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SUPERCONSISTENCY OF TESTS
IN HIGH DIMENSIONS
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To assess whether there is some signal in a big database, aggregate tests for the global
null hypothesis of no effect are routinely applied in practice before more specialized
analysis is carried out. Although a plethora of aggregate tests is available, each test
has its strengths but also its blind spots. In a Gaussian sequence model, we study
whether it is possible to obtain a test with substantially better consistency properties
than the likelihood ratio (LR; i.e., Euclidean norm-based) test. We establish an
impossibility result, showing that in the high-dimensional framework we consider,
the set of alternatives for which a test may improve upon the LR test (i.e., its
superconsistency points) is always asymptotically negligible in a relative volume
sense.

1. INTRODUCTION

A major challenge in the current “big-data era” is to extract signals from huge
databases. Often, an applied researcher proceeds in a two-step fashion: First, in
order to decide whether there is any signal in the data at all, one performs an
aggregate test of the global null hypothesis of no signal. This global null hypothesis
is typically formulated as the high-dimensional target parameter being the zero
vector. Second, if the global null hypothesis is rejected by the test, further analysis
is undertaken to uncover the precise nature of the signal. Much research has
been directed to studying properties of such a sequential rejection principle (cf.
Romano and Wolf, 2005, Meinshausen, 2008, Romano, Shaikh, and Wolf, 2008,
Rosenbaum, 2008, Yekutieli, 2008, Goeman and Solari, 2010, Heller et al., 2018,
Bogomolov et al., 2020, and the references therein).

Using a powerful test for the global null hypothesis in the first step of such
a hierarchical multistep procedure is of course crucial, and the development of
tests for this hypothesis has therefore attracted much research in its own right. A
typical choice, employed in, e.g., Heller, Meir, and Chatterjee (2019), is to use a
test based on the Euclidean norm of the estimator. This also leads to the likelihood
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ratio (LR) test in the Gaussian sequence model they considered, which is also the
framework in the present article. Although the LR test is a natural choice, one
may ask: Do tests for the global null exist that are consistent against substantially
more alternatives than the LR test? This question is practically relevant, because
one can choose from a large menu of well-established tests, yet precisely which
one to use is not obvious: For example, one could use tests based on other norms
than the Euclidean one, a natural class of tests being based on p-norms (cf. the
classic monograph of Ingster and Suslina (2003)). One could also use a test based
on combining different p-norms as suggested by the power enhancement principle
of Fan, Liao, and Yao (2015) and in Kock and Preinerstorfer (2021). The possibility
of increasing power by combining tests has recently been applied in many types
of high-dimensional testing problems (cf. Xu et al., 2016, Yang and Pan, 2017,
Yu, Li, and Xue, 2020, He et al., 2021, Yu et al., 2021 [testing high-dimensional
means and covariance matrices]; Zhang, Wang, and Shao, 2021 [change point
detection]; Jammalamadaka, Meintanis, and Verdebout, 2020 [tests for uniformity
on the sphere]; Feng et al., 2022 [tests for cross-sectional independence in high-
dimensional panel data models]). Another test that has gained popularity in recent
years is the Higher Criticism. This test dates back to Tukey (1976), and its strong
power properties against deviations from the global null were first exhibited by
Donoho and Jin (2004) and have led to much subsequent research (cf. Donoho
and Jin, 2009; Hall and Jin, 2010; Arias-Castro, Candès, and Plan, 2011; Cai, Jeng,
and Jin, 2011; Barnett and Lin, 2014; Li and Siegmund, 2015; Arias-Castro and
Ying, 2019; Porter and Stewart, 2020). Alternatively, one could use tests based
on combining p-values for coordinatewise zero restrictions. Important early works
include Tippett (1931), Pearson (1933), Fisher (1934), Stouffer et al. (1949), and
Simes (1986). For a review of the classic literature, see Cousins (2007), more recent
contributions are Owen (2009), Duan et al. (2020), and Vovk and Wang (2020,
2021). It is crucial to highlight here that many of the above mentioned tests are
consistent against strictly more alternatives than the LR test, i.e., they dominate the
LR test in terms of their consistency properties; indeed, this is the main motivation
of the power enhancement principle. Hence, the question of interest in the present
article is not whether one can do better than the LR test at all, but whether one can
do substantially better.

We consider the question raised in the previous paragraph from a high-
dimensional perspective. In the Gaussian sequence model, we investigate whether
aggregate tests can be obtained that are consistent against substantially more
alternatives than the LR test. We show that relative to a uniform prior on the
parameter space this is impossible: Essentially, we prove that for any given test
the set of alternatives against which it is consistent, but the LR test is not, has
vanishing relative Lebesgue measure. Hence, no test for the global null hypothesis
can substantially improve on the LR test. From a technical perspective, our proofs
are based on results by Schechtman and Schmuckenschläger (1991) concerning
the asymptotic volume of intersections of p-norm balls and on the concentration
of measure phenomenon.
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Our finding is perhaps reminiscent of Le Cam (1953), who showed (in finite-
dimensional settings and sufficiently regular models) that the set of possible
superefficiency points of an estimator relative to the maximum likelihood estimator
cannot be larger than a Lebesgue null set (cf. also van der Vaart (1997) for more
discussion, Leeb and Pötscher (2006, 2008) for further elucidation, and, e.g., Han,
Phillips, and Sul (2011) for superefficiency-type results in a nonregular model,
namely a nonstationary autoregression). Note that our result does not imply that
one should always use the LR test and not think carefully about the choice of test in
high-dimensional testing problems. If, for example, one is interested in particular
types of deviations from the null, e.g., sparse ones, there may be good reasons
to use a test based on the supremum norm or the Higher Criticism. Furthermore,
albeit very natural, the magnitude of the consistency set is merely one of many
properties that can be used to compare tests. For example, tests are also frequently
compared in terms of, e.g., their minimax detection properties or their local power
against deviations from the null of a specific type. Nevertheless, in analogy to Le
Cam (1953), regardless of how cleverly an alternative test is designed, the amount
of alternatives against which one achieves an improvement as compared to the LR
test cannot be substantial in terms of relative volume. This also supports basing
a combination procedure, such as the power enhancement principle by Fan et al.
(2015), on the Euclidean norm.

