MEAN-CONTINUOUS INTEGRALS
H. W. ELLIS

Introduction. Descriptive definitions of Cesiro-Denjoy integrals (CD-
integrals) equivalent to the Cesaro-Perron integrals (CP-integrals) introduced
by J. C. Burkill [1, 2] have been given by Miss Sargent [6] (see § 2). The
CD-integrals are generalizations of the special Denjoy integral [5, p. 201]. They
are somewhat complicated in that modifications of the definitions of con-
tinuity, generalized absolute continuity in the restricted sense (4 CGs) [5, p.
231], and of derivatives are required for each order. In the present paper a
scale of integrals is obtained which is based on the descriptive definition of the
general Denjoy integral [5, p. 241]. The approximate derivative and a slightly
modified definition of generalized absolute continuity (4CG) are used for all
orders so that the only concept generalized for increasing orders is that of
continuity. The resulting " order integral, » = 0, 1, 2, ..., called the #*"
generalized mean integral (GM,-integral), contains the corresponding C.D- and
C.P-integrals.

In §1 the descriptive definition of the GM,-integral is given and some of
the more important properties of the integral, including a theorem on inte-
gration by parts, are derived. The relation between the GM,-integral and
the C.D-, C.P-integrals is considered in § 2. In § 3 a constructive definition
of the GM,-integral is given and shown to be equivalent to the descriptive
definition. The paper concludes with a proof that the indefinite GM -integral
takes all values between its upper and lower bounds on any interval over which
the integral exists.

1. The descriptive generalized mean integrals. We shall obtain a scale
or series of generalized mean integrals, GM -integrals,» = 0, 1, . . . of increasing
generality in the sense that each integral will be contained in but not equivalent
to all those with higher subscripts. We take as our starting point the general
Denjoy integral.

Notation. We number theorems by Rcman numerals, lemmas by Arabic
numerals, and the definitions which change with the order by groups of letters.
The order concerned in each case is indicated by a subscript, e.g. Definition
(M,C) is the definition of mean continuity of order . With this notation we
refer, for example, to “Theorem II,” rather than “Theorem II for the GM,-

integral.”

Received July 7, 1948. Most of the results of the present paper are adapted from a thesis
accepted as partial fulfilment of the requirements for the degree of Doctor of Philosophy in
the University of Toronto. The author wishes to express his thanks to Professor W. J. Webber
for encouragement and suggestions in connection with the preparation of the thesis.

113

https://doi.org/10.4153/CJM-1949-012-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1949-012-6

114 H. W. ELLIS

DrrFiNiTION (M,). We define the M,-mean of F(x) on (a, b) as F(b) forr =0

and as

b
MAF,a,b) = —1 J ® — H—F@)d,
(b—a) Je
for v a positive integer, where the integral in the definition of the Mi-mean is in
the general Denjoy sense and the sense in which the integral involved in the M -mean

s required to exist will be stated below.

DeriNiTION (M,C). The function F(x) is continuous in the r'* mean sense
(M -continuous) at xo tf M.(F, xo, xo-+ k)= F(xo) as B — 0.

DEFINITION. A function F(x) is generalized absolutely continuous (ACG) on
a set E if E can be expressed as the sum of a finite or denumerable sequence of
closed sets Ey, E,, . . . such that F(x) is absolutely continuous (A C) on each set E,.!

DEeriNiTiON (M, I). The function f(x) is GM,-integrable on (a, b) if there
extsts an M ,-continuous function F(x) that is ACG on (a, b) and is such that the
approximate derivative of F(x), ADF(x), [5, p. 220] exists and s equal to f(x)
almost everywhere on (a, b). The function F(x) is then called an indefinite GM -
integral of f(x) on (a,b). The definite GM ~integral of f over (a, b) is designated by

GM.(f, a,b) = (GM,) be(x)dx = F(b)— F(a).

For » = 0 this definition is seen to be equivalent to the descriptive definition
of the general Denjoy integral.

The integral in the definition of the M,-mean, r = 2, is required to exist in
the sense of the GM,_;-integral. In order to define the GM,-integral we must
therefore assume that the GM,_;-integral has been defined. To establish the
properties of the GM ,-integral we must assume the following properties for the
GM,_s-integral.

