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TOTAL CATEGORIES AND SOLID FUNCTORS 
REINHARD BÔRGER AND WALTER THOLEN 

1. Introduction. Totality of a category as introduced by Street and Walters 
[17] is known to be a strong cocompleteness property (cf. also [21]) which 
goes far beyond ordinary (small) cocompleteness. It implies compactness in the 
sense of Isbell [11] and therefore hypercompleteness [7], that is: the existence 
of limits of all those (not necessarily small) diagrams which are not prevented 
from having a limit merely from size-considerations with respect to the hom-
sets. In particular, arbitrary intersections of monomorphisms exist in a total 
category; which is part of Street's [16] characterization of totality and is used 
in establishing the interrelationship with topoi (cf. also [15]). 

This article gives solutions to two problems mentioned in Kelly's excel­
lent survey article [12] and gives an £ -generalization of Day's theorem [8] 
that a cocomplete category with arbitrary cointersections of epimorphisms and 
generator is total. Day mentions the possibility of replacing epimorphisms by 
£ -morphisms which belong to an ( £ , ^ )-factorization system, but gives no 
generalized statement; in particular, he does not specify how to generalize the 
notion of generator. In any case, our theorem seems to go beyond what Day had 
in mind since we do not even require £ to be closed under composition. This 
is particularly relevant in the case where £ is the class of morphisms which 
are composites of two regular epimorphisms. We devote special attention to this 
case, as it gives the theorem that a cocomplete category is total if it has a regular 
generator; or a small set of objects of which every other object is (somehow) a 
colimit (which is a strengthening of Kelly's [12, Corollary 6.5]). 

We give a complete solution to the problem whether the £ -generalization of 
Day's theorem allows for converse statements, and thereby settle the questions 
raised in Kelly's article: a total category always allows the formation of coin­
tersections of arbitrary families of regular epimorphisms, but not so for strong 
ones, even when it contains a strong generator; on the other hand, a total cat­
egory need not have a generator, even when it is cowellpowered and therefore 
contains cointersections of arbitrary families of epimorphisms. 

The paper is self-contained. Although our proof of the £ -version of Day's 
theorem relies heavily on lifting properties of solid functors (formerly called 
semi-topological [18]) we in fact do not require any previous knowledge of 
these functors, as all relevant facts about them are provided in a new concise 
form in this paper. In order to keep its length as limited, and the range of 
potential readers as unlimited, as possible, we have given all definitions and 
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214 R. BORGER AND W. THOLEN 

results just for ordinary Set -based categories (with small hom-sets) although 
we are fully aware of the fact that, even beyond the ^-results stated by Kelly 
[12] and Day [8], our techniques can be widely established in the 1^-world: see 
Anghel [3], [4]. 

The main results of this paper were announced in communications given by 
the authors during the Conference on Category Theory at Louvain-la-Neuve in 
July 1987 and in the Sydney Category Seminar in January 1988. The authors 
are grateful for encouraging comments they received. Especially we would like 
to thank Jin Adarnek who communicated some interesting questions to us which 
then led to the results exhibited in Section 5. 

1. Review on solid functors. 

1.1. For a functor U : A —+ Of, a U-sink a is a family of A -objects A, and of 
^-morphisms x\ : UAj —>X, i G /; here / may be a proper class, or be empty; 
in which case the family is just given by its codomain, i.e., the ^/-object X. 
For such a U-sink a, we can form the full subcategory (X/U)a of the comma-
category X/U whose objects (y,B) with y : X —» UB in Of have the property 
that there are J3-morphisms / : Aj —> B with Ufi = yxj for all / G / . The functor 
U is called solid (formerly semi-topological [18]) if U is faithful and if (X/U)a 

has an initial object for every X and every a with codomain X\ such an initial 
object (e,C), together with the uniquely determined morphisms gl : A,• —-> C 
with Ugi — exj, is also called a U-semifinal lifting of a. The following two 
important properties follow immediately from the définition. 

(1) U has a left adjoint: consider empty U-sinks. 
(2) U detects all colimits, i.e., if, for any diagram H : *D —> A, 

colim UH exists in 9{, then colim H exists in A : indeed, one just has to 
consider a (/-semifinal lifting of the (/-sink given by colim UH to obtain 
colim H. 

