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ABSTRACT

In this paper, we construct a generalization of the Kohnen plus space for Hilbert
modular forms of half-integral weight. The Kohnen plus space can be characterized
by the eigenspace of a certain Hecke operator. It can be also characterized by the
behavior of the Fourier coefficients. For example, in the parallel weight case, a modular
form of weight x + (1/2) with {th Fourier coefficient ¢(€) belongs to the Kohnen plus
space if and only if ¢(§) =0 unless (—1)" ¢ is congruent to a square modulo 4. The
Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a
generalization of the Kohnen—Zagier formula.

Introduction

This is the first part of a series of papers in which we generalize the theory of the Kohnen plus
spaces to Hilbert modular forms of half-integral weight.

Let us recall the theory of the Kohnen plus space for modular forms of one variable. The
automorphy factor j/2(y, z) for v € Tg(4) and z € b is given by

327, 2) =€d1<2>(02+d)1/2, v = (CCL Z) €To(4), z€h

where (c/d) is Shimura’s quadratic reciprocity symbol [Shi73] and g4 is 1 or y/—1 according as
d=1mod 4 or d =3 mod 4. Let S, (1/2)(T'0(4)) be the space of cusp forms with respect to the
automorphy factor j5+(1/2)(~, 2) = (j1/2(y, 2))?**1. The operators U and W on Set1/2)(Lo(4))
are defined by

Uh(2) :i 3 h<Z1i>,

i mod 4

Wh(z) = (2z/ﬁ)—ﬁ—<l/2>h(_jz).
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The Kohnen plus space S:+(1/2) (Fo(4)) C Skt1/2)(To(4)) consists of all h(z) € Sk 1/2)(LFo(4))
with Fourier expansion of the form

h(T) = E c¢(N)e(Nz).
N>0
(—1)"N=0,1(4)

Then Kohnen [Koh80] proved the following theorems.
THEOREM 1 (Kohnen). The space S:+(1/2)(F0(4)) is equal to the eigenspace of WU with
eigenvalue 2% (—1)r(++1)/2,

THEOREM 2 (Kohnen). As a Hecke module, S:+(1/2)(F0(4)) is isomorphic to S (SL2(Z)).

Let h(z) =321y n=0,1(2) c(N)e(Nz) € S:+(1/2) (T'0(4)) be a Hecke eigenform. By Theorem 2,
one can associate a normalized Hecke eigenform f(z) =3 y.qa(N)e(Nz) € Sa2x(SL2(Z)). For
each N > 0 such that (—1)" N =0, 1 (4), there exists a fundamental discriminant D and a natural

number ¢ such that (—1)*N = Dt2. Then it is known that h(z) satisfies the following formula:
c(N)=¢(|D]) Y u(d)Xp(d)d™ " a(t/d). (0.1)
djt

Here, X p is the Dirichlet character corresponding to Q(v/D)/Q. This formula can be rewritten
as follows. Let {ayp, o'} be the Satake parameter of f(z) for a prime p. We define a Laurent
polynomial W,(N, X) € C[X, X~ !] by

Xe+1 o X—e—l _p71/2>2 (p)Xe — X~
X - X1 PV X =X

where e = ord,(N). Then (0.1) is equivalent to the following formula:

e(N) = e(| D)0/ T] (N, ). (0.2)

U,(N,X) =

Kohnen and Zagier [KZ81] proved a beautiful formula

2 ~
DD _ | pye-t1/2 Al £ 50) 03)
(h, h) (f, )
where A(s, f, xp) is the complete L-function
o0
Ak, £, %) =227) () 3 a(N)Xp(N)N .
N=1
Representation-theoretic interpretation of the Kohnen plus space was treated by several authors:
Baruch and Mao [BMO07], Ichino [Ich05], and Loke and Savin [LS10].
In this series of papers, we are going to generalize these results to Hilbert modular forms.
Let F be a totally real number field with the integer ring or. The different of F//Q is denoted
by 0. We define a congruence subgroup I' by

F:F[0}1,4DF] _{<Ccl Z) € SLa(F) CL,dEOF,bED}:l,CEﬁlDF}.
Let ¢1,...,t, be the embeddings of F' into R. For £ € F and z=(z1,...,2,) €bh", we set

e(§z) = exp(2myv/—1 > 1 ti(§)z). The basic theta function 6y(z) is defined by
Oo(z) =) e(¢%2).

{€op
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Then there is an automorphy factor j'/2(v, z) such that

B0(1(2)) = 5"%(7, 2)00(2) (v €T, z€h™).

For simplicity, we consider only parallel weight case here. The more general case will be treated
in the text. Let x>2 be an integer. Set j*t(1/2) (v, z) = (j¥/2(v, 2))**1. Let S, y(1/9)(T) be
the space of Hilbert cusp forms of weight x4+ (1/2) with respect to the automorphy factor
35 1/2)(~, 2). Then an element h(z) € Si+(1/2)(I') has a Fourier expansion of the form

h(z)=)_ c(€)e(£).

5€0F

+
Kk+(1/2
all h(2) € Syq(1/2)(I') with Fourier coefficient of the form

hz)= > c&eléa).
(1o

We define the Kohnen plus space S )(F ) by the subspace of S, (1/2)(I") which consists of

Here ¢ = O (4) means that there exists z € op such that £ = 22 mod 4.
Let A be the adele ring of F' and ¢ : A/F — C* an additive character, whose component at
each real place is given by x — e((—1)"z). Let v be a non-Archimedean place of F'. We consider

the Weil representation wy, of SLa(F,), where SLa(F),) is the metaplectic double covering of
SLy(F,). The representation space of wy, is the Schwartz space 8(F,). The Weil representation
Wy, 1S unitary with respect to the inner product

wwﬂaﬁmwmmﬁ<@wﬁ&ﬂ»

Here, the Haar measure dt is normalized so that the volume of the maximal order o, of F, is 1.
Let T', be the compact open subgroup of SLy(F,) given by

T, = { (‘é 2) € SLy(F,)

—_—

The inverse image of T', in SLo(F,) is denoted by T,. There exists a genuine character
€y : 'y — C* such that

a,d € oy, beb;lov,cezmpov}.

w¢(9)¢0,v - 5v(g)71¢0,v7
where ¢g, € 8(F,) is the characteristic function of o0,. The Hecke algebra ﬁv =
H(C,\SLa(F,)/Ty; ) consists of all compactly supported functions f on SLy(F,) such that

f(k1hka) = ey (k1)ey(ka) f(h) for any ki, k1 € FNU and h € SNIJQ(Fv). The multiplication of 7—~(U is
given by the convolution. We define an idempotent EX € H,, by

( ) _ {|2‘v1(¢0,v7 W, (g)¢07y) if ge f{n

EK
v\ 0 otherwise,

where I'/ is the inverse image of

)

a,d€o,,be (40p) o, c€ 4DFUU}.
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Define the Hecke algebra H by the restricted tensor product H= ® - 7'~lv. Put FX =
v<o0
H EX € H. Then EX is an idempotent.
V<00

An element of S, (1/2)(I") can be considered as an automorphic form on the adelic metaplectic

P

group SLy(A). Let .Acus(l/2 (SLa(F)\SL2(A); ) be the space of automorphic forms on SLa(A)
which come from the elements of S, /2)( ). Then the Hecke algebra acts on the space

A’C;fpl/Q)(SLQ(F)\SLQ(A); ¢) by the right translation p. Put

AP (SLa(F)\SLa(A); €)% = {p(EX)p | o € AP, (SLa(F)\SLa(A); )}

Let Sﬂ+(1/2)(F)EKCS,€+(1/2)() be the subspace corresponding to the subspace

AT 2)(SL2(F)\SL2( )P of AT ) (SLa(F J\SLa(A)).
Let A5.°P(PGL2(F)\PGL2(A)/Ky) denote the space of automorphic forms on the adele space
PGLy(F)\PGL2(A) of weight 2k, which is right invariant by Ko =[] PGLa(0y). It is well

known that there exists a direct sum decomposition

<00

ASP(PGLy(F)\PGLy(A)/Ko) @c fi

where f; is a Hecke eigenform for each 1 <i < d. Then the automorphic representation 7; of
PGL2(A) generated by f; is irreducible. As a generahzatlon of Theorem 2, we will prove the
following theorem (Theorem 9.4).

THEOREM. There exists a direct sum decomposition

Sk+(1/2) ()" = @ C-hy

with the following properties, (1) and (2).

(1) The cusp form h; is a Hecke eigenform with respect to the Hecke algebra H, for finite
places v12 for each 1 <i < d.

—_——

(2) Let o; be the automorphic representation of SLo(A) generated by h;. Then we have
7; ~ Wald(o;, ¢) for each 1 <1 <d.

Here, Wald(o;, v) is the Shimura correspondence between automorphic representations of
SL2(A) and those of PGL2(A) studied in detail by Waldspurger [Wal80, Wal91]. In particular,

we have
dim((j Sn+(1/2)( ) = dlm(c AcuSp(PGLQ(F)\PGLQ (A)/’Co)

Moreover, these spaces are isomorphic as modules over Hecke algebras for good primes. We will

—_—~—

treat this point of view in our future work by using the stable trace formula [Lill] for SLa(A).
As for the generalization of Theorem 1, we shall prove the following theorem (Theorem 13.5).

THEOREM. We have

K

S:+(1/2) (F) = Sm+(1/2)(F)E

If F=Q, then EX is the projection operator to the eigenspace of WU with eigenvalue
(—=1)(W*+r)/296  Thus these theorems can be considered to be generalization of Kohnen’s
theorems.
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We believe that our method can be applied to higher level cases (cf. Ueda [Ued93, Ued98]).
It might be possible to generalize the results of Ikeda [Ike01] by using our results.

Let us explain the content of this paper. In §1, we recall elementary properties of the
metaplectic groups and Weil representations. In § 2, we calculate some local integrals. In § 3, we
introduce the idempotents e and E¥ in the Hecke algebra. We shall show that if an irreducible

—_—~—

representation (7, V) of SLa(0) has a non-zero £ -invariant vector v, then 7 is either a principal
series or an even Weil representation. We also calculate a Whittaker function associated to
such a vector. In §8, we recall how to regard a Hilbert modular form of half-integral weight as

an automorphic form on the adelic metaplectic group SLa(A). Then we prove Theorem 9.4 by
applying Waldspurger’s results. In § 10, we generalize the formula (0.2) to S, (1/2)(I'). We review
the theory of Baruch and Mao [BMO07] in § 11. We will discuss a generalization (Theorem 12.3)
of the Kohnen—Zagier formula (0.3) in §12. In § 13, we give a proof of Theorem 13.5. In § 14, we
discuss a relation to Jacobi forms. Finally, in § 15, we give some examples.

Notation

When X and Y are sets, we put X\Y = {z € X |z ¢ Y}. For z € C, we set e(z) = exp(2my/—12).
As usual, h = {z€ C|Im(z) >0} denotes the upper-half plane. If R is a ring, then we set
R*2={r?|re R*}.

If F is a non-Archimedean local field, then o, p, ¢, and w denote the ring of integers, the
maximal ideal, the order of the residue field, and a prime element of F', respectively. If I is a finite
extension of Q,, then 0 is the different for F'/Q,. The Haar measure dz on F' is normalized so that
Vol(o) = 1. The Haar measure dg on SLy(F') is normalized so that Vol(SLa(0)) =1.If ¢ : F¥ — C*
is an additive character, then the order ¢, is the maximal integer ¢ such that 1(p~¢) = 1.

If F'is a totally real number field, then o, 0p, and D denote the ring of integers, the
different for F'/Q, and the discriminant of F', respectively. The adele ring of F' is denoted
by A=Ap. The finite part of A is denoted by A;. The embeddings of F' into R are
denoted by ¢y, ..., tn, where n=[F:Q]. For £ € F and z= (21, ..., z,) € C", we use a multi-
index notation e(£z) = exp(2myv/—1 311 1;(€)z:).

1. The metaplectic group and the Weil representation

Let I be a local field of characteristic 0 and % a non-trivial additive character of F'. We assume
F#C. If F=R, we assume ¢(z) = e(z). We fix an element § € F* as follows. If F'~ R, then
0 =1. If F is non-Archimedean, then 4 is any element such that ord(d) = c;, where ¢y, is the
order of ¢. The Haar measure dx on F' is the usual Lebesgue measure if F' is real, and normalized
so that Vol(o) =1 if F' is non-Archimedean.

The quadratic Hilbert symbol for F'is denoted by (, ). Recall that Kubota’s 2-cocycle ¢(g1, g2)

on SLy(F) is given by
/) =(g1)  x(g2)
c(g1, 92) = <m(9192)’ m(9192)>

<<a b)) c ife#0,
¥ c d)) )d ifc=0.

1967
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We define the metaplectic covering group SLo(F') by Kubota’s 2-cocycle ¢(g1, g2). Thus, as a

set, ng\(?) ={[g,¢] | g € SLa(F), ¢ € {£1}} and the multiplication law of SLa(F) is given by
[91, Gl - [92, C2] = [9192, C1C2e(g1, g2)]. For g € SLa(F), we denote [g, 1] by [g]. We set

sar-[(y D] =[] e
wo-[(g )] w0 )] e

—_—~—

For a subset H of SLy, we denote the inverse image of H in SLy(F) by H
For each Schwartz function ¢ € 8§(F'), the Fourier transform ¢ is defined by

r) = |82 /F oy (ay) dy

Note that the Haar measure |8|'/2dy is the self-dual Haar measure for the Fourier transform.
For each a € F'*, there exists a constant oy (a), called the Weil constant, which satisfies

[ oty a2 [ oo ( )dx (11)

for any ¢ € 8(F) (cf. Weil [Wei64]). The Weil constant ay(a) is an eighth root of unity, which
depends only on the class of a in F*/F*2. Clearly, we have a,(—a) = ay(a). For any a, b€ F*,

we have
ay(a)ay(d) _ (. b)
ay(Day(ab) 7"
In particular, oy (a)/aqy(1) is a fourth root of unity for any a € F*. It is easy to see ay,(a) =

ay(&a) for £ € F*, where ¢)¢(z) = ¢(&x). If F is a non-Archimedean local field with odd residual
characteristic, ¢, = 0, and if a € 0™, then ay(a) = 1.