PRrROPERTY I,_1. If fi(x), f2(x) are GM,_1-integrable on (a, b) and f1(x) =fa(x)
almost everywhere on (a, b) then

GMr_l(fl, a, b) g GMr_l(f2, a, b).

ProOPERTY 11,_1. The GM,_1-integral contains the GM ,_o-integral.

PropPERTY III,_y. Let f.(x) be GMy-integrable on (a, b), let F,(x) =
GM, (fa,a,x),n=r—1,v—2,...0, and let

£ t tn—1
gn(x) = J dty J R/ Y J' g(t)dt,

a

where g(x) is of bounded variation on (a, b). Then f,(x)g.(x) ts GM  ~integrable
on (a, b) and

b b
@M Fu@a)ix = Fu0)ga®) = G || Fa@usoli
a a
1Saks’ definition of 4 CG [5, p. 222] implies that F(x) is continuous and does not require the
sets E, to be closed. The condition that the sets E, be closed gives no restriction when F(x)

is continuous since the continuity of F(x) is sufficient to ensure that if F(x) is 4C on an arbi-
trary set it is A C on the closure of this set.
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(Property 111,_, implies that, if f(x) is GM,_s-integrable, then f(x)g,—1(x) can be
integrated by parts r times.)

That properties I,_1-111,_; may be presumed is justified by induction. Since
the GM,-integral is the general Denjoy integral it is clear that Property I, is
true and that Property I1I, is true provided that the GM_;-integral is inter-
preted as a Stieltjes integral and g(x)dx is replaced by dg(x) [5, p. 246). If f(x)
is GM-integrable on (a, b), F(x) = GM(f, a, x) is ACG on (a, b) and ADF(x) =
f(x) almost everywhere on (@, b). To establish II; we need only prove that
F(x) is M;-continuous and, since F(x) is continuous, this is easily done. Our
inductive process will be complete if, when we define the GM,-integral and
assume Properties I,_;-I11,_;, we can establish Properties I,-111I,.

LeEmMMA 1,. If there exists an interval (xo, xo-+ k), B > 0 and a positive number
d such that F(t)— F(xo) < d for all t except at most a set of measure zero, then
F(x) cannot be M ,-continuous at xo.

Let x be any point in (xo, xo+ %). Then, using Property I,_,

M, (F, xo, %) = r(x — %0)""(GM,—1) Jx (x — )" F(t)dt

> r(x — x0)~" J (& — )™ [Fxo)+ d dt

= F(xo) + d.

It follows that F(x) cannot be M,-continuous at x,. Similar results hold for
k < 0 and also if F(t) — F(x,) > d is replaced by F(t) — F(xo) < -d.

TureorREM I,. If F(x) ts monotone and M ,-continuous for a < x < b then
F(x) is monotone and continuous for a < x < b.

If we suppose that F(x) is not continuous at some point x, ¢ < x < b,
Lemma 1, gives a contradiction.

TuroreM Il,.. If F(x) ¢s M,-continuous and ACG on (a, b) and if ADF(x) =
0 almost everywhere on (a, b), then F(x) is non-decreasing on (a, b).

DEeFINITION [4, p. 130]. A4 function F(x) is lower semi-absolutely continuous
(A C) over a set E if to a given positive number e there corresponds a positive number
& such that for any non-overlapping set of intervals (aj, a';) with aj, a'; points
of E, 2; {F(a';)— F(a;)} > — ewhen =; (a'; — a;) < 8.

DEFINITION. A function F(x) is generalized lower semi-absolutely continuous
(ACG) on E if E can be covered by a denumerable sequence of closed sets E, Eo, . ..
such that F(x) is AC on each set E;.

If“> —¢€’is l?placed by ‘< €’ in the above definitions, the corresponding
definitions of upper and generalized upper semi-absolutely continuous (;12')
and (4 CG) functions are obtained. If F(x) is ACG on (a, b) it is both 4CG
and ZE'E on (a, b). T
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LEMMA 2. If F(x) is ACG on (a, b) and if ADF(x) 2 0 almost everywhere on
(@, b), then there is an tinterval (I, m) on (a, b) over which F(x) is non-decreasing.