The following theorem follows from results in [18] but we here give a direct 
proof: 

THEOREM 1.2. A functor U : A —> Of is solid if and only if U has a left 
adjoint and there is a class T, of A -morphisms such that 

(a) the co-units of U belong to £ , 
(b) A is Tr-cocomplete, i.e., a pushout of an ŒL-morphism along an arbitrary 

morphism exists in A and any such belongs to T, and a cointersection of an 
arbitrary family of T, -morphisms exists in A and any such belongs to T,. 

(Note that when A is £ -cocomplete, it follows automatically that £ contains 
all isomorphims of A and is closed under composition with them.) 

Proof. Let first U be solid; we mentioned before that U then has a left adjoint 
F, and we let £ be the class of all A -morphisms e : A —> B such that (Ue,B) 
gives a (/-semifinal lifting of some (/-sink a with codomain UA. The counits 
eB : FUB —* B belong to £ since (UeB,B) gives a (/-semifinal lifting of the 
2-indexed sink consisting of \UFUB and of the unit TJUB ' UB —• UFUB. So it 
remains to show £-cocompleteness. 
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TOTAL CATEGORIES AND SOLID FUNCTORS 215 

For e : A —• B in £ a n d / : A —-> C in ^ , one considers a (7-sink a = (A, : 
L̂ 4,- —•> (/A) such that (Ue,B) gives a (7-semifinal lifting of a. A (/-semifinal 
lifting of the (/-sink r which contains all Uf • JC;- and l<yc is then actually given 
by a morphism e' : C —> D which, by definition, belongs to £ . Since all 
compositions Ue' • (// • x, are (/-images of morphisms in A, (7-semifinality of 
(Ue,B) gives a morphism/7 such that the diagram 

C 

->B 

-> D 

commutes; indeed, it is easily shown to be a pushout. 
To prove the existence of cointersections, let e,• \ A —> Bj,j G 7, be any family 

of £-morphisms, so that each (Uej,A) is the (/-semifinal lifting of a (/-sink 07 
with codomain UA. Let cr be the (/-sink obtained by uniting all 07's and adding 
1(7,4. A (/-semifinal lifting gives a morphism ? : A —• C in £ and morphisms 
P7 : Bj —> C such that the diagrams 

form a generalized pushout. 
Vice versa, given a class E with (a) and (b), we first remark that the existence 

of arbitrary cointersections of £ -morphisms makes every morphism in £ an 
epimorphism (cf. [5]). So the co-units of U are epic, whence U is faithful. To 
show the existence of a (/-semifinal lifting of any (/-sink a — (.17 : (A4, —> X), 
one first forms the pushout 

FUAi FXi > FX 

A; - > * / 

n\\\ e, G £ for every / G / , and then the cointersection 
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216 R. BORGER AND W. THOLEN 

with e G £ . For every / one has 

Ue -r]x - Xi = Upi • Uel • UFxl • r]UAi 

= Upt • Uht • UeAj • rjUAi = U(ptht), 

so that (Ue • rjXlB) belongs to (X/U)a; that it is actually initial follows easily 
with the universal properties of the above diagrams. 

Remark 1.3. For a solid U : A —> 0{, there is of course a least *£ such that 
properties (a) and (b) of 1.2 hold; it is the closure of {eA | A G \A\} under 
the formation of pushouts and arbitrary cointersections in A. The proof of 1.2 
shows that one can give a one-step description of this closure. 

COROLLARY 1.4. (cf. [18, Corollary 6.8]). A faithful right adjoint functor U : 
A —> Of is solid if A is cocomplete and admits arbitrary cointersections of 
epimorphisms; in particular if A is cowellpowered. Cocompleteness of A is a 
necessary condition for U to be solid, provided Of is cocomplete. 

There is one other important property of solid functors we shall need: detection 
of limits. For that we first mention the known result (cf. [10], [20]): 

PROPOSITION 1.5. For any class ŒL of A-morphisms that contains all isomor­
phisms and is closed under composition with them, A is £ -cocomplete if and 
only if every family f : A —> B[ (i G I, where I may be a proper class) of 
A-morphisms has a locally orthogonal T,-factorization f = m\e, so e : A —> C 
is in *E and p _L (e, mi) for every p G £ (that is: h{p —fig for all i implies the 
existence of a unique morphism t with tp — eg and m{t = hi for all i). 

From [18] we recall that a factorization x, = Uml • d of a U-source (x, : 
X —y UAi) (dual to £/-sink) through a family (m, : B —• A7) of J3-morphisms 
is U-semi-initial if, for every family (gj : C —> Aj) in A and every morphism 
y : UC —> X with xiy = Ugj, there is a unique t : C —> B in A with Ut = dy and 
mit — gi\ the factorization is U -epimorphic if, for <2, b : B —» D, Ua-d — Ub-d 
implies a = b. 

