic substitutions with exper-
imental data of Viani et al. (1983). The electrolyte
concentration is 10~* M, and the surface charge density
g, for the eight montmorillonites ranges from —0.0924
C-m~2to —0.1868 C-m~2. The greatest value of swell-
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Figure 6. Swelling pressure for montmorillonites with dif-
ferent degrees of isomorphic substitution in 10—* M NaCl(aq).
Solid lines mark bounds of Viani et al. (1983) experimental
data. The range of surface charge densities is —0.0924 C-m 2
to —0.1868 C-m~2, The dots mark the range of the theoretical
results considering a range of Na*(aq) radii.

ing pressure corresponds to the montmorillonite with
the highest surface charge density. The solid lines give
the range of experimental data which was reproduced
using the relation between swelling pressures and plate
separation given by Eq. (4) of Viani et al. (1983). The
trend of the calculated values is the same as the trend
observed experimentally. We observe that swelling
pressure values tend to be independent of the surface
charge density for large distances between the two walls.

In Figure 6 we have also plotted the Lubetkin et al.
(1984) data (dashed line) for sodium Wyoming ben-
tonite (o6, = —0.116 C-m~?) for comparison. Interest-
ingly, Lubetkin’s Wyoming bentonite data is above the
Viani et al. (1983) data which is the opposite of what
would be expected if the difference were due to the
presence of quasicrystals which do not contribute to
the swelling pressure.

We now use the unequal radius model to calculate
the swelling pressure in a 1:1 and 2:1 system in which
the two counterions are of unequal size. The coion size
is not important as shown previously and therefore we
consider it to be the same size as the larger counterion
for the purpose of calculation. In spite of the impor-
tance of such systems, there exists very little experi-
mental swelling pressure data in the literature for mixed
electrolyte systems. Therefore we have chosen arbitary
ionic radii to compare the unequal size and the same
size models. We do not expect our results to be quan-
titatively comparable with experiments at high diva-
lent ion concentration, due to the well-known failure
of the Poisson-Boltzmann equation to accurately re-
produce swelling pressure results for divalent electro-
lytes. However, we will show qualitatively that in a
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Table 3. The effect of ionic radii and divalent ion content
on swelling pressure (atm).

R..R. t=0.50 1=0.010  t=0.0001 t=0.000001
1.5:2.5 1.88 4.76 8.12 8.41
2.5:2.5 2.26 5.30 8.28 8.41
2.5:3.5 2.27 5.44 9.40 9.76

mixed electrolyte both counterion sizes are important
in theories of clay swelling pressure.

Table 3 contains results of swelling pressure (atm)
calculations for three sets of radii (A) at various values
of the parameter t, the divalent electrolyte fraction of
the total bulk concentration of 0.0010 M. In the same
size case, R,, = R., the counterion radius is 2.5A. We
contrast the unequal size case by first varying the di-
valent counterion radius (R,, = 1.5A, R, = 2.5A) and
secondly by varying the monovalent counterion radius
(R,, = 2.5A, R, = 3.5A). Clearly the unequal size
model predicts results which are significantly different
than those of the same size model. At high divalent
electrolyte fraction, t = 0.50, a variation of R, by one
angstrom to 1.5A causes a 17 percent change in the
swelling pressure while it is unaffected by a change in
R, to 3.5A. At t = 10-° the variation of R, has a large
effect while a variation in R, is not important. In the
intermediate region in which significant amounts of
both electrolyte species are present, a one angstrom
variation of either radius causes between a 2 to 13
percent change in swelling pressure.

SUMMARY

The solution to the Poisson-Boltzmann equation for
the Unequal Radius Modified Gouy-Chapman model
was presented and the swelling pressure calculated. In
the case of a 1:1 electrolyte, only the counterion size
is important for conditions typical of clay systems. The
swelling pressure is calculated for a constant surface
charge density and the results are compared with ex-
perimental data. Several sets of ionic radii are used to
show the swelling pressure depends on the specific
counterion in the order Li*(aq) > Na'(aq) > K*(aq)
> Cs*(aq). This is in qualitative agreement with ex-
perimental data, however, the degree of dependence of
the model result is not nearly as strong. Next we applied
the unequal radius model to a 1:1 and 2:1 electrolyte
mixture to determine the difference in swelling pressure
caused by the unequal size of the two counterions.
When the fraction of divalent ion present is small, the
monovalent ion size is important. The opposite is true
when the fraction of divalent ion is high.
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