Let E,, E,, ... be the sets over which F(x) is ACG. Since these sets are
closed there exists, by Baire’s theorem [5, p. 54], an interval (I, m) on (a, b)
such that E,(l, m) = (I, m) for some =.

Let G be the set of points of (/, m) at which ADF = 0. For x a point of G
we then have

F(x + h;y)— F(x)> e
hi
with x + %; on a set of density unity at x, 2;— 0. We can then use the Vitali
covering theorem [5, p. 109] to get a finite non-overlapping set of intervals
(xx, x'z) satisfying this relation and such that Zy(x'z— xz) > mG — 6 = m —
I — &, where § is sufficiently small to ensure that for (e, ¢’;) a set of non-over-
lapping intervals with Z;(a’;— ;) < § then
Zj{ F(d'j) - F(a,-)} > — e
Let (aj, @’;) be the intervals complementary to the intervals (xx, x'3). Then
F(m)— F() = 2 {F&')— F@x)} + 25 {F(@')— F(a;)}
> —em—1— e

Since e is arbitrary, F(m)— F(l) = 0.

In a similar manner it may be shown that F(m') — F(I')= 0 for (', m') any
interval on (/, m). Hence F(x) is non-decreasing on (I, m).

’

LeMMA 3,. Let F(x) be M ,-continuous and ACG on (a, b) and let ADF(x) = 0
almost everywhere on (@, b). If P is a perfect set on (a, b) with F(x) non-decreasing
on the intervals complementary to P, then there is an interval (I, m) containing
points of P with F(x) non-decreasing on (I, m).

Since P is perfect, by Baire’s theorem there exists an interval (/, m) con-
taining points of P and such that P(I, m) is identical with E(l, m) for some &,
where Ej, is one of the sets over which F(x) is 4C.

Let Fi(x)= F(x) on P(l, m) and let Fi(x) be linear in the intervals comple-
mentary to P(l, m) in such a way that Fi(x) is continuous on (/, m). Then
Fy(x) is AC on (I, m). Since F(x) is M,-continuous and non-decreasing on
an interval ¢;< x < b; complementary to P it follows from Theorem I, that
F(x) is continuous and non-decreasing on a¢;< x < b;. Hence ADF;(x)= 0
almost everywhere on (I, m). We can therefore use the argument of the
preceding lemma to show that Fi(x) is non-decreasing on (J, m) and F(x) there-
fore non-decreasing on P(l, m). We conclude that F(x) is non-decreasing on
(I, m).

Tueorem Il',. If F(x) is M,-continuous and ACG on (a, b) and if ADF(x) =
0 almost everywhere on (a, b) then F(x) is non-decreasing on (a, b).

If we assume that Theorem II’; is false we can use Lemmas 2 and 3, as in

https://doi.org/10.4153/CJM-1949-012-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1949-012-6

MEAN-CONTINUOUS INTEGRALS 117

the proof of Theorem I, [4, p. 133], to obtain a contradiction. Theorem II,
then follows as a corollary.

TuaeoreM III,.. If fi(x) and fi(x) are GM-integrable on (a, b) and fi(x) =
fa(x) almost everywhere on (a, b) then GM,(f1, a, b) = GM,(f, a, b).

If we set Fi(x) = GM.(f1, a, x) and Fy(x) = GM,(fs, @, x), then Fi(x) — Fa(x)
is M,-continuous and 4 CG on (a, b) and AD[Fi(x) — Fa(x)]= ADF;— ADF(x)
= fi(x) — fo(x) = 0 almost everywhere on (a, ). Hence, by Theorem II,,
Fi(x) — Fi(x) is non-decreasing and, since Fi(a) = Fi(a)= 0, F1(b) = F(b).
We have therefore established Property I..

TueoreM IV,.. If f(x) is GM,_1-integrable on (a, b) it is necessarily GM,-
integrable.