We also set

The Weil representation wy, of SLao(F) on 8(F) is given by
plamf@)o(t) = S l! (e,

wy (W ())d(t) = Y (bt*)e(1),
wy(Wa)d(t) = ay(a)|2a™ /2 P(~2a""1).
From these formulas, it is easy to see

(o) =, (@20 2 [ o ity (e F).

The Weil representation wy, is unitary with inner product

(o1, P2) :/F¢1(t)¢2(t)dt, (¢1, P2 € 8(F)).

Suppose that I is non-Archimedean. Put ¢ = ¢, = p®. For fractional ideals a and b such that
ab C o, we define a compact open subgroup I'[a, b] C SLy(F) by

T'[a, b] = {(Z Z) € SLy(F)

1968
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Set
I=T[c!, 4.
Let ¢o € 8(F) be the characteristic function of o.

LEMMA 1.1. There exists a genuine character ¢ : I — C* such that

wy(g)do =€ (9) %o

for any g € r.

Proof. We shall show that
i — S\ x -1
wy (U*(b)m(a))pg = ¢o (a€o™,bec ),
Y ay(a)
wy(0’(€))do = do (¢ € 4c).
The first equation is easy. The second equation follows from the fact that wy(wi)po(t) =

g (1)[2] 240 (2t) is invariant under {u®(c) | ¢ € 40}. Note that ¢o(2t) is the characteristic function
of 2710. Since I is generated by these elements (modulo the center), the lemma follows. O

If 24¢, then T is perfect and there is a unique splitting s: T’ —T. In this case, we have
(g, ¢]) = (s(g) for g € T. If 2|q, we have

CZ‘;/)W) if c=0,
5([(? Z>7<D: go‘%;@l,c) if ¢ #0.
ay(d)

This is obvious for ¢ = 0. In the case ¢ # 0, observe that

G o)=[C75" o) el [ D)

from which the assertion follows easily.

2. Calculation of some Gauss sums

Hereafter, until the end of § 5, we assume that F' is a non-Archimedean local field. The maximal
order of F' and its maximal ideal are denoted by o and p, respectively. The number of elements
of the residue field £ = 0/p is denoted by ¢. Let e be the integer such that |2|~! = ¢°. We assume
the additive character ¢ : F'— C* is of order 0. The Haar measure dx is normalized so that
[, dx=1.

Let ¢g be the characteristic function of 0. By putting ¢ = ¢¢ in (1.1), we obtain the following
lemma.

LEMMA 2.1. (1) For a € F*, we have

2 2
[ o) mestorzman [ o5 o

(2) For a €0\{0}, we have
_ -1/2 a?
ay(a) = |2al /xeo 1/1(4@) dzx.
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DEFINITION 2.1. For a non-negative integer r, we set
0 if r=0,
U, = nr
1+p" ifr>0,
02Uy, if0<r<e,
U, = )
0 if r>e.

LEMMA 2.2. Ifa € F* and u € U, then ay(au) = ay(a)(a, u).

Proof. We may assume u € Ug. If a €0, then the lemma follows from Lemma 2.1(2).
In particular, we have oy(1)=ay(u). Now, the lemma follows from oy (u)ay(au)=

oy (1o (a){a, u). O
The following two lemmas are well known (see, e.g., [0’MO00, 63A], [HPS89, Proposition 1.1]
and [Oka91, Proposition 3]).

LEMMA 2.3. The following assertions hold:
(1) 0X2Us. = 0%2Uspy1 =U, for 0 < r<e;
(2) U, Co*2 forr>2e+1;
(3) Uy :Urp1] =q for 0 < r <e;
(4) [Ue: 0% =2.

LEMMA 2.4. Let d¢ be the order of the conductor of F(\/€)/F for &€ F*. If £ € Up\Ur41,
(0<r<e), then d¢ =2e — 2r. If ord(§) is odd, then d¢ =2e + 1.

For § € I, we define f; € Z and x¢ € {1,0, —1} as follows.
DEFINITION 2.2. For £ € F'*, put
fe = (ord(£) — de)/2,
1 ifee F*?,
Xe =4 —1 if F(y/§)/F is an unramified quadratic extension,
0 if F(/£)/F is a ramified quadratic extension.

When £ =0, we formally put f; = +o0.
LEMMA 2.5. For £ € F*, we have

i = m—e+r if &=, ucU\Upi1,
T m—e if ord(§) =2m + 1.

For £ = @w?™u, u € 0%, we have

 J(u, @) ifuele,
0 ifudU,.

Proof. The first part follows from Lemma 2.4. The latter part is obvious. O
Note that if £ € 0 and f <0, then x¢ =0.

LEMMA 2.6. Suppose that & € 0. Then there exists y € o such that & =y? mod p?¢ if and only
if f¢ = 0.

1970
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Proof. If ord(§) > 2e, then f, > 0 by Lemma 2.5. This settles the case ord(§) > 2e. We consider

the case ord(£) < 2e. We may assume ord(€) is even. Assume that & = @?™u, u € U, \Uy4+1. Then
there exists y € o such that € = 32 mod p?© if and only if u € Ue_pp, i.e., 7 > e — m. By Lemma 2.5,
r > e —m if and only if f; > 0. O

Fix A, B €o and put D = A? — 4B. Note that §;, > 0 by Lemma 2.6. If D # 0, then we put
E = F[x]/(2*> — Az + B). Let og be the maximal order of E. For an integer o, we set

So=84(A,B)={x € F|2® — Az + B=0 mod p°}.
Note that S, C o for o > 0.

LEMMA 2.7. Let dx be the Haar measure of I' such that fa dx = 1. Then the volume of S,, with
respect to dx is given by

g lat1)/2] if a < 2fp,
Vol(Sa) = { (xp + g o~ ifa=2j,+1,
xp(xp +1)g~ o if a > 2f, + 2.

Proof. The case D =0 is obvious. We assume D # 0. Suppose that xp = 1. After some linear
transform, we may assume that 22 — Az + B=xz(z — 1), D=1, and fp =0. If a <0, then the
equation is reduced to z2 = 0 mod p®. Clearly, S,, = pl(®t1)/2] in this case. Assume now a > 0. In
this case, min{ord(z), ord(x — 1)} =0 for = € S,. It follows that S, = p® U (1 + p®). This settles
the case yp = 1.

Next, consider the case xp = —1. In this case, E/F is an unramified quadratic extension. Let
{1,¢} be an o-basis of og. Let w=u + ve € 0, (u,v € 0) be a solution of 2> — Ax + B =0. By
definition, ord(v) is the order of the conductor of the order o[w], which is equal to fp. Note that

d if ord(a) <
ordg(a + be) = ord(a) 1 ord(a)
ord(b) if ord(a) >
for a, b € 0. It follows that
So ={z € F|20rdg(w —z) > a}
Ju+ p[(a+1)/2] if o < 2fp,
R if > 2fp.
This settles the case xyp = —1.

Now, consider the case xp =0. In this case, F/F is a ramified quadratic extension. Let ¢
be a prime element of E. Then {1, e} is an o-basis of 0g. Let w=wu + ve € o be a solution of
22 — Az + B =0. As in the previous case, we have f;, = ord(v). Note that

2ord if ord(a) < ord(b),
ordg(a + be) = ord(a) 1 ord(a) < ord(b)
1+ 2ord(b) if ord(a) > ord(b),

for a, b € 0. It follows that

So ={zx € F|ordg(w —x) > a}
_ JupletD2 i o <25 + 1,
e if o> 2fp + 1.
Hence the lemma is proved. O
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DEFINITION 2.3. For an integer o > 0 and A, B € 0, we put
T4 B)= [ [ v ety - Ay B) dy e
x€o* Jyco

Note that

T.(A, B) = /

TCoX

/ P(C z(y? — Ay + B)) dy dx
yeEo
for any C' € w®0*. Since

1—q ! iféco,
Y(€x)de = —q* if ord(¢) = —1,

rEoX .
0 otherwise,

we have T, (A, B)=(1—-q 1) Vol(Sy) — ¢ 1 (Vol(Sa_1) — Vol(S,)) = Vol(S,) — ¢~ Vol(Sa_1)
for a > 0. Clearly, we have Ty(A, B) =1 — ¢~ . Thus, we obtain the following proposition.

PROPOSITION 2.8. (1) Assume that a > 0 is even. Then we have

g P(1—q ") if a<2fp,
Toe(Aa B): —q_(a/Q)_l 1f0&=2fD+2 and xp =0,

0 otherwise.
(2) Assume that o > 0 is odd. Then we have

T(A, By = | Xpa @ i a=2fp 41,
o 0 if oo # 2fp + 1.

DEFINITION 2.4. We define a Gauss sum G(a; €) by
G )= [ au@iEds (¢cFarto)
r€o*

It is enough to consider the case 0 < ord(a) < 1. In fact, it is enough to consider the cases a =1
of a = w in later application. Since G(a, ) = G(au, uf) for u € 0™, we do not lose a generality by
this restriction.

PROPOSITION 2.9. Suppose that £ € F'.

(1) We have
¢ PL—q) iffe= e
G(1:6) =4 —g (/21 if fe = —e — 1 and x¢ =0,
0 otherwise.
(2) We have

0 otherwise.
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Proof. First we prove assertion (1). By Lemma 2.2, G(1, £) = 0 for 4€ ¢ 0, and so we may assume
4¢ € 0. By Lemma 2.1(2), we have

G(1;6) = 2] 1/2 / | vai-en) ayas
x€o* Jyc€o

— o 1/2 / | vt —ae)w dy e
x€ox Jyco

= ¢/’ Ty (0, —4¢).

Set A=0 and B = —4¢, and apply Proposition 2.8(1). Note that D =16 and f, = 2e + f¢ in
this situation. From this, assertion (1) follows easily.

Now we consider the case a = w. We may assume 4¢ € o, since otherwise G(w, wé) =0 by
Lemma 2.2. By a similar argument to that above, we have

G(w; @7 16) = ¢ TV 2T 1 (0, —4¢).
Set A =0, B = —4¢ and apply Proposition 2.8(2). Then assertion (2) follows easily. 0

DEFINITION 2.5. For z € F* and )\ € F, we set

w(z; \) = (=27 (y+N)?) dy.
yeo

LEMMA 2.10. Put i =ord(2\). Suppose that 0 < i < e.
(1) Iford(z) > 2i+ 1, then w(z; A) =0.

(2) There exists an element z € w*0* such that w(z; \) # 0.

Proof. Suppose that ord(z) > 2i + 1. Put r = [(ord(z) + 1)/2]. Then we have 2i < i+ r < ord(z),
and so

w(z; A) = (=27 Hy+A)?) dy
yeo

:/ V(=2 y + @'z + N)?) dy dx
x€o Jyco

- / [/ B2y + N) de [ (= (y + N)?) dy

0.
Hence we have assertion (1). Observe that

Toi(—2X,0) = / w(z; Np(z71\?) dz.

zZEwo2ioX

By Proposition 2.8, Tp;(—2X,0) = ¢~ (1 — ¢~!) # 0. Hence we have assertion (2). O
3. The idempotents eX and EX

F:F[o,4o]:{(i Z) € SLa(o) cep2€}.

Recall that the genuine character ¢ : I' — C* is defined by wy(9)p0 = e(g) Lo, where ¢y is the
characteristic function of o.

Set
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DEFINITION 3.1. The Hecke algebra ﬁ:ﬁ(f\gl\;/f, ) is the space of genuine functions
@ € Cp(SLg) such that @¢(J1h2) =e(91)e(F2)@(h). The multiplication of H is given by the
convolution product

(1% 32)(G) = /N 150 )pa(h) dh.
SL(F)/{x1}

DEFINITION 3.2. We define a genuine function e® on SL, by

o (g) = {400, p(0)00) i g € SLo(o),
0 otherwise.

Since wy(g)po =~ 1(g)¢o for g € T, we have X € H. Let 8o = $(2710/0) be the subspace of
the Schwartz space §(F) which consists of all function ¢ € §(F) such that Supp(¢) C 27 1o and

(x4 y) = ¢(x) for any x € 2710 and y € 0. Then § is invariant under the action of SLz(0) by
wy. We denote this representation by €.
For each A €27'0/0, we denote by ¢, the characteristic function of A+ 0. Recall that

—_~—

w(z)=[(19)] €SLa(F) for z € F.
LEMMA 3.1. For A\, u € 27 %o, we have

(62w (W(2))y) = g (2)|227 [V 2w(z: A — ).
Proof. We have

WU (2)) () = g (2)[22 /2 / bl + (=19 dy.

yeF
It follows that
(6, wyp(W(2))dp) = ay(2)[2271/? / DA(@)u(x + ) (=2~ 1y?) dy dz
zeF JyeF
= ay(2)[2e7 12 (=27 (Y + A —p)?) dy. 0

yeo
LEMMA 3.2. Put Sq(A) = A% for A € F. Then Sq : F — F induces an injective map Sq: 2 'o/0 —
4710 /0.

