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Cartan Subalgebras of gl∞

Karl-Hermann Neeb and Ivan Penkov

Abstract. Let V be a vector space over a field K of characteristic zero and V∗ be a space of linear

functionals on V which separate the points of V . We consider V ⊗ V∗ as a Lie algebra of finite rank

operators on V , and set gl(V,V∗) := V ⊗ V∗. We define a Cartan subalgebra of gl(V,V∗) as the

centralizer of a maximal subalgebra every element of which is semisimple, and then give the following

description of all Cartan subalgebras of gl(V,V∗) under the assumption that K is algebraically closed.

A subalgebra of gl(V,V∗) is a Cartan subalgebra if and only if it equals
⊕

j

(
V j ⊗ (V j )∗

)
⊕ (V 0 ⊗V 0

∗)

for some one-dimensional subspaces V j ⊆ V and (V j )∗ ⊆ V∗ with (Vi )∗(V j ) = δi j K and such that

the spaces V 0
∗ =

⋂
j (V j )

⊥ ⊆ V∗ and V 0 =
⋂

j

(
(V j )∗

)⊥
⊆ V satisfy V 0

∗(V 0) = {0}. We then

discuss explicit constructions of subspaces V j and (V j )∗ as above. Our second main result claims that

a Cartan subalgebra of gl(V,V∗) can be described alternatively as a locally nilpotent self-normalizing

subalgebra whose adjoint representation is locally finite, or as a subalgebra h which coincides with the

maximal locally nilpotent h-submodule of gl(V,V∗), and such that the adjoint representation of h is

locally finite.

Introduction

It is an interesting question which class of subalgebras of an infinite-dimensional Lie
algebra, over a field K of characteristic zero, play a role similar to Cartan subalge-

bras of a finite-dimensional Lie algebra. Despite the fact that infinite-dimensional
Lie algebras have been studied extensively in the last 30 years, there is no definitive
answer to this question. The best understood cases are those of Kac-Moody alge-
bras and extended affine Lie algebras (see [BP95], [PK83], [AABGP97] and the refer-

ences therein), whose specific is that their Cartan subalgebras are finite-dimensional.
The simplest example of an infinite-dimensional Lie algebra whose Cartan subalge-
bras are no longer finite-dimensional is the Lie algebra gl∞ of infinite matrices with
finitely many non-zero entries in K, and in the literature there is no systematic inves-

tigation of all Cartan subalgebras of gl∞. The purpose of the present paper is to fill
in this gap for gl∞ and for the larger class of Lie algebras gl(V,V∗) defined below.

The following three definitions of a Cartan subalgebra h of a finite-dimensional
Lie algebra g are equivalent:

(C1) h is a locally nilpotent self-normalizing subalgebra;
(C2) h coincides with the maximal locally nilpotent h-submodule of g, i.e., h =

g0(h), where

g0(h) =
{

x ∈ g : (∃n ∈ N) (ad h)n(x) = {0}
}

;
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(C3) h is a locally nilpotent subalgebra which coincides with the set of all elements
x ∈ g for which ad x commutes with the abelian subalgebra (ad h)s consisting

of all semisimple parts (ad h)s in the Jordan decomposition ad h = (ad h)s +
(ad h)n of ad h for elements h ∈ h ((ad h)n stands for the nilpotent part).

Since g is assumed finite-dimensional, “locally nilpotent” in the conditions (C1)–
(C3) is of course equivalent to “nilpotent”, but we have stated (C1)–(C3) in a form
suitable also for the more general class of locally finite Lie algebras we consider in this

paper. The fact that (C1) is equivalent to (C2) is well known [Bou90, Ch. VII]. The
equivalence of (C2) and (C3) follows from the equalities

g0(h) =

⋂

h∈h

g0(ad h) =

⋂

h∈h

ker(ad h)s = zg

(
(ad h)s

)
.

If g is reductive over an algebraically closed field, every Cartan subalgebra h is

maximal toral, i.e., for every 0 6= h ∈ h, ad h is diagonalizable, and h is maximal with
this property. This is the key to one of the most important properties of a Cartan
subalgebra h of a reductive Lie algebra g: that (after a possible field extension) h

yields a root decomposition of g.

Let V be a fixed (arbitrary) vector space over K and V ∗ be its dual space. In what
follows we set g = gl(V,V∗) := V ⊗ V∗, considered as a Lie algebra of finite rank
operators on V , where V∗ ⊆ V ∗ is a subspace separating the points of V . If J is a set,
we write K

( J) for the vector space with a fixed basis (e j) j∈ J labeled by the elements of

J. The standard pairing K
( J) × K

( J) → K induces an injection K
( J) ↪→ (K

( J))∗ ∼= K
J ,

and for V = V∗ = K
( J), g = gl( J,K) := gl(V,V∗) is the Lie algebra of J× J-matrices

with finitely many non-zero entries. We also set gl∞ := gl(N,K).
All Cartan subalgebras yielding a root decomposition of gl∞, i.e., the so called

splitting Cartan subalgebras, are well understood, see [NS01], [St01] and [PS03]. It
is also known that there are maximal toral subalgebras of gl∞ which do not yield a
root decomposition, and therefore also no generalized root decomposition [PS03]. In
particular, even if K is algebraically closed, none of the conditions (C1)–(C3) implies

the existence of a generalized root decomposition related to h. In this paper we put
the condition (C3) in the spotlight, as it relates h in a most transparent way with the
abelian subalgebra hs, consisting of the semisimple parts of all h ∈ h, and in this way
carries the most resemblance with the finite-dimensional case. More precisely, we

define a Cartan subalgebra of gl(V,V∗) as a subalgebra satisfying (C3).
Our main result is a description, in terms of linear algebra, of all Cartan subalge-

bras of g = gl(V,V∗) for which hs is toral. (The latter condition is automatic if K

algebraically closed.) In particular we prove that all Cartan subalgebras are abelian.

As a corollary we obtain that there are at most three types of Cartan subalgebras for
which hs is toral: the ones for which the inclusion hs ⊆ h is proper, the toral ones, i.e.,
those for which h = hs, and finally, the splitting ones for which h = hs and g has a
root decomposition with respect to h. We consider examples of pairs V , V∗ for which

not all types of Cartan subalgebras occur, and we show that all three types do occur
for gl( J,K).

As each Cartan subalgebra of gl(V,V∗) is abelian, its adjoint module is trivial and
in particular locally finite. It is not clear if this latter property holds for any subal-
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gebra of gl(V,V∗) (in particular of gl∞) which satisfies (C1) or (C2). However, our
second main result claims that if one strengthens (C1) and (C2) by the very natu-

ral additional requirement that the adjoint module of h be locally finite, then the so
obtained new conditions (C1 ′) and (C2 ′) are equivalent to (C3) for subalgebras of
g = gl(V,V∗).

Acknowledgments We thank Helmut Strade for sharing an inspiring idea about

describing the toral Cartan subalgebras of gl∞. We thank also Ivan Dimitrov and
Gregg Zuckerman for the permission to present in the Appendix a proposition they
recently proved.