We need only show that F(x)= GM,..(f, @, x) is M,-continuous. By
hypothesis

o+h
(GM,_5) J (x+h— )2 {F{t)— F(x)} dt = o(h™7)
as b — 0. The equality

= (GM.s) r”' (¢ 4k — 1)t {F()— F(x)} dt

_r(r—1)
hr
may be established by integrating the integral on the left side by parts » — 1
times and the inner integral on the right » — 2 times [2, p. 543], operations
which are justified by Property 11I,_;. By Property II,_; the integral on the
left side exists in the GM,_;-sense and has the same value. The right hand
side is equal to

(GM,_g)J H dt(GM,_s) J: (¢ — 0)?{ F(n)— F(x)} dn

x
z

z+h
r(r — l)h“’J o[t —x)dt = 0(1)

as b — 0. We have therefore established Property I1,.
THEOREM V,. Let F(x) be M,-continuous at x and let

t ty tr1
gr(t) = J dty J e dtr_l'[ g(t)dt,

a

where g(t) is of bounded variation on (a, x). Then F(x)g.(x) is M, -continuous
at x.

Using the Cesaro-Perron analogue of Property III,_; Burkill [2, p. 549]
establishes Theorem V, for the C,P-integral. The method of proof applies as
well to the GM,-integral.

TuaeorReEM VI, (Integration by parts). Let f(x) be GM ,-integrable on (a, b)
and let g,(x) be defined as in Theorem V,. Then f(x)g.(x) is GM ,-integrable on
(e, b) and

GM,) Jb fx)g:(x) = F(b)g,(b) — (GM,—1) JiF(x)gr—l(x)dx.
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By Property III,_; F(x)g,—1(x) is GM,_;-integrable. We set

H) = F)g () — (G, ) J:Fa)gr_l(t)dt.

By Theorem V, F(x)g.(x) is M,~continuous on (a, b). By Theorem IV,
F()g,—1 () is also GM,-integrable and to GM,_:(Fg,—1, a, x). Hence
GM,_1(Fg,_4, a,x) is M,-continuous on (a, b). Since the sum of two M,-
continuous functions is M,-continuous, H(x) is M,-continuous.

Now F(x) is ACG and g,(x) is AC on (a, b). Since the product of two AC
functions is AC, F(x)g.(x) is AC over each of the closed sets over which F(x)
is AC and therefore F(x)g.(x) is ACG on (a, b). Since GM,.1(Fg,_1, a, x) is
also ACG on (a, b) it follows that H(x) is ACG on (a, b).

As GM-integrals the functions F(x) and GM,_1(Fg,—_1, @, x) are approximately
derivable almost everywhere on (a, b). Since ADF(x)= f(x) almost every-
where on (e, b), and 4D [GM,_1(Fg,—1, a, x)] is equal to F(x)g,—i(x) almost
everywhere on (e, b), ADH(x)= ADF(x)g,(x) = f(x)g,(x) almost everywhere
on (a, b).

It follows that H(x) is an indefinite GM ,-integral of f(x)g.(x) and

b b
G, Lf(x)groc)dx — H()= F)g.(b)— (GM _I>LF<x>g7_l<x>dx.

We have therefore proved Theorem VI, and established Properties I-111I by
induction. Property II shows that the GM-scale of integrals is consistent, i.e.
that each integral contains those with lower subscripts. Each integral of the
scale is more general than the preceding integral. This is shown by the example
fx)=0, x = 0, f(x) = (d/dx)?x? sin(1/x), p, ¢ integers x # 0 for, given 7,
Sf(x) will be a GM ,-integrable but not GM,_;-integrable function if p and ¢ are
properly chosen.

A further property of the GM,-integral that follows easily from Theorem II,
is the following.

The definite GM ,-integral is determined uniquely, and the indefinite GM .-
integral is determined uniquely apart from an additive constant.

We list other properties for which the proofs are essentially the same for
higher orders as for the GM,- or general Denjoy integral.

A function which is GM -integrable is necessarily measurable and almost every-
where finite [5, p. 243].

The function F(x)= GM.(f, a, x), ¢ £ x £ b, satisfies Lusin's condition (N)
[5, p. 225].