COROLLARY 1.6. For a solid U, every U -source has a U -epimorphic and U-
semi-initial factorization. 

Proof Let the family (f : FX —* Aj) correspond to (x, : X —• UAj) by 
adjunction, and let f = emi be a locally orthgonal £ -factorization. Then 

Xi = Urn, • (Ue • 7]x) 

is obviously a U -epimorphic factorization. To show its semi-initiality, given y 
and gi as above, one considers the commutative diagrams 
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whose diagonal-fill-in is the needed morphism t : C —>B. 

1.7. The existence of £/-epimorphic and (/-semi-initial factorization of U-
sources is actually equivalent to the solidity of U (cf. [18]), but 1.6 suffices to 
derive the last property of solid functors we shall use: 

U detects all limits (and, of course, preserves them); indeed, we can derive 
the existence of lim H for any H : (D —> A such that lim UH exists from a 
f/-epimorphic and (/-semi-initial factorization of the projections of lim UH (cf. 
[18]). 

2. Hypercompleteness, compactness, and totality. All of our categories are 
assumed to have small hom-sets. 

2.1. A category A is called total if colim H exists in A for every diagram 
H : <D —> A such that colim A(A,H-) exists in Set for all A e A. So a total 
category is trivially (small) cocomplete, since colim A(A,H—) trivially exists 
in Set when CD is small. The following is wellknown (cf. [12]): 

PROPOSITION 2.2. The following conditions are equivalent: 
(i) A is total, 
(ii) colim H exists in A whenever, for each A G A, the comma category 

A JH has only a small set of connected components, 
(iii) the Yoneda embedding Y : A —> [Aop,Set] has a left adjoint. 

2.3. When proving (ii) => (iii) above, one has to construct out of a given 
functor E : Aop —+ Set a suitable H such that A JH satisfies the said smallness 
condition for all A 6 A. This is achieved by the element-construction: the 
category el E has as object pairs (A, a) with A G A and a £ EA; morphisms 
/ : (A, a) —• (B,b) are .#-morphisms / : A —> B with (Ef)b = a; H : el 
E —• A is the canonical functor which, under (ii), has a colimit in A. One can 
weaken condition (ii) by requiring the existence of colim H only for certain / / ' s 
built as follows: 

A is compact if colim {el E —> A) exists in A for every E : Aop —• 5e£ that 
preserves all existing limits in J3o p . Since, in particular, E will transform the 
given colimit in A into a limit in J>e£, it follows that E is actually represented 
by that colimit (cf. [13]). One therefore has the known: 

PROPOSITION 2.4. The following conditions are equivalent: 
(i) A is compact, 
(ii) every E : Aop —+ Set that preserves all existing limits in Aop is repre-

sentable. 
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(iii) every F : A —> *B that preserves all existing colimits in A has a right 

adjoint. 

2.5. It was shown in [7] that compact categories enjoy the strongest com­
pleteness property that a category (with small hom-sets) can be expect to have. 
Here we define this property formally, analagously to totality, and show in 2.6 
below the equivalence with the previous definition. 

A is hyper complete if lim H exists in A for every diagram H : *D —• A such 
that lim A{A,H —) exists in Set for all A E A. (Note that the existence of lim 
A (A, H —) is a necessary condition for lim H to exist, and that despite the formal 
analogy, hypercompleteness is not dual to totality.) Of course, hypercompleteness 
implies small completeness; that it is implied by compactness follows from the 
following characterization. 

PROPOSITION 2.6. The following conditions are equivalent: 

(i) A is hypercomplete, 

(ii) l im/ / exists in A whenever, for each A E A, there is only a small set of 
cones AA —> H in A. 

Proof (i) => (ii). If H : <D - * A is such that KA = Nat(AA,//) is small for 
every A £ A, then the evaluation maps 

«3 : KA —> A (A, Hd), a »—> ocd (d G <D ), 

present KA as a limit of A(A,H—) is 5et . 
(ii) ^> (i). One always has one-to-one correspondences 

M — • / / 

Al - + J 3 ( A , / / - ) 

and 

Al - > J 3 Q 4 , / / - ) 

1 ^\im A(A,H-) 

if the limit exists in Set. So Nat (AA.//) is small in that case. 