2. FRAMEWORK AND TERMINOLOGY

We consider the Gaussian sequence model

yi,d = θi,d + εi, i = 1, . . . ,d, (1)

where y1,d, . . . ,yd,d are the observations, the parameters θi,d ∈ R are unknown,
d ∈ N, and where the unobserved terms εi are independent and standard normal.
Writing yd = (y1,d, . . . ,yd,d)

′, εd = (ε1, . . . ,εd)
′, and θd = (θ1,d, . . . ,θd,d)

′ ∈Rd, one
can equivalently state the model in (1) as yd = θd +εd.

In the model (1), we are interested in the testing problem

H0,d : θd = 0d against H1,d : θd ∈ Rd \ {0d}, (2)

where 0d denotes the origin in Rd. The null hypothesis H0,d is typically referred to
as the “global null” of no effect.

The asymptotic analysis in the Gaussian sequence model (1) relies on d → ∞.
This is a high-dimensional regime in the sense that the number of parameters, d,
tends to infinity. For each d ∈N, we observe a single realization of a d-dimensional
Gaussian vector yd with mean θd and identity covariance matrix. In this sense, the
“sample size” is one for each d.

Remark 2.1. Although the Gaussian sequence model is an idealization, many
fundamental issues of high dimensionality show up already here and insights
obtained within this model carry over, at least on a conceptual level, to many
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other settings. It is therefore widely recognized as an important prototypical
framework in high-dimensional statistics (see, for example, Ingster and Suslina
(2003), Carpentier and Verzelen (2019), Johnstone (2019), or Castillo and Roquain
(2020)). To make this more precise, consider a situation where an estimator β̂d for
a target parameter βd ∈ Rd is available the distribution of which is approximately
normal, that is,

β̂d ≈ N(βd,�d), (3)

for �d invertible. Suppose further that an invertible estimator �̂d ≈ �d is at one’s
disposal, such that

�̂
−1/2
d β̂d ≈ N(�

−1/2
d βd,Id).

Then, testing βd = 0d on the basis of β̂d and �̂d is approximated by testing
θd := �

−1/2
d βd = 0d in a Gaussian sequence model. Precise sets of conditions under

which the above approximation statements hold depend on: (i) the formal meaning
of the symbol “≈”; (ii) the interplay of the dimension of the target parameter and
the sample size used for computing β̂d; and (iii) particularities of the specific setup
under consideration. This has been a topic of intense research interest, and sets of
sufficient conditions for normal approximations in high-dimensional models can
be found in, e.g., Portnoy (1985), Portnoy (1988), He and Shao (2000), Bentkus
(2003), or in more recent work such as Chernozhukov, Chetverikov, and Kato
(2017) and Giessing and Fan (2020). Working directly with a Gaussian sequence
model allows us to bypass normal approximation results, and to focus on concep-
tual issues that already arise in a somewhat idealistic setup. We leave extensions
to other models (e.g., via the above approximation heuristic) to future research.

Remark 2.2. To illustrate Remark 2.1 with a simple relevant model, consider
a linear regression model with nonstochastic design matrix X, say, of full column
rank d, and i.i.d. Gaussian errors with known variance, which we normalize to one
for simplicity. Then the OLS estimator is Gaussian with expectation βd, the regres-
sion coefficient vector, and covariance matrix �d := (X′X)−1, which is known
and can therefore be used as �̂d. Note that in this situation the approximation
statements in Remark 2.1 actually hold with equality.

For a given d ∈N, a (possibly randomized) test ϕd, say, for (2) is a (measurable)
function from the sample space Rd to the closed unit interval. In the asymptotic
framework we consider, we are interested in properties of sequences of tests {ϕd},
where ϕd is a test for (2) for every d ∈ N. To lighten the notation, we shall write
ϕd instead of {ϕd} whenever there is no risk of confusion. We are particularly
interested in the consistency properties of sequences of tests. As usual, we say that
a sequence of tests ϕd is consistent against the array of parameters ϑ = {θd : d ∈N},
where θd ∈ Rd for every d ∈ N, if and only if (as d → ∞)

E
(
ϕd(θd +εd)

) → 1.
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To every sequence of tests ϕd, we associate its consistency set C (ϕd), say. The
consistency set C (ϕd) is the set of all arrays of parameters ϑ the sequence of tests
ϕd is consistent against. By definition,

C (ϕd) ⊆
∞×

d=1

Rd =: �,

the latter denoting the set of all possible arrays of parameters.
Recall that a sequence of tests ϕd is said to have asymptotic size α ∈ [0,1] if

E
(
ϕd(εd)

) → α.

In this article, following the Neyman–Pearson paradigm, we focus on the case
where α ∈ (0,1), which we shall implicitly assume in the discussions throughout
unless mentioned otherwise.

It is well known that the LR test for (2) rejects if the Euclidean norm ‖ · ‖2 of
the observation vector yd exceeds a critical value κd,2 chosen to satisfy the given
size constraint. That is, the LR test is given by 1{‖ · ‖2 ≥ κd,2}. For notational
simplicity, we abbreviate the sequence of tests {1{‖ · ‖2 ≥ κd,2}} by {2,κd,2} and
thus write C ({2,κd,2}) for its consistency set. The following result is contained in
Ingster and Suslina (2003) (cf. also Theorem 3.1 in Kock and Preinerstorfer (2021)
for extensions).

Theorem 2.1. Let κd,2 be a sequence of critical values such that the asymptotic
size of {2,κd,2} is α ∈ (0,1). Then

ϑ ∈ C ({2,κd,2}) ⇐⇒ d−1/2‖θd‖2
2 → ∞. (4)

Theorem 2.1 shows that the consistency set of the LR test is precisely character-
ized by the asymptotic behavior of the Euclidean norms of the array of alternatives
under consideration. That the consistency set of the LR test can be completely
characterized in terms of the norm its test statistic is based on seems natural, but is
quite specific to the LR test (see Theorem 3.1 and the ensuing discussion in Kock
and Preinerstorfer (2021)).