A function which is GM -integrable and almost everywhere non-negative on an
interval (a, b) is necessarily Lebesgue integrable on (a, b) [5, p. 242].

Given a non-decreasing sequence of functions fn(x) which are GM -integrable on
an interval (a, b) and whose G M ~integrals over (a, b) constitute a sequence bounded
above, then the function f(x)= lim f.(x) is itself necessarily GM ,-integrable on
(a, b) and
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b b
(GM,)J' f(x)dx = lim (GM,) J fa(x)dx,
a n-y © a
[5, p. 243].

2. The relation between the GMy- and the C,P-, CrD-integrals. The CoP-
integral is the Perron integral and the C,P-integral is defined in an analogous
manner [1, 2] using major and minor functions but with ordinary continuity
and derivatives replaced by mean (Cesaro) continuity and derivatives.

DeriNiTION (AC*,) [6, p. 221]. The function F(x) is said to be AC* (C,-
sense) over a set E if it is C,—,D-integrable in an interval which contains E and

if to each positive number e corresponds a number § such thai*
”

bound lCT(F, @ X) — F(ai)l < e

ai<x<bi

TI.
-

bound |C,(F, b;, x) — F(b:)| < ¢

a;<x<b;

M=

-
]
-

for all finite sets of non-overlapping intervals (as;, b;) with end points on E and

such that 3, (b;— a;) <.
i=1

DEerINITION (ACG*,) [6, p. 221]. The function F(x) will be said to be A CG*
(C,-sense) over a set E if F(x) ts C.-continuous at points of E and if E is the sum
of a denumerable number of sets over each of which F(x) is A C*(C,-sense).

DeriniTiON (DI,) [6, p. 232]. The funciion f(x) is said to be C.D-integrable
in (a, b) if there is a funciion F(x) that is ACG*(C,-sense) over the closed interval
(a, b) and such that C.DF(x) = f(x) almost everywhere in (a, b). Then F(x) is an
indefinite C,D-integral of f(x), F(b)— F(a) the definite C,D-integral in (a, b).

By basing our generalizations on the general Denjoy integral we were able
to obtain a considerably simpler descriptive definition of an #*" order integral.
The condition that F(x) be C,-continuous could be separated from Definition
(ACG*,) and included separately in Definition (DI,). The concept of (4CG)
is then seen to be simpler than the modified Definition (4 CG*,). Furthermore,
in Definition (DI,) the concepts of both 4CG*(C,-sense) and C,-derivatives
must be modified for each r. We prove that the simpler GM,-integral is
actually more general than the C,D- and equivalent C,P-integrals.

TaeoreM VII,. The GM,-integral contains the C.D- and C,P-integrals.

Since Miss Sargent [6] proved the equivalence of the C.D- and C,P-integrals
we need only show that the GM, -integral contains the C,D-integral. We pro-
ceed by induction. Since it is well known that the GM-integral contains the
CoD- or special Denjoy integral we may suppose the theorem true for orders
less than » and prove that it is then true for order r.

2The #t? Cesiro mean of Fon (g, b) is denoted by C,(F, a, b) and differs from the M,-mean
only in that the integral is required to exist in the C,D- sense rather than the GM,-sense.
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We suppose that f is C.D-integrable and set F(x)= C,D(f, a, x). Then,
since F(x) is C,-continuous,

r z+h
- (CaD) J (x + k — £)1F(t)dt — F(x)

as b — 0. By hypothesis the integral exists in the GM,_;-sense and has the
same value. We conclude that F(x) is M,-continuous on (a, b).

By the descriptive definition of the C,D-integral, (@, b) can be covered by a
sequence of closed sets (E,) over each of which F(x) is AC*(C,-sense). By
Theorem 11 [6, p. 227] a necessary condition for F(x) to be 4 C*(C,-sense) over
a set E, is that F(x) be ACon E,. It follows that F(x) is ACG on (a, b).