Proof. It is easy to see the map Sq:2 'o/o — 4 'o/0 is well defined. It is enough to prove
that the map Sq:0/20 — 0/40 is injective. Assume that x?=y? mod 4 for x,y €o. Then
either © — y € 20 or x + y € 20. In either case, we have x =y mod 20, since (z +y) — (x —y) =
2y € 2o0. O

For each 0 < i <e, put 80 = 8(p~***/0). Note that §y = 8O 5...58) = Cop.
PROPOSITION 3.3. For each 0<i<e, 8% is an irreducible subspace of 8y under the action
of T'[o, p?*].

Proof. Put N = {u*(b)|b € 0}. For each A € 27 !0, we define a character ¥y> of N by 1pyz(uf(b)) =
1 (A2b). Then we have Qd,(uﬁ(b))(m =1x2(b)py for any b € 0. By Lemma 3.2, )= depends only
on (A mod o). Thus we have a multiplicity-free decomposition

Qiln="_ tx.

A€2-10/0
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It follows that any N-invariant subspace of 8y is of the form @, .y C- ¢y for some subset
X c 27 '0/0. By Lemmas 3.1 and 2.10(1), we see that 8() is invariant under the action of F[/OT]JEi].
Suppose that @y, ¢, € 8¢). By Lemmas 3.1 and 2.10(2), there exists u’(z) € Fmi] such that
(P ,(ng (W(2))¢,) # 0. Tt follows that there is no non-trivial proper F[/UT]JEi]—invariant subspace
of 8. O

PROPOSITION 3.4. For each 0 <i < e, put

() = § VOITL0, ) 70" (G0, wi(9)d0) if g € To, 2,
0 otherwise.

Then ¢ € H is an idempotent. In particular, e(®) =K ¢ H is an idempotent.
Proof. This proposition follows from Proposition 3.3 and the Schur orthogonality. O
LEMMA 3.5. (1) We have

£©)(g) = Vol(I)e(g) ifgel,
0 otherwise.

(2) For z€ o, z#0, we have

K (0 (2)) = a(2)[22] V2 / BT dy

YyeEo

=12/7' [ w(zy?/4) dy.
yeo

(3) For g= (CCL Z) € SLy(0) with ¢ € 0, we have

" (lg]) = ap(0)|2]7V2.

Proof. Assertion (1) is trivial. The first part of assertion (2) follows from Lemma 3.1. The last
part of assertion (2) follows from Lemma 2.1(1). Now, assertion (3) follows from the first part of
assertion (2). O

LEMMA 3.6. If0 < ord(z) < 2e and 2{ord(z), then e (u’(2)) =0.

2r—1

Proof. We may assume the residual characteristic of F' is 2. Assume z =w u, u € 0™, and

0 <r <e. Then

OPT2) dy = / Oy + = 12)7/7) da dy
y€o Jx€o

yco

= /e ) W(y?/2)Y (2w ey /2) (22 /wu) dz dy.

Since ord(2ww" 1) > 2r — 1, we have ¥(2"'xy/z) = 1. Note that the map o/p — o/p given by
x +— 22 is bijective. It follows that

/I@QW/WWM/WW/WM:O. o

Recall that w, = [(2 _%71 )] € gﬁ; for a € F*.
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LEMMA 3.7. We have W;lfWQ =T and e(wy tgwa) = ¢e(g) for any g € I.

Proof. The first part is easy. The second part follows from wy (w2)po = a(2)do. O
We set

E"(9)

ED(g) = e (wylgwy) (0<i<e).

K(wygws),

(&
By Lemma 3.7, EX, E® € H. It is clear that Supp(EX)  T[4-10, 40]. If g € T[4-Lo, 40], then
E*(g) = " (wy gws)

= ¢°(¢o, wy(Wy ' gw2) o)

= q“(wy(W2)do, wy(g)wy (W2) o).
Since wy,(W2)do = s (2) ¢, we have

EX(g) = 4 4°(P0,wu(9)d0) if g € Tl4~"o, 4o,
0 otherwise.

Similarly, we have

E(z) (g) _ VOl(F[O, in])—lqe—i(¢07 Ww(g)%) ifge F[4_1p2i7 40]7
0 otherwise.

In particular, E© = EX and

£©)(g) = Vol(I')~te(g) ifgel,
0 otherwise.

P

Recall that u*(z) = [({7)] € SL2(F) for z € F. Note that wy, tuf (—z/4)wy = ’(2).
ProPOSITION 3.8. We have
EX (wyut(=2/4)) = ¢ ay(1) (2 €0),

ER(W(—z/4) =¢° | W(z?/4)dy (z€0),

yeo

ED(uf(=z/4) = (1 +q g | d(zP/4)dy (z€p¥,1<i<e).
yeo

Moreover, we have E®(uf(—2/4)) =0 for 0 < ord(z) < 2e — 2i, 2{ord(2).

Proof. Since wy ' - wyul(—z/4) - woy = uf(—2z)wy, the first equation follows from Lemma 3.5(3).
The second and the third equations follow immediately from (wy(uf(2))¢o)(z) =
P (z2?)¢o(x). The last part follows from Lemma 3.6. O

As usual, \ denotes a left translation of a function, i.e., A(z)f(y) = f(z~1y).

PROPOSITION 3.9. Put TW = F@) — ¢~ EG+) for j=1,... e —1. Then we have

7O = goi / / Y(@ay? /)N (—?z/4)E©) dy da.
rcoX Jyco
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Proof. By Proposition 3.8, we have
Supp(E®) ¢ Supp(E*Y) H( H W (—w?iz;/4) - F).
a:jeox /Uzefzi
Here, z; extends over a complete set of representatives for 0* /Use_o;. Put

()= EW(g) if geuf(—w?x;/4) T
= 0 otherwise.

Then we have T = >z, ;- Since @ * E©) = ¢;, we have

—16G i i e
pj = E¥ (1) BV (W (—wz;/4) A(u(—w; /4) B

=q T [ (@ay? [N (e /4) B dy.
yeo

Since this expression does not depend on the choice of the representative x;,

pj = Vol(p*~#)"lg ™ / Y@ ey?) Mt (~w?'e/4) E) dy da

TExj+p2e—2t Jyco
= ¢°" / V(@ zy?)A(uf (—w?z/4))E©) dy dx.
TET;+p2e- y€Eo

It follows that

7O =3 "o,

= ¢ Z / / V(@ zy? /)Nt (=¥ z/4))E©) dy dx
z€x,+p2e—2i Jyeco

= E_i/ Y(@zy? /)Nt (—w?z/4))E©) dy dx.
TCoX Jyco

Hence we have proved the proposition. O
By a similar argument, one can prove the following proposition.

PROPOSITION 3.10. Assume that e > 0. Put T = (1 + ¢~ ")EX — ¢~ 'E®. Then we have

" = aw(l)qe/Q/ Mwqud (2/4))E© dz

x€o
= ay(1)g*/? / ) Awau(2/4))E© dx
z€p
o [ blay? /AW (—a/4) B dy da.
x€o* Jyco
Proof. Note that
Supp(TH) H wy-uf(z/4) - T

By using this decompositions, one can prove the proposition as in the proof of Proposition 3.9. O
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4. Calculation of the Whittaker functions

In this section, we will calculate some Whittaker functions. The odd residual characteristic case
has already been treated by Shimura [Shi85, Theorem 6.1] (see also Bump et al. [BFH91]). For
F = Qy, the calculation was done by Ichino [Ich05].

In this section, we simply write o(z) for ay,(z) to simplify the notation. Let B C SLg be the
Borel subgroup consists of the upper triangular matrices. Let f¢(s) be the induced representation
of SLs induced from the genuine character of B such that

w(b)m(a) — 38 a* (a€F*,be P).

Thus f¢(3) is the space of genuine functions f on SL, such that
a(l)
a(a)

The space fw(s) can be considered as a genuine representation of SLz(£) by right translation. It
is well known that I,(s) is irreducible if g=2° # ¢*!. We assume that I(s) is irreducible.

f(@¥(b)m(a)g) = lal*Tfg) (a€ F*,be F).

P

For each integer ¢ with 0 <t < e, let X} be the bi-I-invariant subset of SLa(0) given by
a b
Xt = { (C d> € SLQ(U)

For 0 <t <e, let f; € I;(s) be the element whose restriction to SLa(0) is given by

ord(c):2t}.
We set X, =T
—20(1)eK (k) ifke X,
qg ““a(l)e i Y
o= [T !
0 if k€ SLa(o )\Xt

For each f € I(s) and & € F¥, we consider the integral Wr.e(g) defined by

Wrelg / Fwiut(x)g)e(Ex) de.
We will calculate the value Wy, ¢(1). Note that Wy, ¢(1) =0for{ ¢ o (0<t <e). Put X =¢°.

PROPOSITION 4.1. Assume that e =0 and £ € 0. Then the value Wy, ¢(1) is equal to

(1—q~ Z X2 4 7V XHH iy #0,
Wy, ¢(1) =
(1—q~ ZXQ” — gl xHet2 if x¢ = 0.

We omit a proof of this proposition, since it is easier than that of the following proposition.
In fact, one can prove this proposition exactly as in the proof of assertion (3) of the following
proposition.
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PROPOSITION 4.2. Assume that e >0 and £ € 0. Then the following assertions, (1), (2) and (3),
hold.

(1) We have Wy, ¢(1) =1.
(2) If 0 <t < e, we have

(1—¢g HX?* ift<fe+e,

Wre(1) = § =g X* ift=f+e+1,
0 ift> e +e+ 1.
(3) The value Wy, ¢(1) is equal to
( fE—i-e
(1 o qfl) Z X2n + q71/2X£X2f5+26+1 if ff > 0’ Xe 7& 0,
fore
Wf 5(1) _ 1 _ q Z X2n _ q—1X2f§+26+2 Iffg 2 0’ X§ = 07
_q71X2e if fE — _
(0 if fe < —1.

Proof. Assertion (1) is easy, since fo(wiuf(x)) is 1 for 2 €0, and 0, otherwise. Next, we
calculate Wy, ¢(1). Note that f.(wiuf(z)) =0 unless x~!€p?. If 271 €p?, then we have
fo(wiuf(z)) = ¢¢2a(z)|z| =~ It follows that

Wi () =g Y / )|~ de

naX
n=2¢ rcw~ "o

=Y e / o "2) (€ ) da

n=2e TEox

_ Z qe/2Xng~(wfn;w7n§)

n=2e

(o) [o¢]
_ Z qe/2X2ng~(1; wané‘) + Z qe/2X2n+1g~(w; w72n71€).
n=e n=e
By Proposition 2.9, we obtain assertion (3). Note that if f; <0, then x¢ = 0, as we have observed
after Lemma 2.5.
Next, we consider Wy, ¢(1) for 0 <t < e. Note that

|z| 5~ (1/2) Y(zy?) dy if © € w*oX,

fi(wia(z)) = y€o
0 otherwise

by Lemma 3.5(2). It follows that
WieW=[ a0 [ - ) dydo
TEW 2% y€Eo
x| (e 2a(y? — €) dy de
rcoX* Jyco

= ¢' X Ty (0, —£).
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By Proposition 2.8, we obtain assertion (2). Note that if t = f + e + 1, then x¢ = 0, since f¢ <0
implies x¢ = 0. This completes the proof. O

DEFINITION 4.1. For ¢ € F*, we define (¢, z) € C[z] and ¥(¢, 2) € Clz + 271] by

Y& 2) = (1 —q '2?) (1 - xeq 2) 7,
R L “x q71/2 rfe — x7 %
U x) = x—x 1 ¢ x—ax1
0 if f¢ <O.

Note that (£, X) # 0, as we have assumed that I (s) is irreducible.

PRrRoproOsITION 4.3. Put

f}—g _ Z q_€+tX_2tft, f}[?] — E fi.
t=0 t=0

If§ ¢ o, then Wy (1) = Wi (1) = 0. For £ € 0\{0}, we have

e
Wis (1) = (& X)XFW(¢, X),

Wf}?]f(l) = 7(57 X)Xf£+e‘ll(4§7 X)
)

Proof. We may assume £ € 0\{0}. By Proposition 4.2(1) and (2), we have
e—1 -1 -
— — q lff > _17
D a XTIy (1) = {0 .f ¢ )
=0 1 f{ < —1.

In particular, if f; <0, then Wf;g’&(l) =0. Now we assume f¢ > 0. By Propositions 4.1 and 4.2,
we have
fe

q—]. + (1 _ q—l) Z X2n + q_1/2X§X2f€+l lf X§ 7£ 07
Wite() = "

R GRS DY GUE I Gl if x¢ =0.
n=0
If x¢ # 0, then

fe
N (1) _ q—l + (1 - q—l) Z X2n +q_1/2ng2f€+1

n=0
= (X2 =17 g (X = 1)+ (1 - g X 1) g7 X (X - 1)
= (X2 = 1) 1+ V2 X) (=1 + V2 X — g7 2y X2t 4 Xet2)
= (1+ xeq 2X) XU (¢, X).
If x¢ =0, one can show Wy (1)(1 — ¢ X)X (¢, X) by a similar calculation. The case for

f [[?] is omitted since it is easier. a

PROPOSITION 4.4. We have

Fi(gwa) = a2)g~2x < 1l%(g),
0 (gws) = a@)2X° - (g).
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Proof. Flrst note that these two equations are equivalent, since w3 = [—15, (=1, —1)] and
a(l)Qa(2) =(2,—1) =1. Tt is enough to show

fe-t(gwa) = a(2)g" /DX f(g)
for 0<t<e. For t=0,e, this follows from f.(1)=¢*?a(1) and fo(ws)=a(l)a(2)¢*X .
Suppose u’(z) € X;, 0 <t < e. By Lemma 3.5,
fi(@(2)) = a(1)¢g*/? / P(—za?/4) da
x€o
Observe that
W(2)ws = (15, (2, —2)] - w(—2m(—2: " (~4271),
It follows that
fet(0(2)wa) = (=2, =z)a(1)a(22)[22 [
xa(1)q—e/2a(z)|82—1|—1/2/ W(—232/4) da
z€o
by Lemma 3.5. Since (-2, —z) = a(1)a(2)a(z)a(2z), we have
et (2)wa) = a(al@ig' X2 [ w0/ da
Teo

_ a(?)qt_(e/Q)Xe_Qtft(ub(z)).
Hence the proposition. O

We define a Whittaker function Wg (g9) by

W (g) = €[4 (&, X) T X TW g ((9).
To determine the value of WEL (g), it is enough to calculate the value on the set

{m(a)|a € F*}U{m(a)w; |a e F*}U{m(a)d’(2) | a, z € F*,0 < ord(z) < 2¢}.