1 Preliminaries and Notation

All vector spaces (and Lie algebras) are defined over K and K stands for the algebraic

closure of K. The superscript ∗ denotes dual space. The vector spaces V and V∗ are
fixed as above, and the sign ⊥ always refers to the pairing V × V∗ → K. If k is a Lie
algebra, U (k) stands for the enveloping algebra of k. In this paper N := {1, 2, 3, . . . }.

We call a Lie algebra k locally finite (resp., locally nilpotent) if every finite subset
of k is contained in a finite-dimensional (resp., nilpotent) subalgebra. We call an k-
module M locally finite if each element m ∈ M is contained in a finite-dimensional

submodule, and we call M locally nilpotent if for any m ∈ M there exists an i ∈ N with
ki · m = {0}. Furthermore, we say that a k-module is a generalized weight k-module if
M =

⊕
λ∈k∗ Mλ(k), where

Mλ(k) :=
{

m ∈ M : (∃ i ∈ N)(∀x ∈ k)
(

x − λ(x)1
) i

· m = 0
}
.

We define M to be a weight module, if, in addition,

Mλ(k) = Mλ(k) := {m ∈ M : (∀x ∈ k) x · m = λ(x)m}

for each λ ∈ k∗. The support in k∗ of a module M is the set

supp M :=
{
α ∈ k∗ : Mα(k) 6= {0}

}
.

If k is any Lie algebra and h ⊆ k is a locally nilpotent Lie subalgebra, we say that
k admits a generalized h-root decomposition (resp., an h-root decomposition) if k is a

generalized h-weight module (resp., an h-weight module) with respect to the adjoint
action, and, in addition, h coincides with the maximal locally nilpotent h-submodule
of k, i.e., h = k0(h).

In this paper we denote by g a fixed Lie algebra of the form gl(V,V∗), where V∗ ⊆
V ∗ is a subspace separating the points of V . Typical examples of this situation are as
follows.

(a) V∗ = V ∗. Then gl(V,V∗) is the Lie algebra of finite rank operators on V .
(b) V = K

( J)
= V∗ for a set J . Then gl(V,V∗) ∼= gl( J,K).
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(c) V is a locally convex real or complex vector space and V∗ is the space of con-
tinuous linear functionals. As a consequence of the Hahn-Banach Extension

Theorem, V∗ separates the points of V . Here gl(V,V∗) is the Lie algebra of con-
tinuous finite rank operators on V .

In general, the structure of the Lie algebra gl(V,V∗) depends essentially on the
choice of the subspace V∗. As the following proposition shows, this is not the case

when V and V∗ are of countable dimension.

Proposition 1.1 If V and V∗ are of countable dimension, then gl(V,V∗) ∼= gl∞.

Proof We have to find a basis ( fn)n∈N of V for which the dual basis ( f ∗n )n∈N ⊆ V ∗

spans V∗.

Fix a basis (en)n∈N of V and a basis (ϕn)n∈N of V∗. We first change the enumer-
ation of the basis (ϕn)n∈N by a permutation σ : N → N according to the following
rule. Put Vn := span{e1, . . . , en} for n ∈ N, and let σ1 be the minimal number j with
ϕ j(e1) 6= 0. Inductively we proceed as follows. If σ1, . . . , σk are chosen such that the

restrictions of ϕσ1
, . . . , ϕσk

to Vk are linearly independent, then we choose σk+1 as
the minimal element in N \ {σ1, . . . , σk} for which the restriction of ϕσk+1

to Vk+1 is
linearly independent from the restrictions of ϕσ1

, . . . , ϕσk
. As the sequence (ϕn)n∈N

separates the points of V , the above procedure never stops and defines an injection

σ : N → N. To see that σ is surjective, hence a permutation, we argue by contradic-
tion. Assume that σ is not surjective and pick the minimal element m ∈ N \ σ(N).
Suppose that {1, . . . ,m − 1} ⊆ {σ1, . . . , σk}. Then there exist λ1, . . . , λk such that
the linear functional

ϕ ′
m := ϕm −

k∑

j=1

λ jϕσ j

vanishes on e1, . . . , ek. From the linear independence of the sequence (ϕn)n∈N we

infer that ϕ ′
m is non-zero, so that there exists a minimal N ∈ N with ϕm(eN ) 6= 0.

Then the restrictions ofϕσ1
, . . . , ϕσN−1

, ϕ ′
m to VN are linearly independent, hence the

restrictions of ϕσ1
, . . . , ϕσN−1

ϕm to VN are linearly independent. Thus σN = m, in
contradiction with the choice of m. This proves that σ is a permutation, and hence

that the functionals ϕσk
form a basis of V∗.

Let (V∗)n := span{ϕσ1
, . . . , ϕσn

}. Then (V∗)n|Vn
= V ∗

n , and we can choose induc-
tively a basis ( fn)n∈N for which Vn = span{ f1, . . . , fn} for n ∈ N, and ϕσ j

( fi) = δi j

for i ≥ j. In the next step we alterate the basis (ϕσn
)n∈N of V∗ to a basis (νn)n∈N with

(V∗)n = span{ν1, . . . , νn} and ν j( fi) = δi j for all i, j ∈ N, i.e., (νn)n∈N is the dual
basis to ( fn)n∈N. This proves that the pair V,V∗ is equivalent to the pair K

(N),K
(N)

with the standard pairing.

The next proposition shows that the requirement dimV = dimV∗ does not al-
ways lead to a pairing equivalent to the standard pairing K

( J) ×K
( J) → K for some J.

Proposition 1.2 Let K = R,C, and let V be an infinite-dimensional Hilbert space and

V∗ the space of continuous linear functionals on V . Then there is no (vector space) basis

of V such that the dual basis belongs to V∗.
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Proof We argue by contradiction and assume that ( f j ) j∈ J is a (vector space) basis of
V for which the dual basis belongs to V∗. Let (es)s∈S be an orthonormal Hilbert basis

of V . Each es is a finite linear combination es =
∑

j∈ J a js f j . Let S0 ⊆ S be an infinite

countable subset. Then the set J0 := { j ∈ J : (∃s ∈ S0) a js 6= 0} is also countable.
Furthermore,

H :=
⋂

j∈ J\ J0

ker f ∗j

is a closed subspace of V with ( f j) j∈ J0
as a (vector space) basis. On the other hand,

Baire’s Category Theorem implies that H is not the union of an ascending chain of
finite-dimensional subspaces, hence not of countable dimension. Contradiction.

Any element x ∈ g = gl(V,V∗) is a finite rank operator on V , hence has a Jordan
decomposition x = xs + xn into a semisimple part xs and a nilpotent part xn. As

g is locally finite, the operator ad x is locally finite for any x ∈ g, and has a Jordan
decomposition ad x = (ad x)s +(ad x)n. As ad xs is semisimple and ad xn is nilpotent,
both Jordan decompositions are compatible, i.e., (ad x)s = ad xs, (ad x)n = ad xn.

We call a subalgebra t of a Lie algebra k toral if for every element x ∈ t the operator
ad x : k → k is diagonalizable. In particular, every non-zero element of a toral subal-
gebra of gl(V,V∗) is semisimple (and if K is algebraically closed, a subalgebra is toral
if and only if all its nonzero elements are diagonalizable).