In [6, p. 228] it is shown that if F(x) is 4 C*(C,-sense) on a set E,, then the
C.-derivative [2, p. 542] C,DF(x) exists, is finite and equal to ADF(x) at almost
all points x of E,. Since (g, b) is covered by at most a denumerable sequence
of such sets it follows that C,DF(x)= ADF(x) almost everywhere on (a, b).
Since, by the definition of a C,D-integral, C,DF(x) = f(x) almost everywhere it
follows that ADF(x) = f(x) almost everywhere on (g, b). It then follows that
f(x) is GM,-integrable to F(x).

On the other hand the C,P-, C,D-integrals do not contain the GM,-integral.
This is well known for » = 0 since the special Denjoy integral is contained in
but not equivalent to the general Denjoy integral. A similar relation holds
for other values of . We therefore have two distinct scales: (1) the CD-,
CP-scale of integrals similar to and generalizing the Denjoy-Perron integral;
and (2) the GM-scale of integrals similar to and generalizing the general Denjoy
integral and such that the GM,-integral contains the C,D-, C,P-integrals.

3. The constructive GM,-integral. To obtain a constructive definition of
the GM,-integral we modify the definitions and conditions for integrability in
the general Denjoy sense by using limits involving M ,-means.

DEerINITION (). If the function f(x) is summable over a measurable set E
then GM,(f, E) s L(f, E) the Lebesgue integral of f(x) over E.

DeriNiTION (b). Let (as, ;) be any interval and suppose that GM.(f, a, B)
has been determined for every interval (a, B) interior to (as;, 8;). Let & be a point
with ;< £ < B; and let F(t)= GM.(f, t, £). Let K.(ai, £) and K. (&, B:) be the
respective limits as b — 0% of

o.+h
rh*’(GM,_l)J (@it b — )™ F()dt,

B;
rh~(GM, ,_I)J h(t — B:+ B)TIF(b)dt,
Bi—

where the integrals are supposed to tend to limits which are finite. If f(x) s such
that K, (as, £) + K, (&, B:) is independent of & then

GMT(j‘y aiy B%) = KT(air E)—l— KT(E! B'l)'
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DEFINITION (c). Let E be a closed set over which f(x) is summable, (a:, B:)
the intervals complementary to E on (a, b); suppose that GM,(f, a;, B:) has been
determined for all the intervals (ai, Bi), and that (I, m) is an interval for which
(IZ) lGM +(fy ai, ,8,-)] converges. Then

G-Mr(fr ly m) = JE(Z ) f(x)dx + (lZm)GMr(j’ (L 27) ﬂi)r

where 1t s understood that if | is interior to an interval (ax, Bi) then the term in
the sum arising from this interval is GM,(f, I, Br). A similar understanding
holds if m is not a point of E.

The function f(x) is then GM,-integrable on (e, b) if it satisfies the following
conditions:

(1) If E is any closed set on (a, b) there exists an interval (I, m) containing
points of E and such that f(x) is summable over E(I, m).

(2) The function f(x) is such that the limits in (b) exist.

3) If GM.(f, 1, x) exists for all x in an interval (/, m) then it is M,-continuous
as a function of x in (I, m).

(4) The function f(x) is such that if E is any closed set for which
GM.(f, ai, B;) has been determined for all intervals (a;, 8;) complementary to
E, there exists an interval (J, m) containing points of E and such that
(IZ) |GM.(f, as, B:)| converges.

Definitions (a), (b) and (c) together with conditions (1), (2), and (4) permit
the determination of GM,(f, a, b) in a finite or denumerable number of steps
as in [3, p. 20 ff.]. Further conditions are needed to ensure that F(x)= GM,
(f, @, x) is M,-continuous. These conditions are discussed for an integral equi-
valent to the GM-integral in [3]. We have postulated mean continuity by
adding condition (3).

If we set F(a) = 0, F(x)= GM.(f, a, x) fora < x = b, we can prove Lemmas
4, and 5, as in [3, Theorems I and II].

LemMA 4,. The funciion F(x)= GM.(f, a, x) is ACG on (a, b).
LEMMA 5,. At almost all points of (a, b) ADF(x) exists and is equal to f(x).

TuaEOREM VIII,. The constructive and descriptive definitions of the GM,-
integral are equivalent.