PROPOSITION 4.5. (1) For a € F*, we have

W (m(a)) = jgj,jww”?%a?, X),

ofa)|8¢a? |2 W (1642, X) if 4€a® € o,
(m(a)wy) = (a)|86a”[+/ =W (16¢ ) 3 '
0 otherwise.

+
We

(2) Suppose that &, a, 2 € F*, and that 0 <ord(z) < 2e. If 4¢a?272 = \? mod o for some
X\ €2 1o, then we have

W;(m(a)ub(z)):w( L=tz E ;]421§a2\1/2\11(16§a 272 X).

If there is no such A € 2~ 1o, then W+ (m(a)u’(z)) = 0. Note that there is at most one A € 2710 /0
such that 4€a®272 = A% mod o.

Proof. The first part of assertion (1) follows from

Wit ((m(a)) = %'CL'_SHWJ[;’&“Z(U'
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The latter part of assertion (1) follows from

Wit ((m(a)wi) = (2, o)Wt (m(2a)w2)
= (2, a>a(2)q_6/2X_ Wf}?], (m(2a))
(2, a)Ya(2)g— /2 X * ()?[((2163) A W (1)
=A@ 2a W (1),

We just explain how to prove assertion (2) briefly, since we do not use this assertion. For A € 27 1o
let ff[?} € I;(s) be the function such that

R(g) = a(1)[2]Y2(wy(9)dr, d0)

for g € SLa(0). Here, ¢ € 8(2710/0) is the characteristic function of A + o. Put
Al _
W(g) = e[/ 2y (&, X)X T W ().
By Proposition 4.4, we have

Wi (9) = a(2)21* W (gw).

Thus it is enough to calculate Wg[o](m(a)u"(z)WQ). Using the decomposition
W (2)ws = [13, (=2, —2)] - (2 m(—2: "yl (—427D),

it is reduced to a calculation of Wgo](m(a’)ub(z’)), where @’ = —2az7!, 2/ = —4271. We now
replace a’ and 2’ by a and z, respectively to simplify the notation. By Lemma 3.1, we have

wp(W(2)g0 = a(2))2z7 V2 Y wlz A)en.

A€2-10/0
It follows that

Wl(gw (2)) =a@)2: 172 Y wlm AW (g).
Ae2-10/0

Now we calculate Wé[/\](m(a)). By a similar calculation to that in the proof of assertion (1),
we have

W (m(a)wi) = a(a)|2¢a?[ VW (4€a?, X).
Using the equation wy(wy)do = a(1)[2]"/2 3", ¢, we have

W (gw1) = @272 Y- w(g)
A

Since

and
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for any x € o, we conclude that Wg[)‘](m(a)) # 0 only when £a? = A% mod o. It follows that

a(l)

€a?|M?W (462, X)  if £a? = A2 mod o,
W (m(a)) = { ala

o
~—

otherwise.

Therefore we have

W (@ (2)) = (e N s 260t 2w aga?, X)

for £a? = A2 mod o. If there is no such A, we have Wg[)‘](m(a)) = 0. Combining these results, we
obtain assertion (2). O

The space fw( ) can be considered as a representation of SL2 by right translation p. The
Hecke algebra H acts on Iy(s) by

p(2)f(9) = / o Jlam)eton) dgy = 7+

where ¢(g) = ©(g~!). Note that p(eK)f[[?] = f[[g] x el = fl[?]. Similarly, we have p(EX) fit = fi.

PROPOSITION 4.6. Put I(s)®" ={f|f€ly(s), p(eX)f=f} and I,(s)"" ={f]|f€Iy(s),
p(EX)f = f}. Then we have fw(s)eK =C- f[[g} and fw(s)EK =C- fi.

—_—~—

Proof. The first identity is obvious, since f € fw(s) is determined by its restriction to SLa(o0).
The second identity follows from

Iy(s)"" = {p(w2)f | f € ()"} =C - fif.
This completes the proof. O

Assume that s € y/—1R. Then fw(s) is a unitary representation with the inner product

/ flwi - ué(@)) f/(wi-wi(z)) de (f, f € Iy(s))-

PROPOSITION 4.7. We have
(ff f) =a1+q").

Proof. Recall that fir=3¢ ¢ ™' X 2f,. Then we have (fi, &)= ¢_oa T2 (f:, fr)-
Obviously, we have (fo, fo) =1 and

feyfe Z g 2r r . —1):q—e.

r=2e

For 0 <t < e, we have

o f) = / / vl - ) dzdy e
y€o J z€o0

TEW 2teX
:/ T2 (0, —22) dz
z€o
“1—q7h.
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It follows that

e—1

(i ) =a+> ¢ M1 —qg ) +q =¢ (1+q"). 0
t=1

5. Representation theory of Jacobi groups

For the basic theory of Jacobi groups, we follow Berndt and Schmidt [BS98] and Schmidt [Sch98]

(see also Ikeda [Tke94]). Let G be the subgroup of Sp, consisting of all elements of Spy(F) whose
1

first column is equal to 8 . The algebraic group G is called a Jacobi group. The unipotent

0
radical H of G’ is a Heisenberg group consisting of matrices of the form

1 A & p
0O 1| u O
A =
(A, 1, k) 0ol 1 o
0 0|-X1

Then G is a semi-direct product SLa x H. The center Z”(F) of H(F') can be naturally identified
with the additive group F by (0, 0, k) — k. By the Stone—von-Neumann theorem, any irreducible
representation of H(F) on which Z7(F) acts by v is isomorphic to the so-called Schrédinger

representation. It can be uniquely extended to the semi-direct product SLa(F') x H(F'). The
extended representation is called the Schrodinger—Weil representation, and is denoted by wiw.

The Schrédinger—Weil representation wzw can be realized on the Schwartz space S(F'), and the
action of H(F') is given by

WV (s 1, £))(@) = (k + 2pa + Au)d(x + A).

—_

The restriction of wlspw to SLa(F') is nothing but the Weil representation w, considered in §1.
It is well known that any irreducible representation of the Jacobi group G (F) on which Z7(F)

acts by 1) is isomorphic to wiw ® 7, where 7 is an irreducible genuine representation of SLa(F').

We assume the additive character v is of order 0. Put K7 = G”(F) N Spy(0). Let I = wiw ® 7
be an irreducible representation of G(F). It is called spherical if it has a non-zero K”-fixed
vector. Schmidt [Sch98] classified the spherical representations when either residual characteristic
of F'is odd or F'= Q. In fact, his proof is applicable for any non-Archimedean local field of
characteristic 0, as we explain as follows. Recall that the Weil representation w,, of SLy has two
irreducible component wff, where w:/f (respectively w,,) consists of all even (respectively odd)
functions in §(F).

PROPOSITION 5.1. Suppose that the irreducible representation I = wiw ® 7 of G is spherical.
Then one of the following three cases occurs:

—~
—_

) T 1;(3) for s € C such that ¢—2* #* qil;

with n € U\ o2
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Proof. Let H(GY, K”); be the Hecke algebra consisting of smooth functions ¢ on H(F) such
that:

(i) ¢((0,0,k)h) =v(k)"Lp(h) for any k € F and h € H(F);

(ii) Supp(¢) is compact modulo Z7(F);

(iii) @(k1hks) = ¢(h) for any h € H(F) and ki, ko € K.

Schmidt [Sch98] has shown that the Hecke algebra H(G”, K7); is isomorphic to a polynomial
ring generated by an element 7 (w). It follows that any irreducible spherical representation of
G has a one-dimensional K”-fixed vector space. Moreover, irreducible spherical representations
of G:] (F) are completely determined by the eigenvalue of T (w). Schmidt has shown that if
7 = I;(s), then the space of K J_fixed vectors is one-dimensional and the eigenvalue of T (w) is
¢*?(q~% + ¢°). Tt is well known that Ilz;(s) is irreducible if and only if 72 # ¢*'. Hence if the

T’ (w)-eigenvalue does not equal to +¢(q + 1), then case (1) occurs. If the T (w)-eigenvalue is

q(g+1), then ¢=° = ¢=Y/2. Tt is well known that w;ﬁf is the unique irreducible subrepresentation

of I;(s) if ¢° = ¢'/2. Clearly, wiw ®w:i is spherical. Therefore, if the T (w)-eigenvalue is
q(q+ 1), then case (2) occurs. Similarly, one can easily show that if 1€ U.\o*?, then wd—)
is the unique irreducible subrepresentation of Ii/;(s) if =% = —¢'/2. This follows from the fact

that a — oy (1)ay(n)oy(a)ay (an) = (1, a) is the unique unramified character of F'* of order 2.
Hence, if the T (w)-eigenvalue is —q(g + 1), then case (3) occurs. O

—_——

Recall that the irreducible representation 2, of SLa(0) acts on the space 8y = 8(2710/0).
LEMMA 5.2. The representation w W @7 of G’ is spherical if and only if HomSL z )(QJ}, ) #
{0}. Moreover, dim¢ Homg~— ™" )(Q¢’ 7) =1 in this case.

Proof. The space of H(o)-fixed vectors of ww is exactly 8g. By Proposition 3.3, the

e~ —

representation of (£, 89) of SLa(0) is irreducible. It follows that dimc HornSL z )(QW ) is equal
to the dimension of K-fixed vectors of w W @ 7. Hence the lemma follows. O

—_——

For a genuine representation (7, V) of SLy(F), we put V¢ = 7#(e®X)V and VE" = 7(EK)V.

PROPOSITION 5.3. Let (7,)) be a genuine irreducible representation of SLo(F) such that
VE™ £ {0}. Then one of the following three cases occurs:

(1) 7 =~ I,(s) for s € C such that ¢~2* # ¢*';
= ot

(2) T~wy;

(3) T ~wy, withn€U\o*>.

Moreover, we have dim¢ VE" =1.
Proof. By Proposition 5.1 and Lemma 5.2, it is enough to show that

dime VP* = dimg Hom e )(Qw, ).

Since EX and eX are conjugate, VF —dim(c Ve* . Since e is a matrix coefficient of an
irreducible representation 2, we have dim¢ Vet = dlm(c Hom e )(Qw, ). O
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6. The case when ¢ # 0

For global application, we need to consider the case when v is not necessarily of order 0. Let
¢y be the maximal integer ¢ such that (@ ) =1. Put ¢=p®. We fix an element § € F'*
such that ord(8) = ¢y. Put ¢o(x) = (6 'z). Then ) is of order 0. We consider the following

automorphism of SLs.

—_—

DEFINITION 6.1. The automorphism 75 of SLa(F') is given by

ey y [l 9) e
(¢ 2)-4) £ ] o

Then we have wy = wy, o Ts. By twisting by 75, we can reduce the theory developed in
previous sections to the case when 1 is of order 0. We just write down the results.

Put I'=T[c!, 4c]. The genuine character of I' is defined by wy(g9)do =c1(g9)po, where
o € S(F) is the characteristic function of 0. The idempotents eX | EX ¢ H = H(I'\SLy(F)/T; ¢)
are defined by

(g = [T 00 wla)on) iEgerleT
0 otherwise,

R (g) - {gﬂ(qso, w(g)do) if g €T((40) 7, 4d],

otherwise.

Fori=1,...,e, the idempotent E® H is defined by

B0 (g) = {(1 07 )a" (G0 wylg)do) if g € T[(40)~1p%, 4d],

0 otherwise.

We set E0) = EK, Then, we have E® x BU) = EU) x« EG) = B for 0 <1< j<e Whene >0,
we put T = (14 ¢ HEK — ¢~ 1EM),
For the explicit value of EX, we have

z
£ (s (5)) =t

2
() o [ ()
49 yeo 46
for z € 0. Similarly, we have

20 (uﬁ<_425>> (L+q g™ /y;”(if) W

for 1 <i<e, z €p?

PropoOSITION 6.1. Fori=1,...,e— 1, we have
2
EO _ g1l / / (w y >)\<u’j<—w f”))E@ dy d.
r€o* Jyco 46
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PRrOPOSITION 6.2. Suppose that e > 0. Then we have

TK = a¢(6)qe/2 / )\<W45 cul <$>>E(e) dz
x€o 46
= ozq/,(é)qe/2 / )\<W45 -u (x)>E(e) dx
vEp 46
2
e ﬂ # _£ (e)
e [ Lo (e () B0 v

Let I,,(s) be the space of genuine functions f on SL; such that
ay(1)

f(ué(b)m(a)g) =
ay(a)

The space I (s) can be considered as a representation of SLy(F) by the right translation. It is
well known that I, (s) is irreducible if =% # +¢*1/2. We assume I, (s) is irreducible. We define

the element f [[?] € Iy(s) by the unique element such that

£ (g) = ap(1)g=s (/2 K (g)

lal** f(g9) (a€ F*,beF).

—_~—

for g e T'[c1, ¢]. Put
F5(9) = g (28)g° /2 £ (gwys).