2.7. A hypercomplete category is M-complete (dual to £-cocomplete) for <M 
the class of all monomorphisms, hence for every conceivable M\ indeed the exis­
tence of arbitrary intersections of monomorphisms follows directly from the def­
inition of hypercompleteness (since representable functors preserve monomor­
phisms). 
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So, summarizing the previous remarks, we have the following system of im­
plications: 

A total 

i 
A compact 

\ 
A hypercomplete 

\ 
A *M -complete 

It is known that, in general, there are no other implications in this scheme: the 
dual of the category of groups is complete, cocomplete and M -complete (for 
0\f — monos), but not hypercomplete, and in particular not total (cf. [11], [7]). 
The category of fields is ^-complete, but not complete. Isbell [11] showed that 
neither completeness nor cocompleteness implies ^-completeness, not even for 
M = strong monos (our counterexample 4.3 strengthens this result). Adamek's 
monadic category [1] over a category of graphs is compact but far from being 
total, since it lacks coequalizers. Finally, Adarnek also exhibited [2] a hyper­
complete category that is not compact. 

Problem 2.8. Is a compact cocomplete category total? 

3. A generalization of Day's theorem. Solid functors are useful for detecting 
the (co)complete properties discussed in the previous section: 

THEOREM 3.1. (cf. [7], [19]). For a solid functor U : A •—> Oi, if 0{ has any 
of the properties of being complete, hypercomplete, M-complete {for 9\f all 
monomorphisms), cocomplete, compact, or total, then A has the same property. 

Proof. For completeness, fA^-completeness, and cocompleteness, the asser­
tion follows from 1.1(2) and 1.6. (In case of 9tf-completeness, the assertion 
reads more generally as: if Of is f^-complete for some fW, then A is U~X<M -
complete.) The lifting of hypercompleteness also follows from 1.6 since, if F is 
left adjoint to U, one has 

A(FX,H-)*ï A(X,UH-) 

for every H : (D —• A and all X G Of. With the given definitions for totality 
and compactness, one derives in exactly the same way from 1.1(2) that these 
properties can be lifted from Oi to A. 

Examples 3.2. The following categories are total since they admit a solid 
functor into Set or a discrete power of Set ; these are known to be total (cf. 
[17]): locally presentable categories (in the sense of Gabriel and Ulmer [9]), 

A cocomplete 

A complete 
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monadic categories over Set or a discrete power of Set, topological categories 
over Set, full reflective subcategories of the preceding categories (totality is 
inherited by a full reflective subcategory A of any total category tt, by 3.1). 

We say that a small set Ç of objects in A is an E-generator of A if and 
only if all coproducts 

FX = W XG • G (with (XG) G Set $ ) 
G eg 

exists in A and the canonical morphism 

eA: {J A(A,G)-G^A 
G eg 

belongs to E for every A G A. Now the following generalization of Day's 
Theorem [8] is an immediate consequence of 1.2 and 3.1: 

THEOREM 3.3. Every E-cocomplete category with an E-generator is total. 

Proof. By the definition of an ^-generator and by 1.2, 

U : A —> Set**, A >—• (A (A, G)) 

is solid, so by 3.1 totality is lifted from Set§ to A. 

COROLLARY 3.4. A cocomplete category with arbitrary cointersections of 
(strong) epimorphisms and a (strong) generator is total. 

COROLLARY 3.5. A (weakly) cowellpowered and cocomplete category with a 
(strong) generator is total. 

COROLLARY 3.6. A total category A with a cogenerator is cototal (i.e., Aop 

is total); in particular it is (E-cocomplete for E - all epimorphisms. 

Proof By 2.7, A is fW-complete with M = all monomorphisms, so that the 
assertion follows from the dual of 3.3 (or 3.4) and of 2.7. 

Since totality implies compactness, 3.3 yields in particular the following 
general version of (the dual of) the Special Adjoint Functor Theorem (so that 
3.3 is actually a stronger version of it): 

THEOREM 3.7. Let A he E-cocomplete with an E-generator (recall that we 
suppose A to have small horn-sets). Then a functor F : A —• *B has a right 
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adjoint if and only if it preserves small colimiîs and arbitrary cointersections of 
(E-morphisms. 

Proof A is total, hence compact; so every F that preserves all existing col-
imits has a right adjoint. But by the second part of the proof of 1.2 we actually 
know how the colimits we need in A are built from coproducts of objects of the 
E-generator, from pushouts of E-morphisms, and from arbitrary cointersections 
of E-morphisms. So it suffices to know that F preserves those colimits. 