Condition (3) and Lemmas 4, and 5, show that the descriptive integral
contains the constructive integral. We must therefore show that if the M,-
continuous function F(x) is 4 CG on (a, b) and such that A D F(x) is finite almost
everywhere and equal to f(x), then the constructive definition gives GM,
(f, @, x)= F(x)— F(a). We first prove a lemma.

LEMMA 6,. Let F(x) be ACG on (a, b) and let ADF(x) be finite and equal to
f(x) almost everywhere on (a, b). If E is any closed set on (a, b) there then exists
an interval (I, m) such that f(x) is summable over E(l, m), 3 |F(8:) — F(as)|

’ @, m)
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converges, where (a;, 3:) are the intervals complementary to E(l, m), and for any
such interval
F(m)— F(l) = Jr f@)dx = ¥ {F(B:)— Fla))}.
E(,m) (m)

Let 44, 4., .. . be the closed sets over which F(x) is AC. There then exists,
by Baire's Theorem, an interval (/, m) and an integer k such that 4; and E
are identical on (/, m). Since F is AC on Ay, Dy, F(x) exists for almost all
points of A and is summable over 4. Then, since for almost all points of A
we have Dy, F = ADF = {, it follows that f is summable over E(l, m). The
convergence of Y. lF(B,) F(a,)[ follows from the absolute continuity of F
on E(l, m). ™

Let G(x)= F(x) on E(l, m) and be linear in the intervals (a;, 8;) in such a
way as to be continuous on (I, m). Then G(x) is AC on (/, m) and, at almost
all points of E(l, m), G'= Dgy,m F = ADF = f. Hence

(L)J G (x)dx

f

F(m)— F(l)

J f@dx + ¥ ri & (x)d
E(,m) d,m

ag

_ J f@dx + X {F(B)— Flas) } .
E(l,m) @, m)

We return to the proof of the theorem and, as in the existence proof for the
constructive GM,-integral [3, pp. 21-23], we let E; be the points of non-
summability of F on (a, b). Then E; is closed. If we denote by (a;!, 8!) the
intervals complementary to Ei, by (e, 8) an interval with a;'!< a < 8 < B4,
then

F(B)— F(a): L(fy a, B)= GMT(fv a, ﬁ)'

Since F(x) is M,-continuous, F(8) — F(a) tends in the M,-sense to the limit
F(B8')— F(as) which is finite and independent of any £, ai!< & < 8. It
follows that Definition (b) applies to GM,(f, «, 8) and

F(!)— F(a;!) = lim GM (fy a, B) = GM.(f, ai, B).
o> a
B> B; 1

By Lemma 6, there exists at least one interval (/, m) containing points of
E; and such that f is summable on E:(/, m) and Z)lF(Bil)— F(ail)l con-
,m

verges. Let E» be the points of E; that are points of non-summability of
f over E; and/or points x such that Z | Fg:t)— F (azl)l diverges for every

interval (I, m) containing x. If (a?, ﬂf) are the intervals complementary to
E; and (a, B) is an interval with a2< a < 8 < 82 then, by Lemma 6,

F§)— Fla) = J f@)dx + X {FEH)— Fad)},
Ei(a,B) (a,B)

and the right side is now equal to GM,(f, a, 8) by Definition (c). As before
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we can use the M,-continuity of F to determine GM,(f, a2, 8:%) = F(82) — F(3:).
Continuing this process we can determine GM.,(f, [, m) = F(m)— F(l) in a finite
or denumerable number of steps.

4. A continuity property of GM,-integrals. We conclude with a proof
that an important property of continuous functions extends to mean continuous
indefinite integrals. This result has been stated for the CyP-integral [7, p. 238].

THEOREM IX,. If F(x) is an indefinite GM ~integral of f(x) defined on (a, b)
and if (I, m) is any closed interval on (a, b), then F(x) takes all values between its
upper and lower bounds on (I, m) for Il < x < m.