Then we have
~ K 0 ~ K
L)  =C-fiY, Iy =C- fi.
The Whittaker function Wgr (g) associated with fi € I,;(s) is defined by

W (g) = €1V2(& ¢7%) g / . fr(wiut(2)g)(Ex) da.
Te
The value of W; is given by

Wi (m(a) = 2 e 120 (a2, ),

¢ ay(a)
ay(1) 211/2 2 _—s\ s 2
———18a v(16&a”, q if 4¢a” € o,
W (m(a)ws) = { aw@ag(a) ot )
0 otherwise.

Moreover, for £, a, z € F*, 0 < ord(z) < 2e,

1
Wt (m(a)u’(82) = w(46~' 27 A)qﬁ(—fa%—lz—l)%4z—1sa2|1/2\11<165a2z—2, @),
(4
if there exists A € 27 1o such that 44262272 = A2 mod o. Here,
w(zA) = (=27 My +N)?) dy.
yeo
If there is no such A € 27 %o, then W+ (m(a)u’(2)) = 0.
DEFINITION 6.2. Let (7, V) be an admissible representation of SLy. A vector g €V is called
y-pseudospherical if p € VF .
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—_~—

PROPOSITION 6.3. Let (7, V) be a genuine irreducible representation of SLo(F') with non-zero
-pseudospherical vector. Then one of the following three cases occurs:

with 1 € U\ o™

. K
Moreover, dim¢ VF© =1.

7. The real metaplectic group Sm)
In this section, we assume F' =R and 1 (z) = e(x). The Weil constant oy (a) is given by

o) = exp(my/—1/4)  if a >0,
v exp(—my/—1/4) if a <O0.

P

The real metaplectic group SLa(R) is the unique non-trivial topological double covering of

SL2(R). The maximal compact subgroup SO(2) can be described as follows. Put
[k(0), 1] if —m <<,

[k(9),—1] if 7 <0< 3m,

where

cosf sinf
—sinf cos 6

k(0) = < ) € SLy(R).

Then the map 6 — k(f) can be extended to a homomorphism R — SO(2), which induces an

isomorphism R/47Z ~ SO(2). The metaplectic group SL2(R) acts on b through SLy(R). We
define a factor of automorphy j : SLy(R) x h — C by

¢Vd if c=0,d>0,

]<[<Z Z>,C},T>= —¢Vd if c=0,d<0,

Cler +d)/? if c#0.

Note that j(g, 7) is the unique factor of automorphy such that j([g, ¢], 7)% = j(g, 7), where j(g, 7)
is the usual factor of automorphy on SLa(R) x b.

For non-negative integer s, let D;l(l /2) be the lowest weight representation of SLy(R) with
lowest weight x + (1/2). The representation D:Jr(l /2) has a unique Whittaker model for 1. The

Whittaker function with weight x 4 (1/2) is, up to constant, given by

o 2k+1 )
Wolm@k) = (203) a0 el + (/28

8. Automorphic forms on Sm)

In this section, we recall the theory of Hilbert modular forms of half-integral weight and
the theory of automorphic forms on the metaplectic groups. For more detail, one can
consult [Shi87, Shi93, Wal81].

1988

https://doi.org/10.1112/50010437X13007276 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007276

THE KOHNEN PLUS SPACE FOR HILBERT MODULAR FORMS

Let F' be a totally real number field and v be the non-trivial additive character of A/F
such that the infinity component of 1 is given by = +— e(x) for any real place. Let & be a set of
bad places of F', which contains all places above 2 and co. We also assume that & contains all
non-Archimedean places v such that cy, # 0. Set

SL2 6 = H SL2 X H SLQ Ov
vES vgS

The double covering of SLa(A)gs defined by the 2-cocycle [],cs €u(91,0, 92,0) is denoted by

SLy(A)g, where ¢, is the Kubota 2-cocycle for SLay(F).
For & C &', we can define an embedding

Lg, : Sm)e - Sm)e'
[(gv), ¢l — |:(gv)a ¢ H Sv(gv)} :
vEG'\S

—~—— e~ —

Here, s, : SLa(0,) — SL2(04) : gy — [gu, Sv(gv)] is the unique splitting of the covering SLa(0,) —
SLy(0,) for v ¢ &. The adelic metaplectic group SLa(A) is the direct limit lim SLy(A)g. Then

—_~— P S N

SL2(A) is a double covering of SLa(A) and there exists a canonical embedding SLo(F,) < SLa(A)
for each place v of F. It is well known that SLa(F') can be canonically embedded into SLa(A).
In fact, for each v € SLyo(F'), the embedding is given by ~+ [y, 1] for sufficiently large &.
Let []] SLQ( ») be the restricted direct product with respect to SU(SLQ(UU)). Then there is
a canonical surjection [, SLo(F,) — SLQ(A). The image of (gy)y € [[, SLQ( F,) is also denoted
by (gv)v- Note that this expression is not unique for an element of SLo(A). If = (z,), € A is
an adele, we define uf(z) and u’(z) by uf(z) = (u’(x,)), and W’ (z) = (W’(x,)),, respectively.
Similarly, if a = (a,), € A is an idele, then we put m(a) = (m(ay)),.

Recall that a function f on SLa(A) is a genuine function if f(g[1l2,(]) =(f(g) for any
g € SLa(A) and ¢ € {£1}. Suppose that a family of genuine functions f, is given for each place v
of F. We assume that there exists a set of bad primes & such that f,(g,) = 1 for g, € s,(SLa(0y)),
v ¢ &p. Then one can define a genuine function [], fu by (I], fo)((90)v) =11, fo(g0)-

Let SLa(Af) be the finite inite part of SLa(A) and I'; a compact open subgroup of SLa(Ay). The

inverse image of I'; in SLQ(A) is denoted by F’ A character &’ F’ — C* is called a genuine
character if €/([12, —1]) =-1.

Let {001, ...,00,} be the set of infinite places of F. The embedding F' < R corresponding
to oo; is denoted by ¢;. Put I" = SLa(F) N T x SLa(R)™.

As usual, we embed SLo(F') into SLa(R)™ by ~v+ (¢1(y), ..., tn(7)). Suppose that k=
(K1, ..., Kkp) €Z" with K1, ..., Kk, >0. We define a factor of automorphy Je'mt(1/2) (v, z) for
vel”and 2= (z1,...,2,) €H" by

Js Kt 1/2) H 8 ’Y, ]i[‘7 Lz 7 Z)Qn i+l
<00

Let M,y (1/2)(T",€') (respectively S, (1/2)(I",€’)) be the space of Hilbert modular forms
(respectively Hilbert cusp forms) on h” with respect to the automorphy factor J e'nt(1/2) (7, 2).
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Thus each element h(z) € M,y (1/2)(I", ') satisfies
h(v(2)) = J YD (y, 2)h(2)

for any v € IV and z € h".
The element h(z) € M /2)(F’ ,€') can be considered as an automorphic form on

SLQ( )\SLQ( ) as follows. For each g € SLy(A), there exist v € SLa(F'), goo € SLo(R)™, and
gr € T} such that g = yJoogr by the strong approximation theorem for SLo(A). Then we set

n

on(9) = M(Foo (D)€' (@) [ [ G (Goo,, 1>+
i=1
Here, i=(v/—1,...,v/—1) € h™. Then ¢} can be considered as a genuine automorphic form on

o~

SLa(F)\SL2(A). We set

Ast(1/2)(SL 2(F)\SLa(A); T, &) = {on | h(2) € M 1/2)(T €},

AL ) (SLa(F)\SLa(A); T, ') = {ion | h(2) € Seyajn) (T, )}

—_~—

For each ¢y 6AH+(1/2)(SL2(F)\SL2(A);fg,6’), the element h € M, 4 (1/9)(T") is recovered

as follows. For z=(z1,...,2,) €h", there exists goo = (Goo, - - - s Ioo, ) € SLa(R)™ such that
Z = goo(i). Then we have

We set

Ay (1/2)(SLa(F J\SL(A = |J Acryz)(SLa(F)\SLy(A); T, £),
(The")

Azuj?l/g)(SLZ(F)\SLZ(A)) = U -A:f?l/g) (SLQ(F)\SIQ(A); f;a 5/)7
(The)

where (f’f, ¢’) extends over all pairs of compact open subgroups f; C SLa(Af) and genuine charac-

ters ' : T4 — C*. Then SLa(A¢) acts on A, (1/2)(SLa(F)\SLa(A)) and AP, (SLy(F)\SL2(A))

by right translation p. The action of SLa(Af) on U . M4 (1/2)(T", €') is also denoted by p.

Note that the right translation p induces the left action of the Hecke algebra H(SLy(A¢)) on
Am+(1/2)(SL2(F)\SL2(A)) by

—_—

p(#)e(g) = 3(91)¢(gg1) dg1 (6 € H(SLa(Ay))).

/smmﬂ}

Assume that

h(z) = Z c(€)e(éz) € My (12T, €").

(eF
Then one can easily show that

p(u Z¢1v§x e(lz) (zel)

(el
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if v is a non-Archimedean place of F'. Similarly, suppose that a € F* is a totally positive element.
Denote by a¢ the finite part of the principal idele a € F*. Then we have

p(m(ar)h(z) = o=~ Dh(a~22),
where a—#~(1/2) = T, vi(a)~ri—(1/2),

For irreducible cuspidal automorphic representation o of SLa(A), we denote by o[k + (1/2)]
the space of vectors of o which has weight ; + (1/2) at the real place oo;. Then we have

A%, 1 (SLa(F)\SLa(A)) = P olk + (1/2)].

o

Here, o extends over all irreducible cuspidal representation whose oco;-component is a lowest
weight representation with lowest weight x; + (1/2).
For each pair of fractional ideals a and b such that ab C or, we define a congruence subgroup

F[a, [l] C SLa(F') by
T'[a, b] = {(i Z) € SLy(F)

Similarly, if v is a non-Archimedean place, we define a compact open subgroup I';[a,, b,] C
SL2 (F U) by

a,deoF,bea,ceb}.

T,[ay, by] = { <‘cL Z) € SLy(F))

Put T =T[0.', 405 and T, =T, [0, !, 40, ], where 2 is the different for F/Q.

Suppose that £ = (k1, . .., kn) € Z", K1, . . ., K = 0. Let n € 0™ be a unit such that Np/q(n) =
[T, (—1)". We fix such a unit 7 once and for all. Put ¢(z) =1 (nz). In this setting, we have
¢y, = 0y = 00, for any non-Archimedean place v. There exists a genuine character ¢, : I', — C*
such that wy, (9y)P0s = v(gy) *do,w for each non-Archimedean place v by Lemma 1.1. Here,
¢0,0 € 8(F) is the characteristic function of 0,. We define a factor of automorphy jrt/2)m (v, 2)
foryeT and z=(z1,...,2,) €H" by

a,deov,beav,cebv}.

jﬁ+(1/2)m(’77 Z) = H 611([77 1]) H 3([”(7)7 1]7 Zi)2m+1‘
=1

V<00
When there is no fear of confusion, we simply write 55T(1/2) (v, 2) for j&+(1/2m(~, 2).

DEFINITION 8.1. Let T', s, and 7 be as above. We denote by M, (1/2)(I") the space of Hilbert

modular forms for I’ with respect to the factor of automorphy j*+(1/2) (v, z). We also denote by
Swt(1/2)(') the subspace of M, (1/2)(I") which consists of all cusp forms.

Remark 8.1. When ky=---k, =0 and n=1, the automorphy factor jl/z(% z) satisfies the
formula

00(7(2)) :jl/g(Va Z)HO(Z)a (81)
where 0y(z) is the basic theta function given by
bo(z) = Z e(£%2).
§€OF

In particular, when F' = Q, our definition of j5t(1/2)(y, z) agrees with classical definition. For a
proof of the formula (8.1), one can consult Shimura [Shi85], although our normalization of theta
function is different from that given in [Shi85]. (Our 6y(z) is 6(2z, 0; lp) in Shimura’s notation.)
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From now on, we set G = SLy and denote SLa(F)\SL2(A) by GF\C?A to simplify the notation.
Put EX =], <oo EXK. Then EX can be considered as a genuine locally constant function on

SLo(Af) with compact support. Put

AH(l/Q)(GF\é&)E“ = {p € Aui(1/2)(Gr\Ga) | p(EX)p = 0},
A ) (GR\G)P" = {p € AL 1) (Gr\GA) | p(EX ) = ¢}
Clearly,

An+(1/2)(GF\é’\1/%)EK C A+ 1/2)(GF\@;; I't,e),

AR ) (GR\GR)P" C AT (GR\Gai T, ).

DEFINITION 8.2. Let M,{Jr(l/z)( B CM,,H(UQ)(F) be the subspace corresponding to the
subspace Ay (1/2)(Gr\Ga)"" C Awyq)2) (Gp\Ga). Similarly, let 5~+(1/2)( )E" C Spp1/2)(T) be

the zubspace corresponding to the subspace Agfpl (1/2) (G P\Ga)E" C Agf?l /2)(G #\G»). In other
words

MH+(1/2)(F) = {h€ M, (12T | p(EX)h = h},

Ser(1/2)(D)F" = {h € Sui(1/9)(T) | p(EX)h = h}.

K

We identify M +(1/2)( VE E* and A,{+(1/2)(GF\CA¥:\)EK. Similarly, we identify Sy (12 (D)E
and AP (Gp\Ga)E". By Proposition 6.3, we have

Kk+(1/2)
5n+(1/2)(F)EK = @ olk + (1/2))Fx

P

where o extends over all irreducible cuspidal automorphic representation of SLa(A) which satisfies
the following conditions (i) and (ii).

(i) If v is a non-Archimedean place, then o, ~ I;(s,) for some s, € C.