3.7 was proved differently in [7] (in the dual form), but under more restrictive 
conditions on the class £ (which was assumed to be closed under composition). 
It was also shown in [7] that local smallness (i.e., small hom-sets) is essential 
in 3.7, not only for formal reasons such as the one that the definition of an 
E-generator relies on the fact that A is locally small: 3.7 is false if B fails to 
be locally small, even when A is the category Set of (small) sets; B as in 4.2 
below is such a category, see [7]. 

4. Converses of the generalization of Day's theorem. In this section we 
show that a total category is E-cocomplete for E the class of all regular epimor-
phisms, but that for any class E that contains all strong epimorphisms, a total 
category need neither be E-cocomplete nor contain an E-generator, even when 
the category enjoys the other of the two properties in question. 

PROPOSITION 4.1. A total category admits arbitrary cointersections of regu­
lar epimorphisms, and is therefore "E-cocomplete for E the class of regular 
epimorphisms. 

Proof. Considering the kernelpair of a regular epimorphism one obtains that, 
for every object A, the category A/E of regular epimorphisms with domain A 
admits a full and faithful right adjoint functor into the category M /(A x A) 
of regular monomorphisms with codomain A x A. By 2.7, 9rf /(A x A) has all 
intima, hence all suprema, so that the same is true for A/E. In addition, suprema 
in A/'E are given by coequalizers, so they are actually generalized pushouts in 
the category. 

4.2. Example of a total category A which is cowellpowered (hence E-
cocomplete for the largest conceivable E, namely E the class of all epimor­
phisms) but which does not have a generator: 

A can be chosen to be comma category *B /K, with the following category 
B: the objects of B are given by all (small) sets and one fixed proper class K\ 
the class of morphisms A —> B consists of all mappings A —> B for A ^ K, is 
empty for A = K ^ B, and contains only id/c for A — B = K. Note that A (as 
opposed to B) has small hom-sets and is a legitimate category. It was shown 
in [7, 1.12] that A is compact but does not have a generator. (For the latter 
statement one simply observes that, for every k e K (i.e., A: : 1 —* K), the two 
morphisms 
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must be distinguishable by a morphism z* : (0* : A^ —* K) —> k with <z* 
belonging to a generator if one exists in *B ; but then all a^ must be different, so 
that they cannot all belong to a small set.) Now we show that A is even total: 

First we point out that to give a functor H : <D —•* A is to give a functor 
J : (D —+ *B and a cocone 77 : 7 —» A#; and to give a cocone a : H —> A(a : 
A —-> £ ) in A is to give a cocone (3 : 7 —> M in # with Aa - (3 = r]. We must 
show that colim // exists in J3 whenever colim A(a,H—) exists in 5e£ for all 
a: A-^K in <B. Let 

L = U im(^) 

with 77 as above. Note that, if there is any cocone a : H —> Aa, we must have 
L Ç im(<2); thus, if L is a proper class, A must be large as well, whence A = K. 
That leads us to consider: 

Case 1. L is a proper class. Then the terminal object iàK in A gives the 
colimit of//. 

Case 2. L is small. By hypothesis, for every k G L (k : 1 —-> /Q, the colimit 
cocone Xk : A(k,H—) —» AM* exists in 5e£, so we have natural maps 

\k
d:A{k,Hd)^r)-d\{k})->Mk 

for every del). With M the disjoint union of the Mk(k G L), and with 
p : M —y K the projection, one has natural maps 

\d : J af —•> M, i M Aj(x) with /: = r?j(x), 

with p\d — rid for all d G 2>. So there is actually a cocone H —* A/7 which is 
easily shown to be a colimit in J3. 

Cowellpoweredness of A is trivial (as / : a —» /? is an epimorphism in J3 if 
and only iff is surjective o r / = a). Note, however, that A is not wellpowered, 
and that it does not have a cogenerator either (by an argument similar to that 
which shows non-existence of a generator). 

4.3. Example of a total category A with a strong generator which does not 
admit arbitrary cointersections of strong epimorphisms (and which therefore is 
not 'E-cocomplete for any class T, containing the strong epimorphisms, and not 
weakly cowellpowered). 
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Let Ord be the class of all (small) ordinals, and let oo be a symbol with 
a < oo for all a G Ord. Objects of the category A are quadruples 

A = (X,a,(au),(b„)) 

with a (small) setX, a G OrdU{oo} and families {av)v^a, {bv)v^a of X-elements 
such that one of the following two sets of conditions holds: 

1. (A is of type 1) a < oo, av = bv for all i/ < a, and aa ^ ba, 
2. (A is of type 2) a — oo, av — bv for all v ^ oo, and there is some A < oo 

such that av ^ a^ for all v < \i ^ A and aK — a\ for all K ^ A. 