Let E, be the points of non-summability of f on (I, m). If (as, B:) are the
intervals complementary to E; on (I, m), ai!, 8;! points of E; and (a, 8) is an
interval with a;!< a < 8 < B, then f is Lebesgue integrable on (a, B). It
follows that F(x) takes all values between its upper and lower bounds on (a, 8)
fora =x =<8

Let 8 be fixed, let a tend to a;! and consider the intervals (a;!, a). There are
three possibilities: (i) Every interval (ai, a) contains points x with F(x)>
F(ai') and points x’ with F(x') < F(a:'); (ii) There exists an interval (ai!, a)
with no point x such that F(x) > F(a!); or (iii) There exists an interval (a!, a)
containing no point x such that F(x) < F(a).

In the first case it is clear that F(x) takes all values between its upper and
lower bounds on (a!, 8) for a;'< x < 8. In the second case, given an arbitrary
e > 0 there exists 6 such that F(a;!) — F(x1) < € for some x;, a;' < %1 < a;'+ 6.
If not, Lemma 1, would contradict the M,-continuity of F(x) at a;!. Since
F(x) takes all values between its upper and lower bounds on (x;, 8) and e is
arbitrary, it follows that it takes all values between its upper and lower bounds
on (ai, B). Since a similar argument holds for 8 tending to 8;!, F(x) takes all
values between its upper and lower bounds on (a, 8i!) for a!< x < 8. A
similar argument holds if (iii) applies.

As in the transfinite process by which the GM,-integral was built up from
the constructive definition [3, p. 20], let E; be the points x of E; such that one
or both of the following conditions hold: (i) For every interval (¢, d) containing x
the function f is not summable over E;(c, d); (ii) The sum(zd)[GM,(f, ait, 61|

(2

diverges for every interval (¢, d) containing x. Let (a?, 82) be an interval of
the set complementary to E; with a;?, 8 points of E,; (a, 8) an interval
with a?< a < 8 < B2

Let G(x)= F(x) for x = a, 8 and at points of Ei(a, 8) and let G(x) be linear
in the intervals (a!, 8;!) on (a, 8) and in the intervals (a, ax!), (8x*, B) where
ax!, B!, are the upper and lower bounds of points of E; on (a, ).

Since a, @ are arbitrary it is sufficient to prove that F(x) takes all values
between F(a) and F(B) on (a, 8). Let ¢ be any value between F(a), F(8). Then
G(x')= c for some x/, a < 2’ < B. If x'¢E,, then F(x')=c¢. If G(x)5 ¢ in E,
there exists some interval (ej!, 8;) with aj'< x’'< ;! and F(a;!) = G(a}) <
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¢ < G(8Y) = F(B;) or the reverse inequality. By the first part of the theorem
F(x) takes all values between F(a;') and F(8;!) for aj!< x < B8,' and therefore
takes the value c.

As before we can pass from the intervals (a, 8) to the intervals (a?, 8:?)
complementary to E,. Continuing this process we can establish the theorem
in a finite or denumerable number of steps.

REFERENCES

[1]1 J. C. Burkill, “The Cesaro-Perron Integral,” Proc. London Math. Soc., (2), vol. 34
(1932), 314-322.

[2] J. C. Burkill, “The Cesaro-Perron Scale of Integration,” Proc. London Math. Soc., (2),
vol. 39 (1935), 541-552.

[8] R. L. Jeffery and H. W. Ellis, “Cesaro Totalization,” Trans. Royal Soc. of Canada,
Third Series, Sec. 111, vol. 36 (1942), 19-44.

[4] R. L. Jeffery and D. S, Miller, “Convergence Factors for Generalized Integrals,” Duke
Math. J., vol. 12 (1945), 127-142.

[5] S. Saks, Theory of the Integral (Warsaw, 1937).

[6] W. L. C. Sargent, “A Descriptive Definition of Cesaro-Perron Integrals,” Proc. London
Maih. Soc., (2), vol. 47 (1941), 212-247.

[71 W.L. C. Sargent, “On the Cesaro Derivatives of a Function,” Proc. London Math. Soc.,
(2), vol. 40 (1936).

The University of Toronto and Queen’s University

https://doi.org/10.4153/CJM-1949-012-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1949-012-6