3. SUPERCONSISTENCY POINTS

3.1. Improving on the LR Test

Although the LR test is a canonical choice of a test for the testing problem (2),
there are many other reasonable tests available. For example, classic results by
Birnbaum (1955) and Stein (1956) show that any test with convex acceptance
region (i.e., the complement of its rejection region) is admissible. Anderson’s
(1955) theorem implies that if the acceptance region is furthermore symmetric
around the origin, then the test is also unbiased. Thus, any convex symmetric
(around the origin) set delivers an admissible unbiased test, which is, hence,
reasonable from a nonasymptotic point of view.
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One class of tests that is intimately related to the LR test consists of tests based
on other p-norms than the Euclidean one. For x = (x1, . . . ,xd)

′ ∈Rd and p ∈ (0,∞],
define the p-norm as usual via1

‖x‖p =

⎧⎪⎨
⎪⎩

(∑d
i=1 |xi|p

) 1
p
, if p < ∞,

maxi=1,...,d |xi|, else.

In analogy to the LR test, p-norm-based tests reject if the p-norm of the observation
vector exceeds a critical value κd,p. Special cases, which have an established
tradition in high-dimensional inference, are the 1-norm and the supremum norm.
We shall denote the sequence of tests {1{‖ · ‖p ≥ κd,p}} by {p,κd,p}. Clearly,
p-norm-based tests are unbiased and admissible for p ∈ [1,∞] as a consequence
of the discussion in the first paragraph of this section.

Concerning the consistency sets C ({p,κd,p}) of general p-norm-based tests, it is
a somewhat surprising fact that:

(i) C ({p,κd,p}) � C ({q,κd,q}), for 0 < p < q < ∞, i.e., strictly larger exponents
p result in strictly larger consistency sets;

(ii) this ranking does not extend to q = ∞, in the sense that there are alternatives
the supremum norm-based test is not consistent against but against which any
p-norm-based test with p ∈ (0,∞) is consistent and vice versa

(see Kock and Preinerstorfer (2021) for formal statements).2 From (i), it follows
that any p-norm-based test with p ∈ (2,∞) has a strictly larger consistency set
than the LR test. We stress that this asymptotic strict domination of the LR test
in terms of consistency sets is not in contradiction to its admissibility for each
d ∈ N.

Other tests that strictly dominate the LR test can be obtained, e.g., through
combination procedures that enhance the LR test with a sequence of tests ηd that
is sensitive against alternatives of a different “type” than the LR test in the sense
that

C (ηd)\C ({2,κd,2}) �= ∅.

To see how this can be achieved, note that the consistency set of the sequence of
tests ψd, say, where ψd rejects if the LR test or ηd rejects, contains C ({2,κd,2})∪
C (ηd), and hence dominates the LR test in terms of consistency. Essentially, this is
the power enhancement principle of Fan et al. (2015) (see Kock and Preinerstorfer
(2019) for related results and cf. Preinerstorfer (2021) for a nonasymptotic version
of the power enhancement principle). Note that if ηd has asymptotic size 0, which
is an assumption imposed on ηd in the context of the power enhancement principle,

1Strictly speaking, || · ||p defines a norm on R
d only for p ∈ [1,∞] and a quasi-norm for p ∈ (0,1).

2Recall that, throughout the present article, we implicitly impose the condition that all tests have asymptotic size in
(0,1) if not otherwise mentioned.

https://doi.org/10.1017/S0266466622000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000482


694 ANDERS BREDAHL KOCK AND DAVID PREINERSTORFER

nothing is lost in terms of asymptotic size when using ψd instead of the LR test,
because both sequences of tests then have the same asymptotic size.3

To clarify how much can possibly be gained in terms of consistency by using a
sequence of tests ϕd other than the LR test, we shall consider the corresponding
set

C (ϕd)\C ({2,κd,2}),
which we refer to as the superconsistency points of the sequence of tests ϕd (relative
to the LR test). Note that the set of superconsistency points is defined for any
sequence of tests, regardless of whether it dominates the LR test or not (in the
sense that its consistency set includes that of the LR test).4 On a conceptual level,
superconsistency points are related to superefficiency points of estimators relative
to the maximum likelihood estimator in classic parametric theory.

3.2. The Relative Volume of the Set of Superconsistency Points

The central question we consider in this article is how “large” the set of supercon-
sistency points C (ϕd)\C ({2,κd,2}) can possibly be for a sequence of tests ϕd with
asymptotic size in (0,1). Note that the larger C (ϕd)\C ({2,κd,2}) is, the larger is the
set of alternatives the sequence of tests ϕd is consistent against, but the LR test is
not consistent against. Although we already know from the examples discussed in
Section 3.1 that C (ϕd)\C ({2,κd,2}) is nonempty for many ϕd, we here investigate
whether one can substantially enlarge the consistency set by using another test than
the LR test.

To make the above question amenable to a formal treatment, note that Theo-
rem 2.1 implies that for any sequence of LR tests {2,κd,2} with asymptotic size
α ∈ (0,1), the complement of C ({2,κd,2}) satisfies

�\C ({2,κd,2}) ⊇
∞×

d=1

Bd
2(rd),

if the sequence rd > 0 is such that rd/d1/4 is bounded and where, for every p > 0,
we denote by Bd

p(r) the closed p-norm ball with radius r centered at the origin.
That is, the LR test is inconsistent against any element of×∞

d=1B
d
2(rd). We now

investigate how many inconsistency points of the LR test can be removed from any
such benchmark×∞

d=1B
d
2(rd) by erasing all superconsistency points of a sequence

of tests ϕd.

3If ηd has a positive asymptotic size that is smaller than the asymptotic size targeted in the final combination test,
one can work with an LR test with small enough asymptotic size in the combination procedure to obtain a test that
dominates the LR test in terms of consistency (recall from Theorem 2.1 that the consistency set of the LR test does
not depend on the specific value of the asymptotic size).
4To provide an example, for any p ∈ (2,∞), the set of superconsistency points of the p-norm-based test is fully
characterized by Corollary 3.2 in Kock and Preinerstorfer (2021) (cf. also their Theorem 3.4, which essentially shows
that these superconsistency points are approximately sparse and have at least one large entry).
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Figure 1. Illustration of Bd
2(rd) (red), Dd ⊆ Bd

2(rd), and Dd (green) for d = 2. Readers are referred
to the online version for colored figures.