Lemma 1.3 Every toral subalgebra of a Lie algebra is abelian.

Proof Let x, y ∈ t. Since ad x|t is diagonalizable, we can write y as y =
∑

λ yλ with
[x, yλ] = λyλ for λ ∈ K. Then, for any λ, (ad yλ)2(x) = 0, and as ad yλ is also

diagonalizable, [yλ, x] = (ad yλ)(x) = 0. Therefore [y, x] =
∑

λ[yλ, x] = 0.

For any subalgebra a ⊆ g, we denote by zg(a) the centralizer of a in g, by z(a) the
center of a, and by ng(a) the normalizer of a in g.

Lemma 1.4 Let h ⊆ g = gl(V,V∗) be a locally nilpotent subalgebra, and hs = {hs :
h ∈ h} be the set of semisimple Jordan components of elements of h. Then the following

assertions hold:

(1) hs is an abelian Lie algebra;

(2) zg(hs) is a self-normalizing subalgebra of g;

(3) h ⊆ ng(h) ⊆ zg(hs).

Proof (1) For each finite-dimensional nilpotent Lie algebra k the set (ad k)s com-
mutes with ad k, which implies [hs, h] ⊆ z(h). Hence (ad hs)

2(h) = {0}, and the

semisimplicity of the elements of hs leads to [hs, h] = {0}. Therefore, for x, y ∈
h, we have [ys, x] = [ys, xs] = 0. This implies that xs + ys is semisimple and
[xs + ys, xn + yn] = 0. From the finite-dimensional case we derive that xn + yn is
nilpotent, thus x + y = (xs + ys) + (xn + yn) is the Jordan decomposition of x + y.
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Therefore hs is a subspace, hence, in view of the equality [ys, xs] = 0, an abelian Lie
algebra.

(2) If x ∈ g, y ∈ hs and [x, y] 6= 0 then the semisimplicity of y implies[
[x, y], y

]
6= 0. Therefore [x, y] ∈ zg(hs) leads to [x, y] = 0, i.e., to x ∈ zg(hs).

(3) The inclusion h ⊆ ng(h) is tautological, so we only need to establish the
inclusion ng(h) ⊆ zg(hs). Note that the argument in the proof of (1) implies h ⊆
zg(hs). Furthermore, by definition we have the relation [h, x] ∈ h for each x ∈ ng(h).
Since the semisimple part (ad h)s = ad hs of ad h can be obtained by applying a
polynomial without constant term to ad h, we also obtain (ad hs)(x) ∈ h, so the
inclusion h ⊆ zg(hs) leads to (ad hs)

2(x) = 0. As ad hs is semisimple, we obtain

[hs, x] = 0, i.e., ng(h) ⊆ zg(hs).

2 Maximal Toral Subalgebras

Lemma 2.1 An element x ∈ g is ad-diagonalizable if and only if x is diagonalizable as

an operator on V .

Proof Clearly, one can decompose V and V∗ as V = U ⊕W , V∗ = X ⊕Y , where U

and X are finite-dimensional x-invariant subspaces such that X ' U ∗, and x ·W = 0,
x · Y = 0. Therefore we can assume that x ∈ gl(U ,X) ' U ⊗U ∗.

If x is diagonalizable as an operator on V , then ad x is diagonalizable with eigen-

values λi − λ j , where λi are the eigenvalues of x.
Assume now that ad x is diagonalizable and observe that this implies that

ad x|gl(U ,X) is diagonalizable. This implies that x is semisimple.
Let λ1, . . . , λn denote the eigenvalues of x in K. Then λi − λ j are the eigenvalues

of ad x, and λi − λ j ∈ K. We may therefore write λi = λ + µi with µi ∈ K. As the
set of all λi is invariant under the Galois group AutK(K), the affine space generated
by all λi contains a fixed point, i.e., an element of K. On the other hand, this affine
space is contained in λ + K, which gives λ ∈ K. Therefore λ1, . . . , λn ∈ K, i.e., x is

diagonalizable on U , and therefore on V .

In this section we consider a fixed toral subalgebra t ⊆ g = gl(V,V∗). We write
V ′ (resp., V ′

∗, g ′) for the maximal locally finite t-submodule of V (resp., V∗, g). Since

each element x ∈ t is diagonalizable (Lemma 2.1), the action of t on the locally finite
modules V ′ and V ′

∗ is simultaneously diagonalizable, i.e., V ′ and V ′
∗ are weight t-

modules. Let
V ′

=

⊕

α∈supp V

V α and V ′
∗ =

⊕

β∈supp V∗

V β
∗

be the corresponding weight decompositions.

Lemma 2.2

(1) t ·V ⊆ V ′ and t ·V∗ ⊆ V ′
∗.

(2) g ′
= V ′ ⊗V ′

∗.

(3) g ′
= V ′ ⊗ V ′

∗ is an associative subalgebra of g = V ⊗ V∗ and a weight t-module

with respect to the adjoint action.
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Proof (1) For x ∈ t, x ·V is a finite-dimensional subspace of V which is y-invariant
for every y ∈ t as t is abelian. Hence x ·V ⊂ V ′. Similarly x ·V∗ ⊂ V ′

∗.

(2) This is a direct consequence of Proposition A in the Appendix.

(3) V ′ ⊗ V ′
∗ is obviously an associative subalgebra of V ⊗ V∗. Furthermore,

V ′ ⊗V ′
∗ is the tensor product of the weight t-modules V ′ and V ′

∗, and is thus itself a
weight t-module.

In view of Lemma 2.2 (3), the weight decompositions of V ′ and V ′
∗ yield the root

decomposition

g ′
=

⊕

α,β

V α ⊗V β
∗ = zg(t) ⊕

⊕

γ 6=0

gγ , where gγ =

⊕

α+β=γ

V α ⊗V β
∗ .

Furthermore, zg(t) ⊆ g ′ implies

t ⊆ zg(t) = g0
=

⊕

α∈(supp V )∩(− supp V∗)

V α ⊗V−α
∗ .

In the sequel we are mainly interested in the centralizers of maximal toral subalge-
bras. We start by a description of maximal toral subalgebras in terms of their action
on V and V∗.

Proposition 2.3 The subalgebra t is maximal toral if and only if the following condi-

tions are satisfied:

(M1) (supp V ) \ {0} = −(supp V∗) \ {0} and dim V α
= dimV−α

∗ = 1 for any

α ∈ supp V \ {0};

(M2) V 0
∗(V 0) = {0} and (V 0 ⊗V 0

∗) ∩ t = {0};

(M3) t =
⊕

06=α∈supp V V α ⊗V−α
∗ ;

(M4) V 0
∗ =

⋂
06=α∈supp V (V α)⊥ and V 0

=
⋂

06=β∈supp V∗

(V
β
∗ )⊥.

If these conditions are satisfied, then

zg(t) = t ⊕ (V 0 ⊗V 0
∗).

Proof Assume first that t is maximal toral.

