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Growth Spaces and Growth Norm
Estimates for @ on Convex Domains
of Finite Type

Hong Rae Cho

Abstract. 'We consider the growth norm of a measurable function f defined by
I fll=c = ess sup{dp(2)”|f(2)| : z € D},

where §p(z) denote the distance from z to OD. We prove some optimal growth norm estimates for O
on convex domains of finite type.

1 Introduction and Statement of Results

Let D be a bounded domain in C” with C? boundary. For z € D let dp(z) de-
note the distance from z to dD. For @ > 0 we define a measure dV,, on D by
dV,(z) = dp(2)*~'dV (z) where dV (z) is the volume element. For 0 < p,a < oo
let || f|| p,« be the LP-norm with respect to the measure dV,, and we define L»**(D) =
{f - Ifllp.a < 00}. Let AP*(D) = LP*(D) N O(D), where O(D) is the space of holo-
morphic functions on D. We will denote the usual Hardy space H?(D) by A?°(D),
and the associated norm by || f|| 0. We can identify A?°(D) in the usual way with a
subspace of LP(OD : do). For @ > 0 and 0 < p < oo we have (see Lemma 2.1)

(1.1) sup{dp(2)™?|f(2)| : 2 € D} S ||fllpa for f € APO(D).

The estimate (1.1) motivated the author to consider the growth norm for general
measurable functions. Let 0 < o < oo. For a measurable function f on D we define
the growth norm

| fll=o = ess sup{dp(2)?|f(z)| : z € D}.

Let
L77(D) = {f : f measurable, || f||-, < co}.

For 0 = 0 we let L~%(D) = L>°(D). Then growth spaces L7 (D) are Banach spaces.
Let L(T)f;) (D) be the Banach space of (0, q)-forms whose coefficients belong to the
L~=7(D) space.

We denote by A, (D) the Lipschitz space of order 0 < o < 1 and by BMO(D) the
BMO-space on D.
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Growth Spaces and Growth Norm Estimates for O 509

Theorem 1.1  Let D € C" be a convex domain with C>°-smooth boundary of finite
type M. Let 0 < 0 < oo. There are bounded linear operators T, such that 0T, f = f

for all f € Lg%, (D) N Clo gy (D) N Lig 4y (D) with Of = 0 and these operators

satisfy the following estimates:
(i) For0<o< 1\_14’
ITafllap—o S 1o

(ii) Foro = 1714,

Ty fllemom) S Il fIl=1/am-
(iii) Foro > &,

ITafl-—1/a S [ fll—0-

Let P be the Bergmen projection associated with D. Then we have

Pf(z) = f(©)B(z,¢)dVv(C),
zeD

where f € L'(D) and B(z, ¢) is the Bergman kernel associated with D. Let0 < o < 1.
In [McSt] it was proved that

(1.2) I1Pflla,m) S N fllaym)-

Moreover, they proved that

/ 5p(C) Bz, Ol dV(C) < 6p(2) ™7, z€D.
D
From this we can see that

(1.3) IPfll—o <11 fll-o-

Corollary 1.2 Under the assumptions of Theorem 1.1, the canonical solution v of the
equation Qu = f satisfies the following estimates:

(i) For0<o< ﬁ,
vl S N1l =0

.o 1 1
(11) FOTM<0'<1+M,
V-1 S 1o

Proof If u is the solution of the equation Ou = f given by Theorem 1.1, the canon-
ical solution v of the equation is v = u — Pu, where P is the Bergman projection
associated to D. The results follow immediately from Theorem 1.1, (1.2), and (1.3).

|

For more recent results about estimates for 9 on convex domains of finite type by

means of integral kernels we refer the reader to [AhCh, Al, Cu, DFF, DiFi, DiFol,
DiFo2, Fi, Hel, He2, Wa].
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2 Growth Spaces
In this section we can see that the growth space is a very convenient way to study
embedding theorems among holomorphic function spaces.

Lemma 2.1 Leta > 0and0 < p < oco. Then we have

sup{éD(z)(”+“)/P|f(z)\ :2€ D} S| fllpa for f € APY(D).