An A -morphism 

/ : A — C = (Z,7,(c„),(4,)) 

is a mapping/ : A —» C with a ^ 7 and/O^) = cv,f{bv) = J*, for all i/ ^ a. 
Note that we have .#04, C) = 0 if 7 > oc\ in particular, there are no morphisms 
from type 2 to type 1. A is a legitimate category in the sense that \A | is codable 
by a class and that all horn's are small; the former statement follows from the 
fact that the cardinality of A as in (2) cannot exceed the cardinality of X. We 
first show that A is total. By 3.1 it suffices to show that U : A —• Set with 
At—> X is solid. So we must prove that every £/-sink (JCZ : UA[ —• Y)iei admits 
a U -semifinal lifting. Let 

Ai = {Xi,ai,(dMK)) and 

(3 = inf {/i G Ord U {oo} | p > at for all i e 1} 

(so (3 = 0 if / = 0, and /3 = oo if sup {a, | / G / } = oo). Now we distinguish 
two cases: 

Case I. (3 < oo. Then we consider the least equivalence relation ^ on Y 
subject to the condition 

(1) Xi(a'u) ~ x0v) and x^) ~ x0v) 

for all ij G / and v ^ min{a/, ay}. For the projection p : 7 —* Z = 7 / ~, for 
/ G / and i/ ^ a/, let 

cv = /?*/ « ) and dv = pxt (b'u). 

By (1), cv and ^ are well defined for all v < (3. Moreover, if v + 1 < (3, then 
we get v < v + 1 ^ a, < /3 for some / G /, hence 

< = b'„ and cv = pxi(al
v) = pxi(bl

v) = dv. 

There are two subcases to be looked at: 
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Case 1.1. c1 ^ d1 for some 1 < (5. Then we must have (5 = 7 + 1, and all cv, 
dv(v ^ 7) are defined. Now p : Y —> UC with C = (Z,7 , (cv), Wz/)) serves as 
the desired (/-semifinal lifting. 

Case 1.2. cv = dv for all v < (3. Then we choose two distinct symbols cp, 
dp 0 Z and obtain the desired U-semifinal lifting as up: Y —> UC with 

C = (ZU{c(j,dp},l3,(cu),(du)) 

and u the inclusion mapping. Note that, in both subcases, C is an object of type 
1. 

Case II. /3 = oo. In this case we consider the least equivalence relation ~ on 
Y satisfying (1) of Case I and 

(2) xAal) ~ A - ^ p for all / G / , v û \i S a, 

such that there exists a K with 

v < K ^ oti and A'/O^) ~ A",-(^). 

As above, one has Xj(al
v) ~ Xj(bl

u) for all / G I and all v G Ord. Again, we may 
define 

cv = pxj(a'u) = pxi(bl
u) 

(for suitable / G / ) with p : Y —> Z = X/ ~ the projection. Condition (2) 
guarantees that C = (Z, oo, (cv), (cv)) is an J3-object of type 2 such that p : 
F —> UC serves as the wanted U-semifinal lifting. 

Next we show that 
A has a strong generator. It suffices to show that the solid and therefore 

faithful functor U : !A —> Set with a left adjoint F is conservative, whereupon 

G = F\ = ({aihb(h A } , 0, (c70), (&(,)) 

gives a (single-object) strong generator of A. So let the underlying map of 
the J^-morphism/ : A —> C as above be bijective. By the definition of J3 -
morphisms, one has a S 7. If we had a < 7, then A would be of type 1 and 
Qa 7̂  ba\ on the other hand, a < 7 would give f(aa) = r a — da — f(ba), 
contradicting the injectivity off. Therefore, we must have a — 7, and it is easy 
to see t ha t / * 1 : C —>A is an ^-morphism. 

Finally we must show that 
M does not admit arbitrary cointersections of strong epimorphisms. This will 

be done by considering, for every p < oo, A -objects 

M;i = (/C /,U{oo},/x,(z/),(z/*/i)) 
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of type 1 with K^ — {K \ K Û JI} and K * p — K for K < p and p * p = oo. Note 
that MQ = F0 is an initial object of A, so that one has uniquely determined 
morphisms e^ : Mo —• M^ for all /i, and <^(0) = <^(oo) = 0 whenever p ^ 1. 