Formally, this is to be understood in the following sense: Let ϕd be a sequence
of tests with consistency set C (ϕd), and let rd be such that rd/d1/4 is bounded. Let
Dd ⊆ Bd

2(rd) be such that

∞×
d=1

Dd ⊆ C (ϕd).

Note that all elements of×∞
d=1Dd are superconsistency points of ϕd which are also

contained in the benchmark×∞
d=1B

d
2(rd) (cf. the illustration in Figure 1). Denoting

by vold the d-dimensional Lebesgue measure, we investigate the asymptotic
behavior of the relative volume measure

vold
(
Dd

)
vold

(
Bd

2(rd)
) . (5)

Obviously, the ratio in (5) is a number in [0,1]. On the one hand, if this ratio is
asymptotically close to 1, this means that, in terms of relative volume, many ele-
ments of the benchmark×∞

d=1B
d
2(rd) are superconsistency points of the sequence

of tests ϕd. That is, one can substantially improve upon the LR test by using ϕd (or
by combining the LR test with ϕd through the power enhancement principle). On
the other hand, if this ratio is asymptotically close to 0, this means that in terms of
relative volume only few elements of the benchmark are superconsistency points
of ϕd.

Remark 3.1. One could also study the asymptotic behavior of the sequences
vold

(
Bd

2(rd)
) − vold

(
Dd

)
or vold

(
Dd

)
in order to determine whether one can

substantially improve upon the LR test. However, these sequences both converge
to 0. To see this, just note that

vold
(
Bd

2(rd)
)

= πd/2

�(d/2+1)
rd

d → 0,

in case rd/d1/4 is bounded as a consequence of Stirling’s approximation to the
gamma function as well as Dd ⊆ Bd

2(rd). Thus, such “absolute” volume measures
are uninformative, since even the absolute volume of Bd

2(rd) tends to zero.
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Remark 3.2. One may argue that, rather than (5), one should study

vold
(
Dd

)
vold(projd[�\C ({2,κd,2})]),

projd(·) denoting the projection onto the dth coordinate of its argument. However,
since

K×
d=1

Rd ×
∞×

d=K+1

{0d} ⊆ �\C ({2,κd,2}),

for all K ∈ N, it follows that vold(projd[�\C ({2,κd,2})]) = ∞, for all d ∈ N.

We emphasize that using the (normalized) Lebesgue measure to assess the
asymptotic magnitude of the set of superconsistency points is one among many
possible choices. Other measures would be possible too, but the uniform prior
over Bd

2(rd) is a natural choice as in many situations there is no clear guidance
concerning the type of alternative one wishes to favor.5

Note that the ratio in (5) depends on two ingredients:

1. the benchmark×∞
d=1B

d
2(rd);

2. the sequence of superconsistency points ×∞
d=1Dd which depends on the

sequence of tests ϕd.

Therefore, one could suspect that the asymptotic behavior of (5) depends in a
complicated way on the interplay between these two components. Nevertheless,
it turns out that the asymptotic behavior of (5) has a simple description that does
not depend on any of the two ingredients just described. In particular, we shall
prove in Section 5 that the limit of the sequence is 0 for all sequences of tests ϕd.
Hence, it is impossible to improve on the LR test in terms of the magnitude of its
consistency set apart from a set of superconsistency points that is negligible in a
relative volume sense.

In Section 4, we shall first establish this result for ϕd a sequence of p-norm-based
tests with p ∈ (2,∞). Note that all these tests have a strictly larger consistency set
than the LR test as discussed in Section 3.1. A general result, which also provides
a rate of convergence, will be presented in Section 5.

4. p-NORM-BASED TESTS

We now consider the asymptotic behavior of the sequence (5) for the special case
where ϕd is a sequence of p-norm-based tests with p ∈ (2,∞) being fixed. For
this class of tests, we can exploit the characterization of their consistency sets
provided in Theorem 3.1 and Corollary 3.2 of Kock and Preinerstorfer (2021),
together with results from asymptotic geometry developed in Schechtman and

5Our results remain valid if, instead of measuring the magnitude of Dd w.r.t. the uniform probability measure on
B

d
2(rd), one measures its magnitude w.r.t. the uniform probability measure on the Euclidean sphere of radius rd . We

will comment on this in Remark 5.1, but will focus on the uniform distribution on B
d
2(rd) throughout the article.
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Schmuckenschläger (1991) based on earlier results in Schechtman and Zinn
(1990). These ingredients lead to a direct proof of the limit of the sequence in
(5) being 0.

Theorem 4.1. Let p ∈ (2,∞), and let the sequence of critical values κd,p be such
that {p,κd,p}has asymptotic size α ∈ (0,1). Then, for any sequence rd > 0 such that
rd/d1/4 is bounded, and any sequence of nonempty Borel sets Dd ⊆ Bd

2(rd) such
that
∞×

d=1

Dd ⊆ C ({p,κd,p}), (6)

we have

lim
d→∞

vold
(
Dd

)
vold

(
Bd

2(rd)
) = 0.

Proof. Let {p,κd,p}, rd, and Dd be as in the statement of the theorem. Corollary
3.2 in Kock and Preinerstorfer (2021) shows that ϑ ∈ C ({p,κd,p}) if and only if
d−1/2(‖θd‖2

2 ∨‖θd‖p
p) → ∞. Together with rd/d1/4 being bounded, Dd ⊆ Bd

2(rd),
and (6), this guarantees that s̃d/d1/(2p) → ∞ for s̃d := inf{‖θd‖p : θd ∈ Dd}. The
definition of s̃d eventually implies

Gd := Bd
2(rd)\Dd ⊇ Bd

2(rd)∩Bd
p(s̃d/2).