(ii) If oo; is a real place, then o, is a lowest weight representation with lowest weight

ki + (1/2).

We also consider automorphic forms on Z(A)GLy(F)\GL2(A), where Z is the center of
GLy. We assume k; > 1 for i =1,2,...,n. Let K be a compact open subgroup of GLa(Ay).
Choose a set of elements {f1, ..., Oy} such that {det f1,...,det By} forms a complete set of

representatives for A* /FXA*?(det k). We may assume 3 € GLa(A¢) for t =1,2,..., h. Then
we have GLy(A) =[], Z(A)GLy(F)8:KGLT (R)", and so

h

Z(A)CLa(P\GLa(A)/K - 50(2)" = [T ravp".

where Ty = GLo(F)NZ(A)BKB'GLY (R)® for t=1,...,h. Let Ss.(I'y) be the space of
Hilbert cusp forms on h™ with respect to I';. Then (fi(2), ..., fu(z)) € ®}_;S2.(T¢) lifts to an
automorphic form ¢ on Z(A)GLy(F)\GL2(A) by

¢( ft goo H] gooazz 2517
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for g = 2B gock, with z € Z(A), v € GL2(F), goo = (goor» - - - » §oo,,) € GLg (R)"?, and k € K. Here,
j(g, 2) is the usual automorphy factor for GL§ (R) x b defined by

(g, 2) = |det g| 7% (cz + d), <g = (Z Z) € GLF (R),z € h> :

From now on, we set H =PGLy and denote PGLa(F)\PGL2(A) by Hp\Hya to simplify the
notation. We denote A5 (Hp\Ha/K) the space of all ¢ obtained in this way, and put

ASPP(Hp\Hy) = |_J A5 (Hr\H4/K),
K
where K extends over all compact open subgroups of GLg(Agf). For irreducible cuspidal
automorphic representation 7 of PGLy(A), we denote by 7[2x] the space of vectors of 7 which
has weight 2k, at the real place oo;. Then we have
ASPP(Hp\Hy) = EP 7(2x].
T
Here, 7 extends over all irreducible cuspidal representations whose oo;-components are discrete

series representation with minimal weight +2x;. Let Ko =[], .., GL2(0,). Then we have

ASP(Hp\Hy /Ko) = €D [26]",

where 7 extends over all irreducible cuspidal automorphic representation of PGL2(A) which
satisfies the following conditions (1) and (2).

(1) If v is a non-Archimedean place, then 7, is an unramified principal series I(s,).
(2) If oo; is a real place, then 7o, is a discrete series representation with minimal weight

:|:2/€i.
Remark 8.2. Note that AX/F*A*2[], __ 0¥ ~CI*(F)/CI"(F)? where CI*(F) is the narrow

class group of F. Let ai,...,an, be fractional ideals of F' such that their images in
CIT(F) form a set of representative of C17(F)/CI*(F)2. For each t=1,2,...,h, choose an
idele o4 € AX such that oo, = a;0,. Put G, = (0‘61 (1)) € GLa(A¢). Then we have GLg(A) =

[1}-) Z(A)GLy(F)BKCoGL] (R)", and so

>

Z(A)GLy(F)\GLy(A) /Ko - SO(2 H b,

where

T,=Z(F )\<GL2 )N [ FXTlaga, are] - GLT (R )),

V<00

I'y[ay, by] = { (CC‘ Z) € GLo(F))

is the Hurwitz—Maass extension, which is usually denoted by T, (op @ a;) (cf. van der
Geer [Gee88, ch. I]).

a,deov,beav,cebv}

9. Application of Waldspurger’s results

The correspondence between modular forms of integral weight and those of half-integral weight
was first considered by Shimura [Shi73]. Waldspurger [Wal80, Wal91] treated the Shimura
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correspondence in terms of automorphic representations. In this section, we review Waldspurger’s
theory of the Shimura correspondence.

Let F' be a number field and ¢ a non-trivial additive character of A/F. Let Ay be the space
of genuine cusp forms of G F\(’;;. The space of cusp forms orthogonal to the Weil representations
associated to one-dimensional quadratic forms is denoted by Agg. Then the multiplicity of an
irreducible genuine cuspidal automorphic representation in Agg is one [Wal91, Theorem 3].

Let o be an irreducible genuine cuspidal automorphic representation in Agg. For £ € F*, we
put Ye(x) = 1({x). The additive character 1¢ of A/F is called a missing character of o, if

/F\Af <<é T) g) Ye(x) dz =0

for any f € o and g € SLa(A). We denote by 6(o, 1) the theta correspondence of o for the dual
pair SLg x PGLy. Then the theta correspondence 6(o, ¢§_ 1) =0 if and only if 9¢ is a missing

character [Wal80, Proposition 26]. Moreover, if 1)¢ is not a missing character, then (o, @Dg_ 1) ® Xe
does not depend on the choice of £ € F'* [Wal80, Proposition 28]. Here, X¢ is the Hecke character
of A corresponding to F(1/€)/F. Put Wald(o, %) = 6(o, wgl) ® X¢- Then Waldspurger proved
the following theorem.

THEOREM 9.1. Put 7= Wald(o, ). Let L(s, T) be the L-function associated to 7. Then 1) is
not a missing character if and only if the following two conditions are satisfied.

(i) There exists a non-zero 1,- Whittaker functional for o, for any place v.
(ii) We have L(1/2, 1) # 0.

Conversely, let 7 be an automorphic representation of Hp =PGLg2(A). Then the theta
correspondence (T, 1) is non-zero if and only if L(1/2,7)# 0. Waldspurger also proved the
following theorem.

THEOREM 9.2 (Waldspurger [Wal91, Theorem 4]). Let 7 be an irreducible cuspidal automor-
phic representation of Hy such that £(1/2,7) =1, where €(1/2, 7) is the root number of 7. Let ¥
be a finite set of places of F' and 6 > 0 a positive number. Then there exists an element £ € F*
such that the following conditions (1) and (2) hold:

(1) [£ —1|y, <6 for each v € X;
(2) L(1/2,7 ® x¢) #0.

For similar non-vanishing results, see [BFH90, FH95]. For a non-Archimedean place v of F
and s, € C, we define an unramified principal series I(s,) of H, = PGLa(F},) as follows. Let B,
be the Borel subgroup of GLy(F,) which consists of upper triangular elements. Let I(s,) be the
representation of GLg(F),) induced from the character B, given by

a b —18,
<0 d)»—>|ad 5.

Then I(s,) can be considered as a representation of H,.

Now let F' be a totally real number field and v; the non-trivial additive character of A/F
such that infinity component of 1 is given by x+ e(x) for any real place. For £ € F'*, we
put Y¢(z) =11 ({x). We assume k; >1 for i=1,2,...,n. Let 7 be an irreducible cuspidal
automorphic representation of PGL2(A) which satisfies the following conditions (1) and (2).
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(1) If v is a non-Archimedean place, then 7, is an unramified principal series I(s,), s, € C.

(2) If oo; is a real place, then 7o, is a discrete series representation with minimal weight
:|:2/€i.

Let 1 € 0 be a unit such that Np/q(n) = (—1)%i=1 %, We shall show that £(1/2, 7 ® Xy) = 1.
In fact, (1/2, Too, ® Xy) = (—1)" and £(1/2, 7, ® Xy) = (—1, 1), for a non-Archimedean place v.
It follows that

e(1/2,7® %) = (=1)== " ] (-1, n)e.

<00

By the Hilbert product formula, [, .(=1,m)v=1I1i21(=1, Moo, = Npg(n). It follows that
£(1/2,7® Xy) = (=1)==1% - Np/g(n) = 1.

By Theorem 9.2, there exists a totally positive element £ € F* such that L(1/2, 7 ® X¢y,) # 0.
Put 0 = 0(T ® X¢p, Y¢). Then o is an automorphic representation of SLa(A) which satisfies the
following conditions (i), (ii) and (iii).

(i) If v is a non-Archimedean place, then o, is isomorphic to fwn(sy).

(ii) If oo; is a real place, then o, is a lowest weight representation with minimal weight
ki + (1/2).
(iii) We have o C Agp.

Thus Waldspurger’s theorems imply that there exists a one-to-one correspondence between the
set of irreducible automorphic representation 7 of PGL2(A) satisfying conditions (1) and (2) and
the set of irreducible genuine automorphic representation of SLa(A) satisfying conditions (i), (ii),
and (iii).

LEMMA 9.3. Let o be an irreducible genuine automorphic representation of SLa(A) satisfying
the condition (ii). If k; > 1 for some i, then o C Agy. If o C Aqo, then o, is not isomorphic to a
even Weil representation for any non-Archimedean place v.

Proof. Since a holomorphic theta function associated to a one-dimensional orthogonal form
has weight no greater than 3/2 (cf. Shimura [Shi87]), the first part follows. Since even Weil
representations do not correspond to a generic representation of PGLo(F,) by the theta
correspondence for SAfg x PGLg, the latter part follows. O

Suppose that k; > 1 for some i. Then Waldspurger’s theorem and Lemma 9.3 yield a one-to-
one correspondence between the following two sets.

(a) The set of irreducible automorphic representation 7 of PGL2(A) with properties (1)
and (2).

—_~—

(b) The set of irreducible automorphic representation o of SLo(A) with properties (i) and
(ii).

Let EX = I EX be an idempotent Hecke operator defined with respect to the additive

<0 v

character ¢ = 1,
It is well known that there exists a direct sum decomposition

d
ASeP(Hp\Ha/Ko) =EP C- fi
=1
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where f; is a Hecke eigenform for any 1 <i < d. Then the automorphic representation 7; of
PGL2(A) generated by f; is irreducible. Combining the results above and Proposition 6.3, we
obtain the following theorem.

THEOREM 9.4. Suppose that k; >1 for some 1<i<n. Then there exists a direct sum
decomposition

Skt(1/2) (0" = @ C-h

with the following properties (1) and (2).

(1) The cusp form h; is a Hecke eigenform with respect to the Hecke algebra H, for finite
places v12 for any 1 <i <d.

—_—~—

(2) Let o; be the automorphic representation of SLo(A) generated by h;. Then we have
7; ~ Wald(o;, ¥) for any 1 <i<d.

Remark 9.1. In the case k1 = - - - = k;, = 1, the same conclusion holds if S, (1 /2 (I‘)EK is replaced
by Aoo N Sy (1/2) (D) E"

Note that if o0, ~ fwv (sy) for a non-Archimedean place v, then 7, ~ I(s,). The Satake
parameter of f; is ¢, by definition.

Theorem 9.4 implies that the strong multiplicity-one property holds for S, (1/2) (¥ . There
exists a one-to-one correspondence between Hecke eigenforms of Sy (12 (F)EK with respect
to the Hecke algebras H, for v12 and Hecke eigenforms of A5.P(Hp\Ha/Ko) defined up to
constant.

10. A Fourier coefficient formula

Assume that x; > 1 for some i. For each non-Archimedean place v of F' and & € F,,, let ¥, (¢, =)
be the function defined in Definition 4.1.

THEOREM 10.1. Suppose that h(z) =3 .., c(§)e(§z) € SK+(1/2)(F)EK is a Hecke eigenform.
Let f(z) € A5SP(Hp\Ha/Ko) be a Hecke eigenform corresponding to h. Let o, be the Satake
parameter of f for non-Archimedean place v of F'. Then for totally positive element £ € F*, the
&th Fourier coefficient is of the form

c(€) =B [ wog, aw) [] i)/~ /9,

<00 =1

where the constant 3¢ satisfies

Bear = Be [[(=1)"m, ahoo, (@€ F¥).
=1

—_—

Proof. Let ¢(g) € Azlfam)(GF\éX)Ek be the automorphic form on SLy(A) associated to h €

Set(1/2) (T)F™. Consider the Whittaker function

We(g) = / el (@)g)in(Es) da,
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It is well known that the Fourier coefficient ¢(§) is related to the Whittaker function by the
formula c(€) = We(1)e2™#e) If ¢(¢a?) =0 for any a € F*, then we put B¢ = 0. If ¢(£a?) #0
for some a € F*, then replacing ¢ by £a?, we may assume c(¢) # 0. By the uniqueness of the
Whittaker function, we have

9) =0 ] wi.(90)

V<00
for some ¢ € C*. In particular,
=B T 1612 ®u(ng, o) T eité 1/
v<o0 paiey
- ﬁg H \Dv(nf, a'u) H Li(é)(”i/2)7(1/4).
Voo i—1

It is enough to prove that

c(éa®) = G T Wolnga?, o) TTU=1)"n, a)es(€a?) /20D

.,:]:

<00 =1
for any a € F'*. It is easy to see Weq2 (1) = We(m(a)). It follows that
cfa®) =W <m<a>>e2m/@<f“>
a n .. z(1) 2Kk;+1 .
=0 1] ¢ \s i AU H( ; @ ) ti(a?) /DT,
v<oo =1
Note that
ay, (1) ay, (1)
— = : <777 a>1}7
| e T{o o, ()
ﬁ(ad)m,i(]‘))Qm—’—l _ H O‘wcm ]‘ ) a)
i\ (a) i1 W (@) 1
Hence the theorem follows by the product formulas. O

11. Review of the result of Baruch and Mao

In this section, we review the result of Baruch and Mao [BMO07]. First we recall the definition of
two local invariants e(p, ¢) and e(p, ). Let F' be a local field and 1 be a non-trivial additive
character of F. Let (m, V;) be an irreducible admissible unitary representation of PGLo(F).
A 1-Whittaker functional L of 7 is a linear map V,; — C such that

L(w (¥ (z))p) = ¢(x) L(¢)
for any « € F'. The Whittaker function W (g) associated to L and ¢ is given by

Wolg) = L(w(g9)¢) (9 € PGL2(F)).
We assume W, (12) # 0. Consider the inner product

o (GG E o
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Here, da is the self-dual Haar measure of F' with respect to . Then Baruch and Mao defined
the local invariant e(p, ¥) by

e(p, ¥) = m(/jili))’?- (11.2)

Note that e(p, 1) does not depend on the choice of L.