(M1) From t ⊆
⊕

α∈(supp V )∩(− supp V∗) V α ⊗V−α
∗ , V

β
∗ (V α) = {0} for β 6= −α,

and t · V α 6= {0} for α 6= 0, it follows that V −α
∗ (V α) 6= {0}. Pick v ∈ V α and

ϕ ∈ V−α
∗ with ϕ(v) = 1. Then v ⊗ ϕ ∈ zg(t) is diagonalizable, hence contained in t

by maximality. Therefore

{0} = [v ⊗ ϕ,V α ⊗V−α
∗ ].

This implies in particular

{0} = [v ⊗ ϕ, (kerϕ ∩V α) ⊗V−α
∗ ] = (kerϕ ∩V α) ⊗ ϕ.
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Thus kerϕ∩V α
= {0}, which yields V α

= Kv for 0 6= α ∈ (supp V )∩ (− supp V∗).
We likewise see that V −α

∗ = Kϕ. In particular, V α ⊗ V−α
∗ ⊆ t. As t · V ′

=⊕
06=α∈supp V V α and t ·V ′

∗ =
⊕

06=β∈supp V∗

V β
∗ , we further see that supp V∗ \ {0} =

− supp V \ {0}.

(M2) Suppose that there exists ϕ ∈ V 0
∗ and v ∈ V 0 with ϕ(v) = 1. As above, we

see that v⊗ϕ ∈ t, contradicting (v⊗ϕ)·v = v and v ∈ V 0. Therefore V 0
∗(V 0) = {0},

which in turn implies that each element in V 0⊗V 0
∗ is nilpotent. Hence t∩(V 0⊗V 0

∗) =

{0}.

(M3) Since t contains all the spaces V α ⊗ V−α
∗ for α 6= 0 and is contained in⊕

α∈supp V V α ⊗V−α
∗ , we obtain

t =
(

t ∩ (V 0 ⊗V 0
∗)

)
⊕

⊕

06=α∈supp V

V α ⊗V−α
∗ .

Now (M3) follows from (M2).

(M4) follows from the equality V 0
=

{
v ∈ V : t · v = {0}

}
as, in view of (M3),

the space
{

v ∈ V : t ·v = {0}
}

coincides with the common annihilator of the spaces
V−α

∗ , α 6= 0. A similar argument applies to V 0
∗.

Conversely, assume that (M1)–(M4) are satisfied. Then dimV α ⊗ V−α
∗ = 1 for

0 6= α ∈ supp V , and V
β
∗ (V α) 6= {0} for β 6= −α imply that t is abelian and

that each element of t is diagonalizable. Therefore t is a toral subalgebra of g =

V ⊗ V∗ (Lemma 2.1). The centralizer of t in g is contained in g ′ and coincides with
t ⊕ (V 0 ⊗ V 0

∗). Now (M2) implies that each element in V 0 ⊗ V 0
∗ is nilpotent, so t is

maximal toral.

Finally,

zg(t) = g0(t) =

⊕

α+β=0

V α ⊗V β
∗ = t ⊕ (V 0 ⊗V 0

∗).

Corollary 2.4 If t is a maximal toral subalgebra, then supp V \ {0} ⊂ t∗ is a linearly

independent set.

Proof The statement follows from the equality t =
⊕

06=α∈supp V V α⊗V−α
∗ and from

the fact that α vanishes on
⊕

δ 6=α∈supp V V δ ⊗V−δ
∗ .

The next proposition shows that for a maximal toral subalgebra t the spaces V α

for α 6= 0 determine the space V 0 (resp., V
β
∗ for β 6= 0 determine V 0

∗).

Proposition 2.5 Let t ⊆ g be a maximal toral subalgebra. Then

V 0
=

⋂

06=α∈supp V

( ⋂

α6=δ∈supp V

(V δ)⊥
)⊥

and V 0
∗ =

⋂

06=β∈supp V∗

( ⋂

β 6=η∈supp V∗

(V η
∗)⊥

)⊥

.
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Proof By Proposition 2.3, V 0
∗ =

⋂
06=α∈supp V (V α)⊥. Fix 0 6= α ∈ supp V and pick

fα ∈ V α and f ∗α ∈ V−α
∗ with f ∗α ( fα) = 1. Consider an element

ϕ ∈
⋂

α6=δ∈supp V

(V δ)⊥.

Then ϕ− ϕ( fα) f ∗α ∈ V 0
∗ leads to ϕ ∈ V 0

∗ + V−α
∗ , and therefore to

V 0
∗ + V−α

∗ =

⋂

α6=δ∈supp V

(V δ)⊥.

As V 0
∗(V 0) = {0}, we have

V 0
=

⋂

06=α∈supp V

(V−α
∗ )⊥ =

⋂

06=α∈supp V

(V 0
∗ + V−α

∗ )⊥ =

⋂

06=α∈supp V

⋂

α6=δ∈supp V

(V δ)⊥.

The second equality is established in a similar way.

3 The Structure of Cartan Subalgebras

Definition 3.1

(a) We define a Cartan subalgebra h ⊆ g = gl(V,V∗) as a locally nilpotent subalge-
bra h with h = zg(hs).

(b) A toral Cartan subalgebra of g is a toral subalgebra t ⊆ g with zg(t) = t.

(c) A generalized splitting Cartan subalgebra of g is a subalgebra h ⊆ g for which
g has a generalized root decomposition g = h ⊕ (

⊕
α∈∆

gα), where ∆ :=
(supp g) \ {0}. The Cartan subalgebra h is splitting if, in addition, g is a weight
h-module.

As all toral subalgebras are abelian by Lemma 1.3, toral Cartan subalgebras are
in particular Cartan subalgebras. For the same reason, toral Cartan subalgebras are

maximal abelian, hence in particular maximal toral subalgebras of g, and are there-
fore covered by Proposition 2.3. Moreover, if h is a generalized splitting Cartan sub-
algebra, then the generalized root spaces are common eigenspaces of (ad h)s = ad hs

corresponding to non-zero eigenfunctionals. This immediately implies that zg(hs) =

g0(h) = g0(hs) = h. Therefore h is a Cartan subalgebra in the sense of Defini-
tion 3.1 (a).

Lemma 3.2 For a maximal toral subalgebra t ⊆ g the following are equivalent:

(1) t is a toral Cartan subalgebra.

(2) V 0
= {0} or V 0

∗ = {0}.

Proof This follows from the equality zg(t) = t ⊕ (V 0 ⊗V 0
∗) (Proposition 2.3).
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Proposition 3.3 For any maximal toral subalgebra t ⊆ g, h := zg(t) is an abelian

self-normalizing subalgebra of g with h = g0(h) = zg(hs), and in particular a Cartan

subalgebra.

Proof By Proposition 2.3,

h = t ⊕ (V 0 ⊗V 0
∗).

Furthermore, the equality V 0
∗(V 0) = {0} implies that V 0 ⊗ V 0

∗ is an abelian Lie
algebra such that (V 0 ⊗ V 0

∗)2
= {0}, and thus h is an abelian subalgebra of g with

hs = t and hn = V 0 ⊗ V 0
∗. Hence h = zg(hs), and Lemma 1.4 implies that h is

self-normalizing. Finally, h ⊆ g0(h) ⊆ g0(t) = zg(t) = h shows that h = g0(h).