Define the sequence sd := d1/(2p)−1/4rd > 0, so that sd/d1/(2p) = rd/d1/4 is bounded.
Hence, eventually s̃d ≥ 2sd and thus vold(Gd) ≥ vold(Bd

2(rd)∩Bd
p(sd)) holds, so

that the quotient

1− vold
(
Dd

)
vold(Bd

2(rd))
= vold

(
Gd

)
vold(Bd

2(rd))

is eventually not smaller than

vold
(
Bd

2(rd)∩Bd
p(sd)

)
vold

(
Bd

2(rd)
) =

vold
(
Bd

2(ed,2)∩Bd
p(ed,2sd/rd)

)
vold

(
Bd

2(ed,2)
)

= vold
(
Bd

2(ed,2)∩udBd
p(ed,p)

)
,

where ud := ed,2
ed,p

d1/(2p)

d1/4 , ed,p := 1
2

�(1+d/p)1/d

�(1+1/p)
, and consequently vold(Bd

2(ed,2)) = 1.

The main result in Schechtman and Schmuckenschläger (1991) shows that for
every t large enough vold(Bd

2(ed,2) ∩ tBd
p(ed,p)) → 1, as d → ∞. Therefore, we

are done upon verifying that ud → ∞. This follows from the lower bound

ed,2

ed,p
=

[
�(1+d/2)

�(1+d/p)

]1/d �( 1
p +1)

�( 1
2 +1)

≥ [
d/p

]1/2−1/p �( 1
p +1)

�( 1
2 +1)

,
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where we used the inequality for ratios involving the gamma function in equation
(12) of Jameson (2013) with “x = 1+d/p” (which is not smaller than 1) and “y =
d(1/2−1/p)” (which is not smaller than 0). �

Hence, even though C ({p,κd,p}) contains the consistency set of the LR test as a
strict subset for every p ∈ (2,∞) as discussed in Section 3.1, the subset of those
alternatives in each benchmark×∞

d=1B
d
2(rd) for which the test {p,κd,p} provides an

improvement over the LR test is “negligible” in (relative) volume. That this result
is not specific to p-norm-based tests but extends to all tests will be shown next.

5. UNRESTRICTED SEQUENCES OF TESTS

The proof of Theorem 4.1 builds heavily on the particular structure of the
consistency set of p-norm-based tests. We shall now establish that no test can
improve substantially on the LR test. In the absence of any structure on the tests,
one can no longer exploit specific properties of the consistency set stemming from
the test being based on a p-norm. Instead we rely on concentration results for
Lipschitz continuous functions on the sphere as exposited in Ledoux (2001) (cf.
also Ledoux (1992)).

Theorem 5.1. For every sequence of tests ψd with asymptotic size α ∈ (0,1) and
every sequence rd > 0 such that rd/d1/4 is bounded, there exists an ε > 0, such that
for every sequence of nonempty Borel sets Dd ⊆ Bd

2(rd) satisfying

∞×
d=1

Dd ⊆ C (ψd), (7)

we have

vold
(
Dd

)
vold

(
Bd

2(rd)
) ≤ exp

(
−2ε2(d −2)/r2

d

)
for all d large enough; (8)

in particular, vold
(
Dd

)
/vold(Bd

2(rd)) converges to 0 as d → ∞.

The proof of Theorem 5.1 can be found in Appendix A. Note that Theorem 5.1
not only shows that the magnitude of superconsistency points is asymptotically
negligible for any test, but it also shows that the measure of these points converges
to zero quickly in the dimension d.

Remark 5.1 (Spherical measure instead of relative volume). One could
ask what happens in the context of Theorem 5.1 if, instead of considering
vold(Dd)/vold(Bd

2(rd)) in (8), one considers ρd,rd (Dd), where ρd,rd denotes the
uniform probability measure on the sphere

Sd−1(rd) := {ξ ∈ Rd : ‖ξ‖2 = rd}.
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Inspection of the proof of Theorem 5.1 (cf. equation (A.2)) shows that the
statement equally holds with vold(Dd)/vold(Bd

2(rd)) replaced by ρd,rd (Dd). That
is, also with this alternative measure, one reaches the same conclusion concerning
the magnitude of the set of superconsistency points of a sequence of tests relative
to the LR test.

So far, all our results concerned consistency properties of tests. We were
interested in the possible magnitude of the superconsistency points of a sequence of
tests relative to the LR test and have seen that the magnitude of such points cannot
be substantial. Although we now know that one cannot substantially improve on
the LR test in terms of consistency (in the sense of Theorem 5.1), there could
in principle exist sequences of tests that have larger power than the LR test on
substantial portions of the parameter space (without the power there necessarily
being close to 1). A nonasymptotic question one can therefore ask is: How large
can such portions of the parameter space be? To answer this question, we introduce
some more notation: Let α ∈ [0,1] and denote for every r > 0 by βd,α(r) the power
of the LR test of size α against alternatives θ ∈ Rd such that ‖θ‖2 = r (noting
that the power of the LR test coincides for all such parameters as it is rotationally
invariant).6 Denote the set of all tests ψ : Rd → [0,1] by �d, and define for every
α ∈ [0,1], ε > 0, and ψ ∈ �d the set Fd(ε,ψ) as the subset of parameters against
which the power of ψ exceeds the power of the LR test of the same size as ψ by
more than ε, i.e.,

Fd(ε,ψ) :=
{
θ ∈ Rd : E(ψ(θ +εd))−βd,α(‖θ‖2) > ε for α = E(ψ(εd))

}
. (9)

The question is: How large can this set be made by cleverly choosing ψ? The
following proposition (on which the proof of Theorem 5.1 rests) provides a
nonasymptotic upper bound on its measure w.r.t. the uniform distribution ρd,r on
Sd−1(r). The upper bound decreases exponentially in d.

Proposition 5.2. For every ε > 0, r > 0, d ∈ N, and ψ ∈ �d, it holds that

ρd,r
(
Fd(ε,ψ)

) ≤ exp
(
−2ε2(d −2)/r2

)
. (10)

Remark 5.2. Given a test ψ ∈ �d, note that Fd(ε,ψ) ∩ Sd−1(r) is empty if
βd,α(r) + ε ≥ 1, where α = E(ψ(εd)). For such values of r and ε, it obviously
holds that ρd,r

(
Fd(ε,ψ)

) = 0.

The proof of Proposition 5.2 is given next. It is mainly based on the observation
that power functions in the model under consideration are Lipschitz continuous
when restricted to spheres, and that such functions concentrate around their
average.