—_—

Let (7, Vz) be an irreducible admissible unitary representation of SLo(F). A -Whittaker
functional L of 7 is a linear map V7 — C such that

L(7(u(2))p) = ¢ (x) L(p)
for any = € F. The Whittaker function VV; (§) associated to L and ¢ is given by
W5(g)=L(7(9)3) (3 € SLa(F)).

We assume W ([12]) # 0. Let {d;} be a set of representatives for F//F*? with d; = 1. Given a
y-Whittaker functional L, Baruch and Mao proved that there exist s5,-Whittaker functionals
{L%} such that L% = L and such that the inner product

& =3 2 S B0 W )W nfa)

lal

—_—

is SLo(F')-invariant. Here, ng( ) = L% (). Then the local invariant e(, 1) is given by

~ _ (@7 @)BM
O R (:5)

Now, let F be a totally real number field and & C Agg be an irreducible cuspidal automorphic

representation of SLy(A). Put m = Wald(7, ¢). We first assume that ¢ is not a missing character
of 7. Note that in this case, 7 =6(m, ¢) and L(1/2,7) #0. Let S be a set of bad place of F
containing all places of v where v, is not of order 0, and all places where 7, is not unramified.

For ¢ = @y, € ™ and @ = ®,p, € 7, Put

W (g) = /F P (g €POLy(4)

P

W) = /F | PEEG e (€ SLalh)

We assume W:f (12) #0 and Wg (12) # 0. Note that such ¢ and @ exist by our assumption. We
choose the Haar measure of dg on SL2(A) and dh on PGLy(A) as follows (cf. Lemma 9.1
of [BMO7]). The Haar measure dg =[], dg, and dh =[], dh, are the product measures. If v is
non-Archimedean, then dg, and dh, are normalized so that fSL2( o) dg, = fPGL2 (00) dh, = 1. For
SLy(R), the measure is given by dg, = (27)~*|a|~2da dz df, where g, = u*(2)m(a)k(#). Similarly,
for PGLJ (R), the measure is given by dh, = (27)~!|a|~2da dx df, where h, is the image of
u?(z)m(a)k(0). Then [BM07, Equation (4.4)] says

WL weay))? e(v, Do)
Ga ten ol Gy )
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Here, the inner product (p, ¢) or (@, @) is taken with respect to the Haar measure chosen as
above. It is well known that

Vol(PGLy(F)\PGLy(A)) = 2533/ 2ep(2),

Vol(SLa(F)\SLa(A)) = D%/2p(2),

where D is the discriminant of F' and &p(s)=Tgr(s)"((s) is the complete Dedekind zeta
function. Thus, in (11.4), we may and do replace the inner products (p, ¢) and (@, @) by the
inner products with respect to the Tamagawa measures.

It can be shown that

WE L)1 _ H rW (DPPL(L, 70, Ad)
o) 1 , Ad (v, pu) L(2, L)
Here, L(s, m, Ad) is the adjoint L-function for 7, and L(s, 1,) is the local Euler factor for p(s).

This can be proved by taking the residue of the integral representation (see Jacquet [Jac72]) of
L(s, m™ x m). See also [FLO12, Appendix A]. It follows that

WE (1) p(2)L(1/2,7)
(¢, @)  2L(1,7, Ad)

H Bo(@o, o), (11.5)

where
Bl ) W2 (1)PL(1, my, Ad)
e T (G, B L2, L)L ()2, m)
In the case when 7, does not have a non-zero 1,-Whittaker functional, we set 3,(@,, ¥,) = 0.
Then the formula (11.5) still holds when 1) is a missing character of 7 by Theorem 9.1.

12. A generalization of the Kohnen—Zagier formula

In this section, we discuss a generalization of the Kohnen-Zagier formula [KZ81]. A similar
result for Jacobi forms was also treated by [Kojl2]. The following lemma follows from
[BMO07, Proposition 8.8].

LEMMA 12.1. Suppose that F' =R and {¢(x) = e({x), £ > 0. Assume that (7, Vi) is the lowest
weight representation of minimal weight k + (1/2) and ¢ € Vi is a vector of weight k + (1/2).
We define the Archimedean L-factor as in the work of Tate [Tat79]. Then we have

BB, thg) = e~ 1Hangrr(/2),

Let F' be a non-Archimedean local field. Let (7, Vz) be an irreducible admissible unitary

—_~—

representation of SLy(F'). Put 5 = 7 o 75, where 75 is as in Definition 6.1. Thus there exists an
isomorphisan Zs : Vi# — Vi, such that Zsom =75 0 Zs. If L: V7 — C is a ¢»-Whittaker functional
of 7, then Lo 1'5_1 is a 1g-Whittaker functional of 75. Then it is easily seen that

e(@, ¥) = [8]'e(Z5(¢), ¥s) (2 € Va).
LEMMA 12.2. Suppose that F is a non-Archimedean local field. Suppose also that 7 = I,(s) is

P

an irreducible unitary representation of SLo(F'). Let ¢g € I~¢(s) be a non-zero 1-pseudospherical
vector. Then we have

B(o, p) =g*/*27'D| - [¥(D, X)[*.
Here, X = ¢~ % and ¥(D, X) are as in Definition 4.1.
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Proof. We may assume that cy, =0. We follow the argument of Baruch and Mao [BMOT].
We prove this lemma under the assumption that f¢(s) is a unitary tempered principal series
(i.e. s € v/—1R), since we need only such cases. As for the complementary series case, the reader
can refer to [BM07, §8.2]. For ¢, @' € I;(s), we define an inner product (3, ¢') by

e / Bl @) By ) da

as in §4. We define a 1ps,-Whittaker functional LP% by

f/D‘Si(@) _ ‘D(si‘l/Z / QZD(WI . uﬁ(g;))ngi(x) dx (,5 S L/J(S).
zeF

Put Wé?& (9) = L% (). Baruch and Mao proved that

. 2 ~ DS ey oy S
Go= Y 2 WP ()W () 1
dieFx/sz ac k>

for any @, @ € I;(s) (cf. [BMO7, §8.1]). Thus we have (¢, #)pm = (@, ¢'). We may assume
P = f;g, where f; is the 1-pseudospherical vector defined in §4. By Proposition 4.7, we have
(G0, $o) = |2|/(1 4+ ¢~1). On the other hand,

(W& (D) = DI - Wys p (1)) = DI |7(D, X)¥(D, X)[*.

Here, v(D, X) is as in Definition 4.1. Let 7 = 0(7,v~!) be the unramified principal series of
PGLy(F) with Satake parameter {X, X~'}. Then we have 7 = (7, ¢5') =7 ® Xp and
L(L,mAd) _ (1—g¢*)(1—xpg "*X)(1 —xpg'?X)

L(2,1)L(1/2,m) (1-¢'X)(1—-gH(1-qg X2
=(L+q¢ (D, X)[*.

Hence the lemma. O

Now we return to the situation of §10. Let F' be a totally real number field. Let h(z) =
> ccop c(§)e(€2) € Ski(1)2) (T)E" be a Hecke eigenform. We denote @y, € A,i_;'_(l/g)(GF\GA)EK by

—_—

a corresponding automorphic form on SLa(A). Let v¢ : F\A — C* be the additive character
given by ¢¢(x) = 11 ({x). Then we have

W (1) = e()e 2.

Let 0 and 7 be as in §9. Thus ¢ be the automorphic representation of é& generated by ¢p
and 7 = Wald(o, ¢,). Note that 7, is tempered for any v by Blasius [Bla06], and so the Satake
parameter o, has absolute value 1.

Now we apply (11.5) for 7 =0, ¢ = @p, ¥ = 1¢. Note that 7 = Wald (o, ¥¢) = 7 ® Xy¢, where,
Xne¢ is the Hecke character of A* /F* corresponding to F'(y/n)/F. Then we have

WE(12)2  €r(2)L(1/2,7© Xye) )
<£h;95h> T 2L(1, 7, Ad) . gﬁv(soh,mwg,v).
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Here, the set S of bad places consists of all infinite places and finite places which divide
29 rNp/g(§). Let Soo be the set of infinite places. By Lemma 12.1, we have

T 5o(@hs ) = e~ i@t TT 1)t 1/2),

VESo i=1

Here, |x| = | ki. If v is a finite place, then ¢y, , is a 9, ,-pseudospherical vector. By applying
Lemma 12.2 for ¢ =, , and D = n~L€, we have

T Bo(@nos te) = 270 "Ny ()71 T W0, o) ?

V<00 <00

Putting this together, we obtain

2
<S|§}E€25|h> _ ,}D}/2271+3‘K‘§F( ) (]—/f 77:(8‘;31(775 H ‘\I/ 7757 av ’2 H L H — 1/2) (121)

The following theorem can be considered as a generahzatlon of the Kohneanagler formula
[KZ81].

THEOREM 12.3. Let h =3, c(§)e({z) € SH+(1/2)(F)EK N Ao and ¢, € AH+(1/2)(GF\§:Q)EK be
the automorphic form corresponding to h. The inner product (¢n, ¢n) is defined by

(Phs Pn) = / |@r(9)]? dg,
SLa (F)\SLs (4)

where dg is the Tamagawa measure for SLo(A). Put 7 = Wald(o, ¢,,), where o is the automorphic

representation of SLa(A) generated by ¢y, For totally positive element £ € F*, define (B¢ to be
as in Theorem 10.1. Then we have

2 .
J/B§|~ _ ®¥22,1+3‘K‘§F(2) L(1/2,7 ® Xne) '
(Pn, Pn) L(1, 7, Ad)
Here, L(s,T® Xn¢) and L(s,7,Ad) are complete L-functions with gamma factors as in
Tate [Tat79).
Theorem 12.3 follows from Theorem 10.1, (12.1), and the following lemma.

LEMMA 12.4. Let notations be as above. Then there exists an element a € F'* such that

H \Iiv(nﬁaQ, ay) #0.

V<0

Proof. Replacing ¢ by &£b? for some b € 0, we may assume fne,o = 0 for any finite place v. Put
a=[lcoo pv"g ", Choose a finite place vo such that a='p, = (a1) is a principal ideal. We may
assume that v € S and ¢y, is sufficiently large. If a, + oyt — Xne v, qv_ol/ 2 # 0, then a; satisfies
the condition of the lemma. Suppose that ay, + ay L Xng,voq;ol/ ? = 0. Since Qv, 1s sufficiently

large and xye v, = £1, @, is not a root of umity. (If ¢ is a primitive mth root of unity with
m > 12, then [Q(¢ 4+ ¢71) : Q] > 2.) It follows that the sequence {af', a2"# ..} is dense in the

Vo )
unit circle, where hg is the class number of F. Therefore one can find a positive integer m such

that
—mh h _ _
’[T;I’LOhF+2 avom F— 2 _ Xng quv01/2< vmo F+1 _ avomhp 1) % 0.
Then an element a € F* such that (a) = a~!p# 1 satisfies the condition of the lemma. O
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13. The Kohnen plus space

In this section, we assume k1, ..., ky = 0.

DEFINITION 13.1. Suppose that £ € F'. Then £ = 0O mod 4 if and only if there exists y € op such
that £ = y® mod 4op.

Obviously, if € =0 mod 4, then £ € op. For £ € F' and a non-Archimedean place v of F, let
fe » be the invariant defined in Definition 2.2 with respect to F),.

LEMMA 13.1. Suppose § € F. Then £ =0 mod 4 if and only if f¢ ,, > 0 for any place v < oo of F'.
Proof. Note that the condition is local, and so the lemma follows from Lemma 2.6. O

DEFINITION 13.2. The Kohnen plus space M Jr(1/2)( ) is the space of h(z) =3 ¢, c(§)e(§z) €
M,y (1/2)(T) such that ¢(§) =0 unless n§ =0 mod 4. We also set ST o (1/2) ()= M,j+(1/2) ()N
Swt(1/2)('), which is also called a Kohnen plus space.

Let v|2 be a place of F. The symbols ¢, w, e, etc. defined with respect to F, are denoted by
Quv, Wy, €y, etc.

LEMMA 13.2. Suppose that h € M, (1/2)(T). Then for 0 <i < ey, p(ES”)h = h if and only if h
has a Fourier expansion

hz)= Y cfe(82).

£€0F
fns-,eri}O

Proof. The case i = e, is trivial. We may assume that h = p(E£i+1))h and that ¢(§) =0 unless
frew +1+ 12 0. By Proposition 6.1, we have

p(ES)h(2)

X 27;37
=q;" Z/ / ¢1v<w 1y )p(uﬁ<—ig >>h(z) dy dz.
CCEUU YEO, U v

2i 2 2i
| / : %v(“’aﬁ“’ Jol(-557) e o
z€o, Jy€Eo,
= e(&z) / / zph,(w x(ny _€)> dy dx
YEO, v

§€o
e o +it+120

= Y c(&)Tre, 2i(0, —né)ve(£z).