The following theorem is our first main result. It implies that if K is algebraically
closed, all Cartan subalgebras of g are centralizers of maximal toral subalgebras, and
hence are as in Proposition 3.3.

Theorem 3.4 (Structure Theorem for Cartan Subalgebras) Let h ⊆ g = gl(V,V∗)
be a Cartan subalgebra for which the abelian subalgebra hs ⊆ g is toral. (The latter is

automatic when K = K.) Then

(1) hs is a maximal toral subalgebra of g with h = zg(hs);

(2) h = hs ⊕ (V 0 ⊗ V 0
∗) =

(⊕
06=α∈supp V V α ⊗ V−α

∗

)
⊕ (V 0 ⊗ V 0

∗), where V ′
=

⊕
α∈supp V V α and V∗ =

⊕
β∈supp V∗

V β
∗ are the hs-module weight decompositions

of V ′ and V ′
∗;

(3) h is abelian;

(4) if h is a generalized splitting Cartan subalgebra, then h is splitting.

Proof (1) Let t ⊇ hs be a toral subalgebra. Then t is abelian (Lemma 1.3) and

therefore t ⊆ zg(hs) = h, i.e., t ⊆ hs.

(2) This follows from (1) and Proposition 2.3.

(3) This is a direct consequence of (1), (2), and the equality V 0
∗(V 0) = {0}

(Proposition 2.3 (M2)).

(4) If g has a generalized h-root decomposition, then g is a locally finite hs-
module. Therefore

g =

⊕

α,β

V α ⊗V β
∗ = V ′ ⊗V ′

∗

by Lemma 2.2, and V ′
= V and V ′

∗ = V∗. Furthermore, V 0
∗(V 0) = {0} and

V 0
∗(V α) = {0} for α 6= 0, i.e., V 0

∗(V ) = {0}. Hence V 0
∗ = {0} (and similarly

V 0
= {0}). This implies that h = hs, i.e., that h is splitting.

In [PS03] a statement similar to Theorem 3.4 (4) is established. Namely the main

result of [PS03] claims that, for K = K, any subalgebra h which yields a generalized
root decomposition of g is a splitting Cartan subalgebra.

Corollary 3.5 Any Cartan subalgebra h ⊆ g is abelian.
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Proof If K = K the statement is proved in Theorem 3.4. Let

g := g ⊗K K = gl(V ⊗K K,V∗ ⊗K K).

Then h := h ⊗K K is a locally nilpotent subalgebra of g and hs = hs ⊗K K, which

directly implies that

zg(hs) = zg(hs) = zg(hs) ⊗K K = h.

Therefore h is a Cartan subalgebra of g. Hence h is abelian by Theorem 3.4, and
consequently h is abelian.

If K is algebraically closed, Theorem 3.4 enables us to give a description of all
Cartan subalgebras of gl(V,V∗) in terms of pure linear algebra.

We define a dual system of one-dimensional subspaces to be a family (V j) j∈ J of one-
dimensional subspaces of V , together with a family of one-dimensional subspaces(

(V j)∗
)

j∈ J
of V∗ such that (Vi)∗(V j) = δi j K.

Lemma 3.6 Let (V j) j∈ J ,
(

(V j)∗
)

j∈ J
be a dual system of one-dimensional subspaces.

Then it is maximal if and only if the spaces V 0
∗ :=

⋂
j(V j)

⊥ ⊆ V∗ and V 0 :=
⋂

j

(
(V j)∗

)⊥
⊆ V satisfy V 0

∗(V 0) = {0}.

Proof If V 0
∗(V 0) 6= {0}, there is an element e ∈ V 0 and an element e∗ ∈ V 0

∗ with
e∗(e) = 1, therefore the dual system (V j) j∈ J ,

(
(V j)∗

)
j∈ J

can be extended by the

pair of one-dimensional spaces Ke, Ke∗. Thus the maximality of the system (V j) j∈ J ,(
(V j)∗

)
j∈ J

implies V 0
∗(V 0) = {0}. Conversely, it is clear that V 0

∗(V 0) 6= {0} if the

dual system is not maximal.

The existence of maximal dual systems of one-dimensional subspaces follows eas-
ily from Zorn’s Lemma. Proposition 2.3, Theorem 3.4, and Lemma 3.6 imply imme-
diately the following proposition.

Proposition 3.7 Let (V j) j∈ J ,
(

(V j)∗
)

j∈ J
be a dual system of one-dimensional sub-

spaces with V 0
∗(V 0) = {0}, or equivalently, a maximal dual system of one-dimensional

subspaces (see Lemma 3.6). Then t :=
⊕

j∈ J V j ⊗ (V j)∗ ⊆ g is a maximal toral sub-

algebra and h := zg(t) is a Cartan subalgebra of gl(V,V∗). If K = K, every Cartan

subalgebra of g is obtained by this construction.

Theorem 3.4 and Proposition 3.7 imply that, there are the following (mutually

exclusive) alternatives for a Cartan subalgebra h ⊆ g with toral hs:

(I) h 6= hs;
(II) h = hs is toral but not splitting;
(III) h = hs is splitting.
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Clearly not all cases will always occur, as for instance case (III) implies that the
dimensions of V and V∗ coincide, while for an infinite-dimensional V they a priori

need not coincide. Moreover, Proposition 1.2 shows that, when dimV is uncount-
able, equality of the dimensions of V and V∗ is not sufficient for the occurence of
case (III). The next three propositions describe precisely which cases among (I)–(III)
occur in the following situations: when V = V∗ = K

( J) for an infinite set J, when V is

a Hilbert space (here K = R,C) and V∗ is the space of continuous linear functionals
on V , and when V is an arbitrary infinite-dimensional vector space and V∗ = V ∗.

Proposition 3.8 Let J be an infinite set. Then in g = gl( J,K) all three types (I)–

(III) of Cartan subalgebras, and, moreover, all dimensions of the spaces V 0 ⊆ V and

V 0
∗ ⊆ V∗ do occur.

Proof Here V = K
( J)

= V∗. Write J as a disjoint union J = J0 t J1 and assume that
η : J0 → J1 is a surjection such that the inverse image of every element in J1 is infinite.
Fix a decomposition into two disjoint subsets J1 = J+

1 t J−1 and put J±0 := η−1( J±1 ).
If (e j) j∈ J denotes the canonical basis of V , set

V j :=

{
K(e j + eη( j)), j ∈ J+

0

Ke j , j ∈ J−0

and

(V j)∗ :=

{
Ke j , j ∈ J+

0

K(e j + eη( j)), j ∈ J−0 .

The families (V j) j∈ J0
, and

(
(V∗) j

)
j∈ J0

, satisfy (Vi)∗(V j) = δi j K for i, j ∈ J0 and

thus form a dual system of one-dimensional subspaces. Furthermore, if α ∈ V∗

vanishes on all V j , then α(e j) = −α(eη( j)) holds for each j ∈ J+
0 . For i := η( j) we

then have α(ei) = α(e j) for infinitely many indices j with η( j) = i. This implies that
α(ei) = 0 for i ∈ J+

1 , and likewise α(e j) = 0 for j ∈ J+
0 . We also have α(e j) = 0 for

j ∈ J−0 , and therefore

V 0
∗ =

⋂

j

(V j)
⊥

= span{e j : j ∈ J−1 } ∼= K
J−1 .