6With this notation, it is worth noting that the proof of Theorem 5.1 shows that ε in that theorem can be chosen as
(1− limsupd→∞ βd,αd (rd))/2, where αd denotes the size of ψd .
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Proof. Fix ε > 0, r > 0, and d ∈ N. The statement in (10) is trivially true if
d ≤ 2. Hence, we only need to consider the case where d ≥ 3 holds. Let ψ ∈ �d

and denote its size by α. If α = 0 or α = 1, the inequality in (10) trivially holds as
Fd(ε,ψ) = ∅ then follows. Hence, we only need to verify the claim for α ∈ (0,1). It
appears to be well known (a complete proof of this statement is given in Appendix
B for the convenience of the reader) that the LR test (for the testing problem (2) in
the model (1)) with size α maximizes the “weighted average power” (WAP)

ψ∗ �→
∫
Sd−1(r)

E(ψ∗(γ +εd))dρd,r(γ ) (11)

among all tests ψ∗ ∈ �d of size α. Therefore,
∫
Sd−1(r)E(ψ(γ + εd))dρd,r(γ ) ≤

βd,α(r), and we can conclude that ρd,r(Fd(ε,ψ)) = ρd,r(Fd(ε,ψ) ∩ Sd−1(r)) is
bounded from above by

ρd,r

⎛
⎝

{
θ ∈ Sd−1(r) : E(ψ(θ +εd)) ≥

∫
Sd−1(r)

E(ψ(γ +εd))dρd,r(γ )+ ε

}⎞
⎠ .

(12)

It is well known (and easy to verify using Pinsker’s inequality as in Lemma 2.5
in Tsybakov (2009)) that the total variation distance between two Gaussian
distributions with covariance matrices equal to the identity and mean vectors θ1

and θ2, respectively, is bounded from above by ‖θ1 −θ2‖2/2. This implies (by, e.g.,
Lemma 2.3 in Strasser (1985)) that the function θ �→ 2E(ψ(θ +εd)) is Lipschitz
continuous with constant 1. Since the geodesic distance between two points in
Sd−1(r) is not smaller than the Euclidean distance between the two points, the
function θ �→ 2E(ψ(θ + εd)) is Lipschitz continuous with constant 1 on Sd−1(r)
when the latter is equipped with the geodesic distance.

Multiplying both sides of the inequality in (12) by 2, and using the concentration
inequality for Lipschitz continuous functions on spheres as given in the third
display on page 222 of Ledoux (1992) (cf. also the discussion in Section 2.3 of
Ledoux (2001)), we obtain

ρd,r
(
Fd(ε,ψ)

) ≤ exp
(
−2ε2(d −2)/r2

)
. �

6. CONCLUSION

In high-dimensional testing problems, the choice of a test implicitly or explicitly
determines the type of alternative it prioritizes. In the Gaussian sequence model,
the LR test is based on the Euclidean norm. Many tests exist that are consistent
against alternatives the LR test is not consistent against (or are even consistent
against strictly more alternatives than the LR test), i.e., they possess what we refer
to as superconsistency points. We have shown that for any test, the corresponding
set of superconsistency points is negligible in an asymptotic sense. This may be
interpreted as a high-dimensional testing analog of Le Cam’s famous result that,
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in sufficiently regular models, the set of superefficiency points relative to the
maximum likelihood estimator is at most a Lebesgue null set (cf. Le Cam, 1953). In
analogy to that classic finding, our result does not suggest that one should always
use the LR test. However, it shows that there exists no test for which one can expect
substantial improvements in terms of the magnitude of its set of superconsistency
points.

APPENDIX A. Proof of Theorem 5.1

Let the sequence of tests ψd and rd be as in the theorem’s statement. Denote the size of ψd
by αd . Since rd/d1/4 is bounded and αd → α, it follows from Theorem 2.1 that7

β := limsup
d→∞

βd,αd (rd) < 1.

Define ε = (1−β)/2. From (7), we obtain

cd := inf
θ∈Dd

E
(
ψd(θ +εd)

) → 1. (A.1)

For all d large enough, we thus obtain cd > βd,αd (rd)+ ε. Together with Dd ⊆ Bd
2(rd) and

the function r �→ βd,αd (r) being nondecreasing, it therefore follows that Dd ⊆ Fd(ε,ψd)

for all d large enough. Proposition 5.2, hence, allows us to conclude that, for all d large
enough, we have

ρd,r
(
Dd

) ≤ ρd,r
(
Fd(ε,ψd)

) ≤ exp
(
−2ε2(d −2)/r2

)
for every r > 0. (A.2)

For every r > 0, the push-forward measure of ρd := ρd,1 under the transformation γ �→ rγ ,
γ ∈ Sd−1 := Sd−1(1) is ρd,r . Using polar coordinates (as in, e.g., Stroock (1998, Sect. 5.2))
and Dd ⊆ Bd

2(rd), we may express

vold
(
Dd

)
vold

(
Bd

2(rd)
) = d

rd
d

∫
(0,rd)

rd−1
∫
Sd−1

1Dd {rγ }dρd(γ )dr = d

rd
d

∫
(0,rd)

rd−1ρd,r
(
Dd

)
dr,

which, for all d large enough, we can upper bound by

1

rd
d

∫
(0,rd)

drd−1 exp
(
−2ε2(d −2)/r2

)
dr ≤ exp

(
−2ε2(d −2)/r2

d

)
.

APPENDIX B. WAP Optimality of the LR Test

In this appendix, we provide an argument showing that (for r > 0) the LR test (for the testing
problem (2) in the model (1)) with size α in (0, 1) maximizes the weighted average power
(WAP)

ψ∗ �→
∫
Sd−1(r)

E(ψ∗(γ +εd))dρd,r(γ )

among all tests ψ∗ ∈ �d of size α. To see this, denote the d-variate normal density with
mean γ and identity covariance matrix by φγ and note that (by the Neyman–Pearson lemma)

7Throughout this proof, we use the notation that was introduced in the context of Proposition 5.2.
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the test which maximizes WAP (i.e., which is WAP optimal) is the LR test for the simple
hypothesis where (i) the density under the null equals φ0d and (ii) the density under the
alternative equals

∫
φγ dρd,r(γ ). This test rejects for the observation y if and only if

∫
Sd−1(r)

φγ (y)/φ0d (y)dρd,r(γ ) = exp(−r2/2)

∫
Sd−1(r)

exp(γ ′y)dρd,r(γ ) (B.1)

exceeds a critical value Cα,r , say, which is chosen such that the test has size α. Note that
the measure ρd,r coincides with its push-forward measure under any orthonormal linear
transformation U : Rd →Rd , i.e., ρd,r is “rotationally invariant.” Choosing U orthonormal
and such that Uy coincides with ‖y‖2 times the first element of the canonical basis of Rd ,
it follows that the integral to the right of (B.1) coincides with

∫
Sd−1(r)

exp(‖y‖2γ1)dρd,r(γ ) = 1

2

(∫
Sd−1(r)

[
exp(‖y‖2γ1)+ exp(−‖y‖2γ1)

]
dρd,r(γ )

)
.