We claim that each É^ is an extremal epimorphism (hence strong in the total 
A ). It is enough to show that each monomorphism 

f:A = (X,a,(av),(bu))-^Mfi 

is an isomorphism. By injectivity of the mapping/ we conclude a = p as above. 
Since f(aK) — AC for all K £ K^ and/(/?^) = oo one also has t h a t / is surjective, 
hence bijective, and therefore/ is an isomorphism. 

Let us now assume that the family (efl)^<OQ admits a cointersection e^ : MQ —> 
MQO with canonical projections p^ : M^ —> M ^ . For all v < oo, 

N„ = (#„, oo, (minJAc, i/})K, (min{/c, i/})K) 

is an .# -object of type 2, and one has A -morphisms i^ : M^ —> /Vz/ with 

^//(^) = min{tt, p1 z/} for all /x, i/ < oo. 

Since Mo is initial, ^ ^ is always the only morphism Mo —> Nv, so one has a 
morphism sv : M ^ —• /V7/ with s^p^ = f̂  for all p < oo. Each sv is surjective 
since 

•SI/PI/ = tvv : tf„ U {oo} —+ A^ 

maps onto. Therefore the cardinality of no Kv can exceed the cardinality of 
UMQQ, which is impossible. 

Remarks 4.4. We list some additional properties of the category A of 4.3: 
(1) The full subcategory A\ of objects of type 1 in A is closed under colimits 

(hence cocomplete) since colimits in A are constructed as semifinal liftings, and 
one easily sees that only Case I of 4.3 may occur in its construction, so that one 
again obtains an object of type 1. Therefore, the colimit-closure of {G} in A, 
for any G G A\, is contained in A\, i.e., properly smaller than A. In particular, 
this holds for {G} a strong generator of A ; hence the colimit-closure of a strong 
generator of a total category A may be properly smaller than A ; something that 
does not happen when A is weakly cowellpowered. One can actually show here 
that A\ is the colimite-closure of {G} in A (but we omit the proof since this 
fact has no relevance to us here). 

(2) We further observe that the colimit-closure C of the strong generator {G} 
(as in 4.3) has no terminal object. For that, by transfinite induction, one first 
shows that the objects Mv of 4.3 belong to C for v G Ord. Indeed, M0 is the 
colimit of the empty diagram, so it belongs to C. For v < p there is a unique 
A -morphism qV[i : Mv —> M^, namely 

^//i(^) = min{i/, K} for all K G Kv U {oo}. 
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For all v G Ord, qvv+\ is the coequalizer of fv,gv : G —+ Mv with fv{x) = i/, 
gu(x) — oo. Hence Mu e C implies Mv+\ G C. For a limit-ordindal i/, MK G C 
for all « < 1/ implies 

Let us now assume that C has a terminal object 

C = (Z,7,(cI/),(dI/)). 

Since C G C Ç ^ is of type 1, on the one hand we have 7 < oo, but on the 
other hand we have A(MV,C) ^ 0, hence 7 ^ v for each z/ G Ord. This is 
impossible. 

(3) From (2) we see in particular that the colimit-closed subcategory C is 
not coreflective since it is not complete. A fortiori, C is not total. Therefore, in 
Theorem 3.3, 'E-cocompleteness cannot be replaced by (small) cocompleteness, 
even if the category in question is the colimit-closure of a small set of objects, 
which is a stronger condition than then existence of a strong generator. 

(4) By the same argument as in (2) one has that A\ is a colimit-closed sub­
category without a terminal object. Symmetrically, the full subcategory %% of 
objects of type 2 is closed under all existing limits (even large ones), but ^ has 
no initial object: if there is an initial object A = (X, oo, (au), (av)), there must 
exist morphisms/^ : A —• Nu (cf. 4.3) with 

M<*n) = M / ^ =fv(av) for all /i < v < oo; 

i.e., all av must be distinct, which is impossible. 

5. Improvements of the generalization of Day's theorem. In view of 4.1 
it seems necessary to devote special attention to the case where, in 3.3, T, is 
the class of all regular epimorphisms. It turns out that one gets even stronger 
results by considering the class T,2 of morphisms that are the composites of two 
morphisms in *£. We may first work with a general class *E and will specialize 
later. 

LEMMA 5.1. Every rE-cocomplete category is ^-cocomplete. 