In a similar way we obtain

V 0
=

⋂

j

(
(V j)∗

)⊥
= span{e j : j ∈ J+

1 }
∼= K

J+
1 .

In particular, V 0
∗(V 0) = 0, i.e., the dual system (V j) j∈ J0

,
(

(V∗) j

)
j∈ J0

is maximal.

Consequently, for any infinite countable set J the spaces V 0 and V 0
∗ can have arbitrary

prescribed dimensions less or equal | J|.

Proposition 3.9 Let K = R,C, let V be an infinite-dimensional Hilbert space, and

let V∗ be the space of continuous linear functionals on V . Then any Cartan subalgebra

h ⊆ g = gl(V,V∗) with toral hs has type (I) or (II), and both cases are possible.
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Proof Proposition 1.2 implies that case (III) does not occur. To construct a Cartan
subalgebra of type (II), fix an orthonormal Hilbert basis (e j) j∈ J of V . Set V j := Ke j ,

and (V j)∗ := Ke∗j , where v∗(x) := 〈x, v〉 is the linear functional corresponding to

v ∈ V . Then (V j) j∈ J ,
(

(V j)∗
)

j∈ J
is a dual system of one-dimensional subspaces

with V 0
= {0} = V 0

∗, and it defines a Cartan subalgebra of gl(V,V∗) of type (II).

A Cartan subalgebra of type (I) can be constructed as follows. Here we assume that

J = N and set fn := e∗1 + e∗n+1 − 2e∗n+2 for n ∈ N. Let Vn := Ken+1 and (Vn)∗ := K fn.
Then V 0

∗ = Ke∗1 and

V 0
=

⋂

n∈N

ker fn = K

∑

n≥2

2−nen ⊆ (V 0
∗)⊥.

Hence the maximal dual system of one-dimensional spaces (Vn)n∈N,
(

(Vn)∗
)

n∈N
de-

fines a Cartan subalgebra of gl(V,V∗) of type (I).

Proposition 3.10 Let V be an infinite-dimensional vector space and V∗ = V ∗. Then

any Cartan subalgebra h ⊆ g = gl(V,V∗) with toral hs has type (II).

Proof The occurence of type (III) implies equality of the dimensions of V and V∗,
which is not the case when V∗ = V ∗. It remains to show that a Cartan subalgebra
cannot have type (I). Assume to the contrary that, for some J, (V j) j∈ J ,

(
(V j)∗

)
j∈ J

form a maximal dual system of one-dimensional spaces for which V 0 6= {0}, V 0
∗ 6=

{0}. Fix 0 6= e ∈ V 0. Then, since V ∗
= V∗, there is a linear functional e∗ ∈ V 0

∗ with
e∗(e) = 0. Consequently V 0

∗(V 0) 6= {0}, which is a contradiction.

We complete this section by addressing the problem of conjugacy for maximal
toral subalgebras and thus also for Cartan subalgebras. In general this problem is
open.

Proposition 3.11 All splitting Cartan subalgebras of g = gl(V,V∗) are conjugate un-

der the group GL(V,V∗) := {g ∈ GL(V ) : g∗ · V∗ = V∗}. Any two GL(V,V∗)-

conjugate maximal toral subalgebras have equal respective dimensions of the subspaces

V 0 and V 0
∗, but equality of those dimensions is not sufficient for GL(V,V∗)-conjugacy.

Proof If h is a splitting Cartan subalgebra, Proposition 2.3 implies that there is a basis
(vα)α∈A of V and a dual basis (v∗α)α∈A in V∗ such that

h =

⊕

α∈A

(Kvα ⊗ Kv∗α).

In other words, h is the set of all elements of g which are represented by diagonal
matrices with respect to the basis (vα)α∈A. This implies immediately the conjugacy
of all splitting Cartan subalgebras of V ⊗V∗ under GL(V,V∗) (cf. [NS01] for the case
gl( J,K)).
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It is clear that, if two maximal toral subalgebras are GL(V,V∗)-conjugate, their
respective dimensions of the spaces V 0, V ′, V 0

∗ and V ′
∗ coincide. The following ex-

ample shows that equality of just the respective dimensions of V 0 and V 0
∗ does not

imply equality of the respective dimensions of V ′ and V ′
∗, and is thus not sufficient

for GL(V,V∗)-conjugacy.

Set V = V∗ := K
(N). Fix an injective map η : N → N with η(n) > n for each

n ∈ N, and let S : V → V , en 7→ eη(n) be the corresponding shift operator (where
(en)n∈N is the standard basis of K

(N)). Then the endomorphism A := 1−S ∈ End(V )

is injective because S has no eigenvectors in V , and is obviously not surjective as en /∈
A(V ) for any n. Furthermore, the matrix A> := 1−S>, considered as an operator on
V∗, is locally unipotent with inverse given by

∑
n∈N0

(S>)n, and consequently A∗|V∗

is an automorphism of V∗.

As A is injective, the one-dimensional subspaces Vn := A(Ken) satisfy the condi-
tions of Proposition 3.7 with (Vn)∗ := A∗|V∗(Ken) and

V 0
=

⋂

n∈N

(V ∗
n )⊥ = V⊥

∗ = {0} and V 0
∗ =

⋂
V⊥

n = ker A∗|V∗
= {0}.

Since A is not surjective, V ′
= span{Vn : n ∈ N} 6= V . Therefore the toral subalge-

bra h is not splitting and is not conjugate to any splitting Cartan subalgebra.

4 Alternative Characterizations of Cartan Subalgebras

In this and in the section we consider g = gl(V,V∗) for an arbitrary subspace V∗ ⊆
V ∗ separating the points of V .

The following theorem is our second main result.

Theorem 4.1 A subalgebra h ⊆ g is a Cartan subalgebra if and only if it satisfies one

of the following two equivalent conditions:

(C1 ′) h is a locally nilpotent self-normalizing subalgebra whose adjoint module is lo-

cally finite;

(C2 ′) h coincides with the maximal locally nilpotent h-submodule of g and the adjoint

module of h is locally finite.

First we observe that conditions (C1 ′), (C2 ′) and (C3) are satisfied for a subalge-

bra h ⊆ g if and only if they are satisfied for the subalgebra h ⊆ g, where k = k ⊗K K.
Therefore, without restricting generality, we will assume throughout this section that
K is algebraically closed.

The fact that (C1 ′) and (C2 ′) are satisfied for a Cartan subalgebra follows im-
mediately from Proposition 3.3 and Theorem 3.4. The following Lemma 4.2 and
Proposition 4.4 imply that any subalgebra h satisfying (C1 ′) or (C2 ′) is a Cartan sub-

algebra. Note that, since K = K, the subalgebra hs ⊆ h of any subalgebra h satisfying
(C1 ′) or (C2’) is toral.