Since the function a �→ exp(aγ1)+ exp(−aγ1) is nondecreasing on [0,∞) for every γ1, it
follows that the WAP optimal test rejects if and only if ‖y‖2 exceeds a critical value (chosen
so that the test has the right size). In other words, the LR test (for the testing problem (2) in
the model (1)) is WAP optimal.

REFERENCES

Anderson, T.W. (1955) The integral of a symmetric unimodal function over a symmetric convex set
and some probability inequalities. Proceedings of the American Mathematical Society 6, 170–176.

Arias-Castro, E., E.J. Candès, & Y. Plan (2011) Global testing under sparse alternatives: ANOVA,
multiple comparisons and the higher criticism. Annals of Statistics 39, 2533–2556.

Arias-Castro, E. & A. Ying (2019) Detection of sparse mixtures: Higher criticism and scan statistic.
Electronic Journal of Statistics 13, 208–230.

Barnett, I. & X. Lin (2014) Analytical P-value calculation for the higher criticism test in finite d
problems. Biometrika 101, 964–970.

Bentkus, V. (2003) On the dependence of the Berry–Esseen bound on dimension. Journal of Statistical
Planning and Inference 113, 385–402.

Birnbaum, A. (1955) Characterizations of complete classes of tests of some multiparametric hypothe-
ses, with applications to likelihood ratio tests. Annals of Mathematical Statistics 26, 21–36.

Bogomolov, M., C.B. Peterson, Y. Benjamini, & C. Sabatti (2020) Hypotheses on a tree: New error
rates and testing strategies. Biometrika 108, 575–590.

Cai, T., J. Jeng, & J. Jin (2011) Optimal detection of heterogeneous and heteroscedastic mixtures.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 629–662.

Carpentier, A. & N. Verzelen (2019) Adaptive estimation of the sparsity in the Gaussian vector model.
Annals of Statistics 47, 93–126.

Castillo, I. & E. Roquain (2020) On spike and slab empirical Bayes multiple testing. Annals of Statistics
48, 2548–2574.

Chernozhukov, V., D. Chetverikov, & K. Kato (2017) Central limit theorems and bootstrap in high
dimensions. Annals of Probability 45, 2309–2352.

Cousins, R. (2007) Annotated bibliography of some papers on combining significances or p-values.
Preprint, arXiv:0705.2209.

Donoho, D. & J. Jin (2004) Higher criticism for detecting sparse heterogeneous mixtures. Annals of
Statistics 32, 962–994.

https://doi.org/10.1017/S0266466622000482 Published online by Cambridge University Press

https://arxiv.org/abs/0705.2209
https://doi.org/10.1017/S0266466622000482


SUPERCONSISTENCY OF TESTS IN HIGH DIMENSIONS 703

Donoho, D. & J. Jin (2009) Feature selection by higher criticism thresholding achieves the optimal
phase diagram. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 367, 4449–4470.

Duan, B., A. Ramdas, S. Balakrishnan, & L. Wasserman (2020) Interactive martingale tests for the
global null. Electronic Journal of Statistics 14, 4489–4551.

Fan, J., Y. Liao, & J. Yao (2015) Power enhancement in high-dimensional cross-sectional tests.
Econometrica 83, 1497–1541.

Feng, L., T. Jiang, B. Liu, & W. Xiong (2022) Max-sum tests for cross-sectional independence of
high-dimensional panel data. Annals of Statistics 50, 1124–1143.

Fisher, R.A. (1934) Statistical Methods for Research Workers, 5th Edition. Oliver and Boyd.
Giessing, A. & J. Fan (2020) Bootstrapping �p-statistics in high dimensions. Preprint,

arXiv:2006.13099.
Goeman, J.J. & A. Solari (2010) The sequential rejection principle of familywise error control. Annals

of Statistics 38, 3782–3810.
Hall, P. & J. Jin (2010) Innovated higher criticism for detecting sparse signals in correlated noise.

Annals of Statistics 38, 1686–1732.
Han, C., P.C.B. Phillips, & D. Sul (2011) Uniform asymptotic normality in stationary and unit root

autoregression. Econometric Theory 27, 1117–1151.
He, X. & Q.-M. Shao (2000) On parameters of increasing dimensions. Journal of Multivariate Analysis

73, 120–135.
He, Y., G. Xu, C. Wu, & W. Pan (2021) Asymptotically independent U-statistics in high-dimensional

testing. Annals of Statistics 49, 154–181.
Heller, R., N. Chatterjee, A. Krieger, & J. Shi (2018) Post-selection inference following aggregate level

hypothesis testing in large-scale genomic data. Journal of the American Statistical Association 113,
1770–1783.

Heller, R., A. Meir, & N. Chatterjee (2019) Post-selection estimation and testing following aggregate
association tests. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81,
547–573.

Ingster, Y. & I.A. Suslina (2003) Nonparametric Goodness-of-Fit Testing under Gaussian Models.
Springer.

Jameson, G.J.O. (2013) Inequalities for gamma function ratios. The American Mathematical Monthly
120, 936–940.

Jammalamadaka, S.R., S. Meintanis, & T. Verdebout (2020) On Sobolev tests of uniformity on the
circle with an extension to the sphere. Bernoulli 26, 2226–2252.

