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1. Preliminaries

Let Q be the set of the analytic functions F(z), regular in some neigh-
bourhood of the origin with the expansion

(1.1) F(z) = ,+/,*•+/,*•+ • • -.

There may exist a function F(s, z) analytic in s and satisfying the following
conditions (s and s' are any complex numbers):

(1.2)

(1.3)

(1.4)

F(l, z) = F(z),

F(s, z) e Q,

F[s,F(s',z)] =

(1.5) F(s,z)=£jk(s)z* for \z\< p,, P, > 0,

and the fk(s) are polynomials in s.
If F(s, z) exists, it will be called the analytic iterate of F(z). (The

necessity and independence of these four conditions are discussed in [4]).
It is easily seen that F(z) = 2/(1— z) possesses the analytic iterate

F(s, z) — zj(l-sz). Functions which possess an analytic iterate will be
called functions of type A. Functions for which (1.5) does not hold for
every s, will be called functions of type B. In [2] I. N. Baker shows that for
type B the set S of points s for which (1.5) converges in some neighbourhood
of z = 0 is a discreet lattice (one- or two-dimensional). In [7] G.Szekeres
shows that the class of entire functions of Q belongs to B, also the class of
rational functions of Q unless F(z) = zj(l-az). Baker [3] extends the
B-property to the class of meromorphic functions.

It is the purpose of this paper to prove the B-property for a certain
function using much more elementary considerations. The function e*—1
has been chosen to illustrate the method used. (By essentially the same
method the functions z-\-zz and z/(l— z)2 had been dealt with.)
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2. Jabotinsky's JL-functions

Let F(z) eA. It then has an analytic iterate F(s,z). Define L(z) by

iW _"£-•>
It is shown in [5] that the expansion of L(z) is of the form

(2.2) L(z) =2lkz
k+l, for \z\ < PL, PL>0,

and that L(z) satisfies the functional equation

(2.3) L{F(z)] = F'(z)L(z),

which may however have other solutions that are not L-functions of the
function F. Clearly equation (2.3) has the particular solution:

(2.4) L{z) = 0,

whatever the given function F. The only function of Q for which L (z) = 0,
is F(z) — z.

It is shown in [5] that the sequences /„ in (1.1) and /„ in (2.2) determine
each other uniquely (though the series in (2.2) corresponding to a given func-
tion F may converge only for z = 0). To show that F of Q belongs to B it is
thus sufficient to show that the series (2.2) corresponding to this F converges
only for z == 0.

3. F(z) = e*-l

Put ez— 1 = ex+i" — 1 = u-\-iv{x, y, u, v real), so that:

(3.1) u = e*cosy— 1; v = ex siny,

and

(3.2) u*+v2 = e2*—2e* cos y+l.

It is easily seen that for 0 < \y\ < nj2:

(3.3) 2 ( 1 ~ C ° s y ) > y\
cosy

and for y ^ 0:
(3.4) 2(1-cosy) <y\

LEMMA 3.1. The function ez—l maps each point of the right half-strip
Rez > 0, —n < I m z g ^ either into the left half-plane {including the
imaginary axis) or else farther away from the origin.
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PROOF. If « ^ 0, there is nothing to prove. If

(3.5) u = e" cos y— 1 > 0,

then

(3.6) cos y > 0 and \y\ < ^ .
2

For a; > 0:

(3.7) e*- l > x,

or, by squaring and subtracting 2e* cos y from both sides:

(3.8) e**-2e? cos y+1 > a;2+2«*(l— cos y),

But (3.5) implies:

(3.9) ex> ,
cosy

so that by (3.2), (3.8) and (3.9):

+ + +y\
cosy

the right inequality following from (3.3) and (3.6). This proves the lemma.

LEMMA 3.2. The function e"—l maps all the points of the left half-strip
Re z jS 0, — n <Imz ^n nearer to the origin.

PROOF. For x = 0 this follows directly from (3.2) and (3.4). For
x < 0:

(3.10) e* < 1,

and also (since (3.7) holds generally for x ^ 0)

(3.11) |e»-l | < \x\,

or

(3.12) e**+l < x*+2e*.

By squaring and subtracting as before we obtain M2+I>* < a;2+j/2.
We now show the divergence of the L(z) series. Equation (2.3) becomes

in this case

(3.13) He'—l) =ezL{z).

It is sufficient to prove that this functional equation has no solution of the
form (2.2) with a positive radius of convergence p, and which is not identi-
cally zero.
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It is obviously sufficient to consider the singular points of L (z) in the
strip —7i < Im z ^ n since L(z) is periodic with period 2ni, if it is defined
in a large enough region.

A. First suppose that p is finite, e'—l maps the left half of the strip
onto the circle | z+l | < 1. If /> > 0 let f be a singular point of L(z) on the
circle of convergence. If £ belongs to the left half-strip or is purely imaginary,
then w for which w = ec—1 is also a singular point and is nearer to the
origin than f by lemma 3.2 which is a contradiction.

If f is a point of the right half-strip, then to for which eu— 1 = f is also
a singular point. If f belongs to the right half-strip, then, bylemma3.1,so
does <w and also |<w| < |f|. Again there is a singular point inside the circle of
convergence — a contradiction.

B. Suppose now that L (z) is an entire function. It is then periodic and
cannot therefore be a polynomial.

Equation (3.13) can be written in the form

(3.14) L(z) = (l+z)I[log (1+z)].

This implies that for all large enough r the function M(r) = maxw=r|L(z)|
satisfies

(3.15) M(r) < 2rM(2 log r),

and putting, V(e') = log M(r), r = e', the increasing function V of s
satisfies F(4s) < V{e') < F(2s)+s+log2. Hence (F(4s)-F(2s))/2s < 1 for
all large s and thus it easily follows that V(s) < s-\-K for some constant.
Hence F(e') < Zs+K so that

(3.16) M(r) < eKr3,

which implies L(z) to be a constant C which can only be zero because of
(3.13). But L(z) — 0 corresponds only to F(z) = z so that our proof is
complete.
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