Lemma 4.2 The conditions (C1 ′) and (C2 ′) are equivalent.
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Proof Assume that (C1 ′) is satisfied. Consider the maximal locally nilpotent h-
submodule g0(h) ⊆ g. Since the adjoint representation of h is locally finite, we have

h ⊆ g0(h). Indeed, otherwise for some h ∈ h the finite-dimensional submodule
U (h) · h would have an h-eigenvector of non-zero eigenvalue, which would contra-
dict the local nilpotence of h. To prove that h = g0(h), assume to the contrary that
h ∈ g0(h) is such that hn · h ∈ h for a minimal n > 0. Then hn−1 · h ∈ ng(h) = h,

contradicting the minimality of n. This shows that h = g0(h), i.e., that (C1 ′) implies
(C2 ′).

Conversely, let (C2 ′) be satisfied. Since h · ng(h) ⊆ h and h is a locally nilpotent
h-module, ng(h) is also a locally nilpotent h-module. Therefore ng(h) ⊆ g0(h). Since

g0(h) = h, this gives ng(h) ⊆ h, i.e., ng(h) = h.

Lemma 4.3 Condition (C2 ′) implies V 0
∗(V 0) = {0}, where V 0 := V 0(hs), V 0

∗ :=
V 0

∗(hs).

Proof By Proposition A in the Appendix, g ′
= V ′ ⊗ V ′

∗, where the superscript ′

indicates maximal locally finite hs-submodule. Furthermore, the assumption that

the adjoint action of h on h is locally finite implies h ⊆ g ′. Hence the generalized
weight hs-module decomposition of V ′ and V ′

∗ and the equality h = g0(h) yield

h =

⊕

α∈supp V

(V α ⊗V−α) = hs ⊕ (V 0 ⊗V 0
∗).

The local nilpotence of h implies now V 0
∗(V 0) = {0}.

Proposition 4.4 Condition (C2 ′) implies that h is a Cartan subalgebra.

Proof The equality h = g0(h) implies that h is locally nilpotent. Therefore
Lemma 1.4 yields the inclusion h ⊆ zg(hs). It remains to establish the opposite inclu-

sion zg(hs) ⊆ h.

For h ∈ hs put U := h · V and Ṽ := {v ∈ V : h · v = 0}. Then U is a finite-
dimensional space and V = U ⊕ Ṽ , V∗ = Ṽ⊥ ⊕ Ṽ∗, where Ṽ∗ := {v∗ ∈ V∗ :
h · v∗ = 0} and Ṽ⊥ ' U∗. As h ⊆ zg(hs), h preserves the four spaces U , Ṽ , Ṽ∗, and

Ṽ⊥. Therefore the projection

pU : g = V ⊗V∗ → U ⊗ Ṽ⊥ ∼= gl(U , Ṽ⊥)

with kernel V ⊗ Ṽ∗ + Ṽ ⊗V∗ is h-equivariant. This gives

pU (h) = pU

(
g0(h)

)
= gl(U , Ṽ⊥)0(h) = h ∩ gl(U , Ṽ⊥) =: hU .

The centralizer of h in g = V ⊗ V∗, and therefore the subalgebra h, is contained in
U ⊗ Ṽ⊥ + Ṽ ⊗ Ṽ∗, thus

h = hU + (h ∩ ker pU ) = hU + h ∩ gl(Ṽ , Ṽ∗).
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As gl(Ṽ , Ṽ∗) commutes with gl(U , Ṽ⊥), we conclude that

gl(U , Ṽ⊥)0(hU ) = gl(U , Ṽ⊥)0(h) = hU ,

and hence that hU is a Cartan subalgebra of gl(U , Ṽ⊥) ∼= gl(U ). As gl(U ) is reduc-
tive, we have hU ⊆ hs and hn ·U = {0}.

By considering hU ⊆ gl(U , Ṽ⊥), we now see that the weight spaces of hs in V

and V∗ with non-zero weights are one-dimensional. From the preceding argument

we further conclude that hn ◦ hs = {0} in End V , which, in view of [hs, hn] = {0},
implies hn ·V ⊆ V 0. By Proposition A in the Appendix,

g ′
= (V ⊗V∗) ′ = V ′ ⊗V ′

∗ =

⊕

α,β

V α ⊗V β
∗ .

In particular h ⊆ zg(hs) ⊆ g ′, and therefore

h ⊆
⊕

α

V α ⊗V−α
∗ .

For 0 6= α we have seen above that dim V α
= dimV−α

∗ = 1, so that

⊕

α6=0

V α ⊗V−α
∗ ⊆ hs,

because hs · V α 6= {0} implies V −α
∗ (V α) 6= {0}. If A ∈ hs ∩ (V 0 ⊗ V 0

∗), then A

annihilates all weight spaces V α with α 6= 0, and it also annihilates V 0. Therefore

A · V ⊆ V ′ leads to A2
= {0}, and hence to A = 0 as hs consists of semisimple

elements (Lemma 2.1). This proves

hs =

⊕

α6=0

V α ⊗V−α
∗ ,

which in turn yields

V 0
=

⋂

06=α

(V−α
∗ )⊥ and V 0

∗ =

⋂

06=α

(V α)⊥.

Since V 0
∗(V 0) = {0} by Lemma 4.3, Proposition 2.3 implies that hs is maximal

toral and zg(hs) = hs ⊗ (V 0 ⊗V 0
∗) is abelian. Therefore

V 0 ⊗V 0
∗ ⊆ zg(h) ⊆ g0(h) = h,

in particular zg(hs) ⊆ h.

It is an interesting open problem whether conditions (C1), (C2) and (C3) are
equivalent for gl(V,V∗). Our results reduce the problem to the question of existence
for subalgebras of gl(V,V∗) satisfying (C1) or (C2) and such that their adjoint repre-
sentation is not locally finite.
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5 The Structure of g ′

In this section t is a fixed maximal toral subalgebra of g = gl(V,V∗), h := zg(t) =

t ⊕ (V 0 ⊗V 0
∗), and the superscript ′ indicates maximal locally finite t-submodule.

Lemma 5.1 The subalgebra h ⊆ g ′ is a maximal toral Cartan subalgebra of g ′ with

z(g ′) = V 0 ⊗ V 0
∗. Furthermore, the decomposition g ′

= h ⊕ (
⊕

α∈∆
gα) is a root

decomposition of g ′ with respect to h.

Proof The fact that the decomposition g ′
= h ⊕ (

⊕
α∈∆

gα) is an h-root decompo-
sition is clear from the very definition of this decomposition and from the equality
h = g0(h) (Proposition 3.3).

The equality

[V 0 ⊗V 0
∗,V

α ⊗V β
∗ ] = {0}

for all α, β (Proposition 2.3) implies that V 0 ⊗V 0
∗ ⊆ z(g ′). Conversely, the inclusion

z(g ′) ⊆ zg(t) = h implies easily that z(g ′) is not larger than V 0 ⊗ V 0
∗. Furthermore,

the equality h = t + z(g ′) shows that the adjoint action on g ′ of every element x ∈ h

is diagonalizable, i.e., that h is a toral Cartan subalgebra of g ′. The maximality of g is
an immediate corollary of the equality h = g0(h).

As a consequence of Lemma 5.1, the following theorem [St99, Th. I.4] applies to
the pair (g ′, h). If k is a locally finite Lie algebra which admits a root decomposition
with respect to some subalgebra hk, we call a root α integrable if the subalgebra of k

generated by the root spaces k±α is isomorphic to sl2(K).