§€0F
fre,oti+120

Here,

By Proposition 2.8,

q_eu+i(1 _Qv_l) if fnf,v +Z>07

T2e1 —22( 775) _qv_e il if fng,y +1+1=0, Xnév = 0,
0 otherwise.
Note that f,¢, + ¢+ 1= 0 implies x,¢, = 0. Hence the lemma follows. O
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PROPOSITION 13.3. Suppose that h € M, (1/9)(T'). Assume that h(z) has a Fourier expansion

)= ) c()e(¢z).
o
fnf 1120
Then we have p(EX)h = h.
Proof. By Lemma 13.2, we have p(Ejy E ))h h.Put TK = (1 + ¢, M )EX — q;lEf}l). Then we have
PES)M(z) = (g0 + 1) h(2) + (14 g, )7 (T, )h(z).
By Proposition 6.2, we have

p<T5<>h<z>=awv<5v>qi"/2p<w4§v>/ﬁ ( <
>)

= vy, (8,)5"p(was, )/xepv ( <

var [ [ ()~ )) h(z) dy da.
T€0y YEO,
As in the proof of Lemma 13.2, we have
/ / w1v< )( < i )h ) dy dz
YE0, 61}
x
—ir Y cleten) [ [ Loy )dydx
Ecor TE€O0Y
fng u>0
=q5" Y c(&)Tae, (0, —1&)ve(Ez)
{c€or
fn&,v>0

= (1 ¢, )h(2).

On the other hand, observe that

[ A ) prsees | o) o

smce Zﬁ >0 and ord,(£) >2e, —1 imply ord,(£) >2e,. It follows that p(TK)h(z)=
Yh(z) 4+ (1 — g;1)h(2), and so we have p(T™)h(z) = h(z). Therefore we have

p(EF)R(z) = (g0 + 1) 7'h(2) + (1 + ¢, 1) " h(2) = h(2).

Thus we have proved the proposition. O

K

Proposition 13.3 implies M (1/2) () c MH+(1/2)(F)E . We shall show the converse. For a

P S N

finite idele a = (ay), € Af, we define an element w(a); € SLa(A¢) C SLa(A) by w(a)t = (gv)o,
where g, =w,, for v < oo and g, =1 for v|oo. Let d be the finite idele whose vth component
is d,.

PROPOSITION 13.4. We have M, (12 ()" ¢ M* 2D

Proof Put K =[],
8(2716/0), where 6 =[]

I'[o, 1, 0,]. Then K is a maximal compact subgroup of SLa(A¢). Put 8¢ =
0,. Note that 2716/6 can be canonically identified with 270z /op.

<00
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Then as in Proposition 3.3, K acts on 8o by the finite Weil representation €2,,. By Proposition 3.3,
€1y, is an irreducible representation of K. For A € 27 1o /o, we denote by ¢y the characteristic
function of A + 2 tor. Then {¢) |\ €2 lor/or} is a complete orthonormal basis of 8y. The
basis {¢)} satisfies the following conditions:
Qy (™) o = ¢o,
~—1
Qu(uf(2))pr = Y (N2)pp  (z €D ),
Qu(w(@)r)go =272 T] aw.(80) > o
v<0o A€2~top fop

Here, = 0,10 and ¢y = [1,<o0 %o Suppose that h(z) € MH+(1/2)(F)EK. Put

RO =22 m TT ay, (8,)(2, 84)0 - p(w(28); 1)A(2).
V<00
Then we have hl° € M, (12)(T') and p(e®)hl% = pl%), Let V be the vector space over C generated
by {p(k)hl% | k € K}. Since eX is a matrix coefficient of the irreducible representation Qy, Vis

isomorphic to 8y as a representation of K. Tt follows that there exists an isomorphism i : §g ~ V.
such that i(¢g) = A%, Put AN =i(¢y) for each A € 27 0 /0p. Then we have

p(ef )Rl = 1], (13.1)
p(ué(@)h = g (W2a)h (wed ™, (13.2)
p(w(®))hl =272 I ay,(8,) > wl. (13.3)
v<oo A2~ 1or for
Note that
> w ) =272 T ay,( (w(8))h%(2)
AE2-Yop JoF v<00
= 220 5 H 2 TT(2,8,), - p(w(8)sw (28); 1)A(2)
V<00
= 9Xiz i+ (/2) L (m(2))h(z)
= h(z/4).
Put

W(2) =" ex(©)e(€z/4).

fer

~—1
For x €0 °, we have

p(uf ()N (2) = v (W2) Y ex(€)e(z/4)

fer

=1 (N’2) Y ea(§)e(€z/4)

{er

by (13.2). On the other hand, we have
p(uf(@)hN(2) = 3~ ex(©vns(Ex/4)e(E2/4).

el
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It follows that cy(¢) =0 unless & = 4n)\? mod 4op. Thus, we have
hz/4) = Y W@ = YT c©e(z/4),
)\EQilﬂp/OF 7755[\(4)

where

0 if n¢ # 0 mod 4.

Note that for each ¢ € F, there exists at most one A € 27 'op/op such that £ = 4n\? mod 4op.
Hence the proposition follows. O

© {C)\(g) if £ =4n\? mod 4op for some A € 27 lop/op,
C =

By Propositions 13.3 and 13.4, we have the following theorem.

THEOREM 13.5. We have

K

E E
M,:r(l/Q) (F) = MH+(1/2) (F) ’ S:+(1/2) (F) = Sn+(1/2) (F)

PROPOSITION 13.6. Suppose that h(z) =3, c(§)e(§z)€ M,jJr(l/z)(F). Then h(z) =
> ne=x2 mod o C(4€)€(€2) satisties the conditions (13.1)~(13.3) for any A € 2 top/op. Conversely,
if {WN(2) |\ €27 op/op} satisfies the conditions (13.1)—(13.3), then
W)= > W@z e M7 (D).
)\62710}?/0}7

K

Proof. The first part is already proved in the proof of Proposition 13.4. Suppose that {AlN(z) |
A €2 top/op} satisfies the conditions (13.1)-(13.3). Then we have

h(z) = 2 E s ST pm(20)n ()

)\62710[0/017
=272 T o, () - p(m(20)w(8)) R (2)

v<o0

= 27255 T g, (8,)(2, 80)0 - p(w(20)e) A ().

v<o0

By (13.1), we have p(EX)h = h. O

14. Relation to Jacobi forms

In this section, we assume that Y © ; x; =n mod 2. We also assume that n=—1, and so

W(x) =1(nx) =1 (—x) =11 (x). Since the relation between Kohnen plus space and the space of
Jacobi forms is already established for F = Q (see [EZ85]), we assume F # Q. Let G’ be the
subgroup of Spy(F') consisting of all elements of Spy(F) whose first column is equal to {(1 00 0).
We define the Jacobi group I'/(1) by

-t 8)ee

For a holomorphic function ¢(z,w) on (z,w) € h” x C", we set

i((4 ) —etrstm) @ew

A, D e MQ(OF), Be Mg(bg‘l), Ce MQ(DF)}.

2005

https://doi.org/10.1112/50010437X13007276 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007276

K. HIRAGA AND T. IKEDA

Then ¢(z, w) is a Jacobi form on weight x + 1 and index 1 if q~5|,§+w = ¢ for any v € I'/. Note that
we do not need the cusp conditions by the Kécher principle. A Jacobi cusp form is a Jacobi form
with some cuspidality condition at the cusps. The space of Jacobi forms and the space of Jacobi
cusp forms of weight x + 1 and index 1 is denoted by J.411(T'/) and JT (D7), respectively.
A Jacobi form can be considered as an automorphic form on G7(A).

For A €2 top/op, we define

Or(zw) = e((£+N)22)e(2(¢ + Nw).
{€or

The element A\ € 2710 /O is called the theta characteristic of 0)(z,w). Since 0)(z, w) is the
theta function associated to ¢y € 8y, we have

plelt )80 = 6o,
p(ud(2))0y = Yre(N22)0y (ze€d ),
p(w(d))bo =272 [] aw,.(60)- D i

v<0oo A€2-top [op

Here, e{b{l is the idempotent defined with respect to 1. Note that egl = 67, where eX is defined
with respect to .
It is well known that a Jacobi form ¢(z, w) has a theta expansion

pew)= 3 0z wk(2),
)\nglﬁp/ﬂp
where k) (z) is a modular form of weight x + (1/2) with respect to some congruence subgroup.
Note that ¢(z, w) is a Jacobi cusp form if and only if ky(2) is a cusp form for any A € 27 tor/op.
Conversely, suppose k) (z) is a Hilbert modular form of weight x + (1/2) for some congruence
subgroup for each A € 27tor/or. Then Dorea-topjor N(2, W)EA(2) € Je+11(07) if and only if
p(eK)kO = kOa
A1
p(u(2))ky = Ye(Na)ky (z €0 ),
p(w(8)ko =277 T] aw.(8)- DY k.

v<00 A€2-Yop Jop

For A € 27lop/op and h(z) = Z c(&e(éz) € M:Jr(l/m (T"), we set
—£=0(4)
W)= Y c(4de(éa).
E=—X2 mod op

By Proposition 13.6, we obtain the following theorem.
THEOREM 14.1. The map M:+(1 Joy (D) = w+1.1(07) given by
h(z)— > Oz w)hP(2)

)\6271017/01:

is an isomorphism. The inverse map is given by

Yz wka(z) = > ka(42).

Ae2-lop [op AE2-Yor Jop

This isomorphism induces an isomorphism S:Jr(l /9T = JT(TY).
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Note that the isomorphism M:+(1/2) (T) =~ Je+1.1(I7) is also given by

> c@e(tz) = Y c(dr — mP)e(mz + rw).

—£=0(4) m,rco

15. Examples

In this section, we consider only parallel weights, so the weight (k, ..., k) is just denoted by .

LEMMA 15.1. Assume that the class number of F' is one. Then h(z) =) ., c(§)e({z)€
M:+(1/2)(F) is a cusp form if and only if ¢(0)=0. In particular, dimM:ﬂl/Q)(F)g

dim S, ) ) (D) + 1.

Proof. Let hM(2) (A€ 2 'op/or) be as in §13. Let V be the vector space generated by hlM(z2)
over C. By Proposition 13.6, p([(7)t, £1])hl%) € V for any v € T[0}, 9. Here, (7)f € SLa(Ay) is a
finite part of v € SLa(A). Since the class number of F is one, we have SLy(F) = B(F) - T[0!, 5],
where B is the Borel subgroup of SLs consisting of upper triangular matrices. It follows that the

constant term of p([(7)¢, £1])h(z) is zero for any v € SLa(F). O

For A € 271or/op, we define the theta function 6, (z) by
Or(z) = ) e((E+A)%).
5605‘

If k is even, we define the Eisenstein series F,(z) of weight x by

Bo(z)=2""Co(1— k) + Y Y _ N(a)* 'e(£2) € Mi(SLa(or)).

&cor a|(§)
&0

Here, N(a) is the norm of a.

Ezample 1. Assume that F =Q(v/13). The narrow class number of F is 1, and so the
Hurwitz—Maass extension I'y,(op @ op) is equal to SLo(op)/{£1l}. It is known that
dimcSs(SLa(op)) = 1. In fact, it is spanned by the Doi-Naganuma lift from S4(I'0(13), X13),
where x13 is the non-trivial real Dirichlet character of conductor 13. Theorem 9.4 implies

dimCS;ﬂ(F) =1.Put g(z) = 6p(2)Ea(42) € M5+/2(F). Decomposing g(z) into eigenvectors of some

Hecke operator, we obtain two elements
hi(z) =q— 4q(7+\/ﬁ)/2 _ 4(1(7*\/5)/2 +3¢* + -,
ha(z) = 29 + 10g + 250¢7+V13)/2 4 25047~ VI3)/2 L 610¢* + - - ..

Here, ¢° = e(£2). By Lemma 15.1, we have hy(z) € S;/Z(F) and so S;/Q(F) =C- hi1(z). We give
a table of Fourier coefficients of hj(z) and ha(z) below.
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20010 |2 | 7£V/13 |8 10 | 15++/13 | 16 18
hi|]0O —4 3 13 | —26 39 16
ha 29 | 10 | 250 610 | 768 | 2640 3000 | 6250
26 | | 1943V13 | 20 £4V13 | 224413 | 23 £/13
hi || —26 13 26 —65
hy 2640 2160 4320 10080
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Ezample 2. Assume that F =Q(+/5). The narrow class number of F is 1, and so the
Hurwitz—Maass extension I'y,(op @ op) is equal to SLo(op)/{£l}. It is known that
dim¢Ss(SLa(op)) = 1. In fact, it is spanned by the Doi-Naganuma lift from Sg(I'0(5), X5), where
X5 is the non-trivial real Dirichlet character of conductor 5. Theorem 9.4 implies dimcS7 /2( )=1.

We define operators U, W : M, (1/9)(T') — M,.1(1/2)(T") by

Uih(z) 3 h(zzl/),

vEop [4op

20z
By the result of §13, h(z) € M" (1/2)( ) if and only if WUA(z) =4h(z). Let A1, A2, A3 be the
distinct non-zero elements of 2~ o /0. By explicit calculation, we have

U(63) = 63 + 665,056,

W : h(z) — (=2V52129) " 1/2>h< 1)

W(65) = 6,
U(0y,0,0),) = 465,6,,05,,
W (0,0x,0x,) = 05 — 0,05,0,,.

It follows that fo(z) =463 — 30,,0,,0,, € 3/2( ). As in Example 1, we decompose fy(z)E2(42)
by some Hecke operator, and obtain two elements

hi(2) = q(5+\/5)/2 + q(5—\/5)/2 —3¢3 +2¢* +- -,
ha(z) = 67 + 504¢0+V5)/2 4 504¢6-V5)/2 4 224043 + 9450¢* + - - -

By Lemma 15.1, we have hi(z) € S;F/Q( I') and so 57/2( ) =C - hi1(z). We give a table of Fourier
coefficients of hi(z) and ha(z) below.

26110 |5+V5 |6 8 13++/5 | 14 16 17+ 35
h1 0 1 -3 2 -1 31 —44 —11
ho 67 | 504 2240 | 9450 | 100800 155520 | 298620 | 264600
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