Proof. Trivially, pushouts of T,2-morphisms exist and belong to £ 2 . For an 
arbitrary family (d/£/) of 'E-morphisms e/,d/ we may construct their cointersec-
tion de G £ 2 as 
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with pushouts (2j) for each / and multiple pushouts (T) and (3). 

A small set Q of objects in A is called an almost-T,-générât or if coproducts 
of small families in Ç exist in A and if every A G A admits a presentation 

with a small family (G,) in Ç and e G £ . 

THEOREM 5.2. For #ft_y c7#ss £ f/?̂ /1 contains all split-epimorphisms, an (L-
cocomplete category with an almost-rE-generator is total. 

Proof. In view of 3.3 and 5.1, it suffices to show that an almost-'E-generator 
is an *£2-generator. For A G A, let ê  be the canonical morphism (see 3.3). 
By 1.5, CA has a locally orthogonal 'E-factorization ê  = mp; it then suffices to 
show that m is split-epic to be able to conclude ê  G *E2. But, by hypothesis, 
there is an 'E-morphism 

e:\jGi^A 

with a family (G,-) in £ . One also has a canonical map & with eAk = £. Local 
orthogonality gives a morphism r with mt — 1. 

In case £ = all regular epimorphisms, 5.2 can be simplified further: 

COROLLARY 5.3. For a category A with an almost-regular generator, the fol­
lowing assertions are equivalent: 

(i) A is total, 
(ii) A has small cointersections and pushouts of regular epimorphisms, 
(iii) A has coequalizers. 

Proof, (iii) => (ii). In a category with a generator Q and coproducts of ob­
jects in Q, every regular epimorphism is a coequalizer of two morphisms whose 
domain is a coproduct of objects in Ç. With this observation it is elementary 
to construct the needed pushouts and cointersections just with the help of co-
equalizers. 

(ii) => (i) It is well known (cf. [14]) that a category with a generator is 
cowellpowered with respect to regular epimorphisms. So 5.2 yields (i). 
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(i) => (iii) is trivial. 

Remark 5.4. In 5.2, the hypothesis that £ contains all split epimorphisms can 
be dropped if the category has coequalizers. For that, in the proof of 5.2, one 
may replace £ 2 by the class T, of all morphisms which are composites of an 
'E-morphism followed by a regular epimorphism. The proof of 5.1 works for 
£ instead of £ 2 since the necessary pushouts and cointersections of regular 
epimorphisms can be constructed from coequalizers (see the proof of 5.3). 

COROLLARY 5.5. / / in the cocomplete category A there is a small set Cj of 
objects such that every object is {not necessarily canonically) a colimit of objects 
in Ç, then A is total. 

Proof. Ç is an almost-regular generator of A . 

Remarks 5.6. (1) The hypothesis of 5.5 is satisfied in particular when Ç 
is dense in A (so that every object is the canonical colimit of objects in Ç) 
which, however, is a more restrictive assumption (consider {K} in the category 
of ^-vector spaces). On the other hand, 5.5 can be stated with a slightly weaker 
hypothesis: it suffices that every object in A is the coequalizer of two morphisms 
between coproducts of objects in Q. 

(2) 5.5 becomes false if one weakens the hypothesis so far that A is just 
the colimit closure of Ç in A, i.e., the least (full and replete) colimit-closed 
subcategory of A containing Q : see 4.4(3). 

(3) 5.3 allows one to produce a total category with a strong generator which 
fails to have any regular generator even an almost-regular one. Indeed, if 9i 
were an almost-regular generator of the category A of 4.3, then, in particular, 
every object A of type 1 admits a regular epimorphism J J / / , -—> A for some 
coproduct of objects in H. But all /// must be of type 1 since, in A, there are 
no morphisms from type 2-objects into type 1-objects. So 9-( D A\ would have 
to be an almost-regular generator of the subcategory A\ as in 4.4, which would 
have to be total by 5.3. But, in fact, A\ does not even have a terminal object. 

Finally we state the Special Adjoint Functor Theorem 3.7 in the almost-regular 
case; with 5.3 one obtains: 

COROLLARY 5.7. A functor F : A —-> *B that preserves small colimit s has a 
right adjoint, provided A has small colimits and an almost-regular generator; 
in particular if A is monadic over Set1 (I a small set). 

Note added in proof. Generalizations and improvements of the results in Sec­
tion 5 will appear in a forthcoming article by the authors, entitled "Factorizations 
and colimit closures". The paper "Total categories with generators" (to appear 
in J. of Algebra) by J. Adarnek and W. Tholen gives characterization theorems 
for the categories described by its title. 
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