Theorem 5.2 (Levi Decomposition of Locally Finite Split Lie Algebras) Let k be a

locally finite Lie algebra with root decomposition k = hk ⊕ (
⊕

α∈∆(k) kα) with respect to

a toral Cartan subalgebra hk. Denote the set of integrable root by ∆i(k) ⊆ ∆(k).

(1) The subspace s = span ∆̌i(k) +
⊕

α∈∆i (k) kα is a semisimple subalgebra of k.

(2) Let ∆n(k) := ∆(k) \ ∆i(k). The subspace r := zhk
(s) +

⊕
α∈∆n(k) kα is the unique

maximal locally solvable ideal of k, and u := z(k) +
⊕

α∈∆n(k) kα is the unique

maximal locally nilpotent ideal of k.

(3) If a is a vector space complement to the subspace z(k) + span ∆̌i(k) in hk, we have

k ∼= u o (s o a), where the Lie algebra l := s o a is almost reductive, i.e., has a

semisimple commutator algebra.

Lemma 5.3 The subspaces V ′ ⊗V 0
∗ and V 0 ⊗V ′

∗ are abelian ideals of g ′ with

[V ′ ⊗V 0
∗,V

0 ⊗V ′
∗] = V 0 ⊗V 0

∗ = z(g ′).

Proof The statement follows from the equalities

[V ′ ⊗V ′
∗,V

0 ⊗V ′
∗] = (V 0 ⊗V ′

∗) · (V ′ ⊗V ′
∗) = V 0 ⊗V ′

∗,

[V ′ ⊗V ′
∗,V

′ ⊗V 0
∗] = (V ′ ⊗V ′

∗) · (V ′ ⊗V 0
∗) = V ′ ⊗V 0

∗
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and
[V 0 ⊗V ′

∗,V
0 ⊗V ′

∗] = {0} = [V ′ ⊗V 0
∗,V

′ ⊗V 0
∗],

which in turn follow from the equality V 0
∗(V 0) = {0}.

Proposition 5.4 If 0 6= α, δ ∈ supp V , then the functionalα−δ ∈ h∗ is an integrable

root of g ′ with

g ′
α−δ = V α ⊗V−δ

∗ .

If V 0
∗ 6= {0}, then a functional 0 6= α ∈ supp V is a non-integrable root with

g ′
α = V α ⊗V ′

∗,

and if V 0 6= {0}, a functional 0 6= −α ∈ supp V∗ is a non-integrable root with

g ′
−α = V 0 ⊗V−α

∗ .

The space

u := V ′ ⊗V 0
∗ + V 0 ⊗V∗ =

⊕

06=α∈supp V

(V 0 ⊗V−α
∗ + V α ⊗V 0

∗)

is the maximal locally nilpotent ideal of g ′.

Proof For 0 6= α, δ ∈ supp V we have a root α− δ ∈ ∆ with g ′
α−δ ⊇ V α ⊗V−δ

∗ .
Let 0 6= fα ∈ V α, α 6= 0. Define f ∗α ∈ V−α

∗ by f ∗α ( fα) = 1. Then

hα,δ := [ fα ⊗ f ∗δ , fδ ⊗ f ∗α ] = fα ⊗ f ∗α − fδ ⊗ f ∗δ

satisfies α(hα,δ) = 1 and δ(hα,δ) = −1. Therefore the roots α − δ are integrable,
which implies in particular that g ′

α−δ is one-dimensional, so that g ′
α−δ = V α ⊗V δ .

Furthermore, Lemma 5.3 implies that the root spaces g ′
α = V α⊗V 0

∗ +V 0 ⊗V−α
∗ ,

for 0 6= α ∈ supp V , are contained in the maximal locally nilpotent ideal of g ′.

The remaining assertions are direct consequences of Theorem 5.2.

The following theorem is a direct corollary of Theorem 5.2 via the information
provided by Lemma 5.3 and Proposition 5.4.

Theorem 5.5 (Structure Theorem for g ′) The Lie algebra g ′ is isomorphic to the

semidirect product u o l, where

u := V 0 ⊗V ′
∗ + V ′ ⊗V 0

∗

is the Lie algebra with bracket

[(v ⊗ ϕ), (y ⊗ ψ)] = ϕ(y) · v ⊗ v∗,

and l ∼= W ′ ⊗W∗ = gl(W,W∗) for W := t ·V and W∗ := t ·V∗.
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Appendix. A Useful General Proposition

The following proposition was communicated to us by I. Dimitrov and G. Zucker-

man and is a generalized version of a proposition which we had proved in a prelimi-
nary version of the paper.

Let U and W be vector spaces. To any element x ∈ U ⊗ W we assign a subspace

Ux ⊂ U in the following way. Write x as
∑

j u j ⊗ w j with linearly independent

w j ∈ W , and set Ux := span{ui}. In a similar way we assign to x a subspace Wx ⊂ W .
To check that Ux (and similarly Wx) does not depend on the presentation of x as∑

j u j ⊗ w j , it suffices to identify Ux with the image of the linear operator ψ(x) ∈
Hom(W ∗,U ), where ψ is the canonical inclusion

U ⊗W ↪→ Hom(W ∗,U ), ψ(u ⊗ w)(α) := α(w)u.

This is a straightforward checking which we omit.

It is clear that dim Ux <∞. Note also that for any subspace Y ⊂ U we have

Y ⊗W = {x ∈ U ⊗W : Ux ⊂ Y},

and similarly for any z ∈ W ,

U ⊗ Z = {x ∈ U ⊗W : Wx ⊂ Z}.

Now let k be a Lie algebra. For any k-module Q, we denote by Q ′ the maximal

locally finite k-submodule of Q.

Proposition A For any k-modules M and N, we have

M ′ ⊗ N ′
= (M ⊗ N) ′.

Proof The inclusion M ′ ⊗ N ′ ⊂ (M ⊗ N) ′ is obvious.

Fix 0 6= x ∈ (M ⊗ N) ′ and a basis x1, . . . , xn of U (k) · x with x1 = x. Set
Y := Mx1

+ · · · + Mxn
and Z := Nx1

+ · · · + Nxn
. Since x ∈ Mx ⊗ Nx ⊂ Y ⊗ Z, it

suffices to prove that Y ⊂ M ′ and Z ⊂ N ′. We will show that Z ⊂ N ′ (the argument

for Y is completely similar), which will follows from U (k) · Z ⊂ Z. For this it is
enough to verify that k · Nxi

⊂ Z for any i and any k ∈ k.

Fix k and i and write xi as
∑

j m j ⊗ n j with linearly independent m j ∈ M. Then

k·xi =
∑

j k·m j⊗n j +
∑

j m j⊗k·n j . Since k·xi ∈ Y ⊗Z and
∑

j k·m j⊗n j ∈ M⊗Z,

we have
∑

j m j ⊗ k · n j ∈ M ⊗ Z. Therefore N∑
j m j⊗k·n j

⊂ Z, i.e., k · n j ∈ Z. As the

n j generate Nxi
, this implies k · Nxi

∈ Z.
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