Johnstone, I.M. (2019). Gaussian estimation: Sequence and wavelet models. Unpublished manuscript.
Kock, A.B. & D. Preinerstorfer (2019) Power in high-dimensional testing problems. Econometrica 87,

1055–1069.
Kock, A.B. and Preinerstorfer, D. (2021). Consistency of p-norm based tests in high dimensions:

Characterization, monotonicity, domination. Preprint, arXiv:2103.11201.
Le Cam, L. (1953) On some asymptotic properties of maximum likelihood estimates and related Bayes

estimates. University of California Publications in Statistics 1, 277–330.
Ledoux, M. (1992) A heat semigroup approach to concentration on the sphere and on a compact

Riemannian manifold. Geometric and Functional Analysis 2, 221–224.
Ledoux, M. (2001) The Concentration of Measure Phenomenon. Mathematical Surveys and Mono-

graphs, vol. 89. American Mathematical Society.
Leeb, H. & B.M. Pötscher (2006) Performance limits for estimators of the risk or distribution of

shrinkage-type estimators, and some general lower risk-bound results. Econometric Theory 22,
69–97.

Leeb, H. & B.M. Pötscher (2008) Sparse estimators and the oracle property, or the return of Hodges’
estimator. Journal of Econometrics 142, 201–211.

Li, J. & D. Siegmund (2015) Higher criticism: p-values and criticism. Annals of Statistics 43,
1323–1350.

https://doi.org/10.1017/S0266466622000482 Published online by Cambridge University Press

https://arxiv.org/abs/2006.13099
https://arxiv.org/abs/2103.11201
https://doi.org/10.1017/S0266466622000482


704 ANDERS BREDAHL KOCK AND DAVID PREINERSTORFER

Meinshausen, N. (2008) Hierarchical testing of variable importance. Biometrika 95, 265–278.
Owen, A. (2009) Karl Pearson’s meta-analysis revisited. Annals of Statistics 37, 3867–3892.
Pearson, K. (1933) On a method of determining whether a sample of size n supposed to have been

drawn from a parent population having a known probability integral has probably been drawn at
random. Biometrika 25, 379–410.

Porter, T. & M. Stewart (2020) Beyond HC: More sensitive tests for rare/weak alternatives. Annals of
Statistics 48, 2230–2252.

Portnoy, S. (1985) Asymptotic behavior of M estimators of p regression parameters when p2/n is large;
II. Normal approximation. Annals of Statistics 13, 1403–1417.

Portnoy, S. (1988) Asymptotic behavior of likelihood methods for exponential families when the
number of parameters tends to infinity. Annals of Statistics 16, 356–366.

Preinerstorfer, D. (2021) How to avoid the zero-power trap in testing for correlation. Econometric
Theory, to appear.

Romano, J. & M. Wolf (2005) Exact and approximate stepdown methods for multiple hypothesis
testing. Journal of the American Statistical Association 100, 94–108.

Romano, J.P., A.M. Shaikh, & M. Wolf (2008) Formalized data snooping based on generalized error
rates. Econometric Theory 24, 404–447.

Rosenbaum, P. (2008) Testing hypotheses in order. Biometrika 95, 248–252.
Schechtman, G. & M. Schmuckenschläger (1991) Another remark on the volume of the intersection of

two Ln
p balls. In J. Lindenstrauss and V. D. Milman (eds.), Geometric Aspects of Functional Analysis,

pp. 174–178. Springer.
Schechtman, G. & J. Zinn (1990) On the volume of the intersection of two Ln

p balls. Proceedings of
the American Mathematical Society 110, 217–224.

Simes, J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73,
751–754.

Stein, C. (1956) The admissibility of Hotelling’s t2-test. Annals of Mathematical Statistics 27,
616–623.

Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A., & Williams Jr, R.M. (1949) The American
Soldier: Adjustment During Army Life (Studies in Social Psychology in World War II), vol. 1.
Princeton Univ. Press.

Strasser, H. (1985) Mathematical Theory of Statistics. Walter de Gruyter.
Stroock, D.W. (1998) A Concise Introduction to the Theory of Integration. Springer.
Tippett, L.H.C. (1931) The Methods of Statistics. Williams & Norgate Ltd.
Tsybakov, A.B. (2009) Introduction to Nonparametric Estimation. Springer.
Tukey, J. (1976) T13 N: The Higher Criticism. Course Notes. Statistics 411. Princeton University.
van der Vaart, A.W. (1997) Superefficiency. In D. Pollard, E. Torgersen, & G. L. Yang (eds.), Festschrift

for Lucien Le Cam: Research Papers in Probability and Statistics, pp. 397–410. Springer.
Vovk, V. & R. Wang (2020) Combining p-values via averaging. Biometrika 107, 791–808.
Vovk, V. & R. Wang (2021) E-values: Calibration, combination and applications. Annals of Statistics

49, 1736–1754.
Xu, G., L. Lin, P. Wei, & W. Pan (2016) An adaptive two-sample test for high-dimensional means.

Biometrika 103, 609–624.
Yang, Q. & G. Pan (2017) Weighted statistic in detecting faint and sparse alternatives for high-

dimensional covariance matrices. Journal of the American Statistical Association 112, 188–200.
Yekutieli, D. (2008) Hierarchical false discovery rate–controlling methodology. Journal of the Ameri-

can Statistical Association 103, 309–316.
Yu, X., D. Li, & L. Xue (2020) Fisher’s combined probability test for high-dimensional covariance

matrices. Journal of the American Statistical Association, to appear.
Yu, X., D. Li, L. Xue, & R. Li (2021) Power-enhanced simultaneous test of high-dimensional mean

vectors and covariance matrices with application to gene-set testing. Journal of the American
Statistical Association, to appear.

Zhang, Y., R. Wang, & X. Shao (2021) Adaptive inference for change points in high-dimensional data.
Journal of the American Statistical Association, to appear.

https://doi.org/10.1017/S0266466622000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000482

	1 INTRODUCTION
	2 FRAMEWORK AND TERMINOLOGY
	3 SUPERCONSISTENCY POINTS
	3.1 Improving on the LR Test
	3.2 The Relative Volume of the Set of Superconsistency Points

	4 p-NORM-BASED TESTS
	5 UNRESTRICTED SEQUENCES OF TESTS
	6 CONCLUSION
	APPENDIX A Proof of Theorem 5.1
	APPENDIX B WAP Optimality of the LR Test