Proof For py € D sufficiently near D, we translate and rotate the coordinate sys-
tem so that z(py) = 0 and the Im z; axis is perpendicular to OD. Let B.(po) denote
the non-isotropic ball

n

o |Zl|2 \Zj|2
B0 ={ oy F 2t <)

2

Since OD is C?, it follows that there is an €y > 0 such that for py sufficiently near 9D
and z € B, (po) we have z € D and

p(po)
2.1) 2P < 6p(2) < 200(po)
(see [Be]). Let 0 < p < oo and v > 0. Let f € AP*(D). Since the plurisubhar-
monicity of | f|? is invariant by the affinity

(217227"'5‘2") - (

21 %) Zy )
)

€00p(po) " /eadp(po)  \/€dp(po)

it follows that

(2.2) |f(po)|f < |f(2)|F dV (2)

1
Vol(B., (po)) /93,0(1)0)

1
< - - P4 .
™~ (eodp(po))™! /93(0(170) |f(2)]P dV(z)

By (2.1) and (2.2), it follows that

| FPo)| < 0p(po) " V2| £l p.a-

Parameterizing 0D locally by x1,z, ..., z, let @EO (po) denote the non-isotropic
ball on 0D

N |X1 ‘2 . |Zj|2
Be, = oD : .
(po) = {z ¢ AT D wrw i 1}

j=2
For any u € L?(0D) we denote by Au the Hardy-Littlewood maximal function of u:

1
Au(z) = su ~—/ uldo.
B Ja
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Let f € AP%(D). For1 < p < oolet f* be aaboundary value function in L?(9D).
For z € B, (po) let m(z) denote the projection of z onto ID. Then it follows that

|f(2)] < CAf*(n(z)) forz e B, (po)-

From (2.2) we obtain that

pe L r
(2.3) If(po)l” < 3o(po)™ /60%) |f(2)|F dV(2)
1 *
S 5o / Af* (@) dV (2)

€o(po)

< 1 20DP0)A . -y
NW/ £(0)P dtdor(0)

Beyipy) 7 On(po)/

S 5o 1M Mo S 5o 11

If0 < p < 1, we apply the estimate (2.3) above to the function | f|'/*, where s is a
large positive number and with p replaced by sp. Then we get the required inequality.
|

For 0 < p < coand o > 0 we define
LP(D) = LP*(D) N L™7(D).
Then L”%(D) is a Banach space with the norm defined by

1fllp.0—o = max{|| fllp.a: [ fll - }-

Let A‘i’(;(D) = L‘Ej(D) N O(D). By Lemma 2.1, we get
(24) AP iayp(D) = APY(D), 0 < p < o0, a>0.

Leta > 0and 0 < p < g < co. Then we have

(2.5) /lf\quaw(q—p) =/\f|P|f|q_P5"_15”(q‘P> dv
D D

< ([ 11 av..) up 571y
D
By (2.5), we have that

1—
I fllgarota—p) < IFIBLNAILE < N fllpa + 11 £l =0

S A llp.a—o-

Hence it follows that
(2.6) L"3(D) C L+ =P(D).

If we choose 0 = (n+ «)/p, by (2.4) and (2.6), we have the following result.
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Theorem 2.2 Assumethat0 < p < g < oo, a, 3 > 0,and (n+a)/p = n+p5)/q.
Then AP*(D) C A%%(D) and the inclusion is continuous.

Remark 2.3 The case & = 0 in Theorem 2.2 is the embedding of Hardy spaces
HP(D) into the weighted Bergman spaces A%?(D). As expected, the embedding of
the Hardy space is the most difficult one. Even though Beatrous [Be] proved the em-
bedding H?(D) C A%*(D) for0 < p < q < oo with n/p < (n+ 3)/q, we cannot
prove the optimal embedding of the case n/p = (n + 3)/q by using his method.
The optimal embedding of the case @ = 0 was proved only in some model domains
such as the unit disc [Du], the unit ball [BeBu], and the strongly pseudoconvex do-
main [Be]. Recently, the author proved the case @« = 0 in the convex domain of
finite type [Ch]. The key point is the reproducing kernel with right estimate match-
ing quasimetric on 0D. However, in general domains not enough is known about
the reproducing kernel with right estimate and so we must use a different approach.
Stein [St] introduced the boundary behavior of H”-functions in general bounded
domains in C" with C? boundary without making use of any assumption of pseudo-
convexity. In [ChKw] we proved the case &« = 0 in general domains in C". In our
proofs we overcome the difficulty by using the growth space and Fatou’s theorem for
HP-functions proved by Stein [St].

3 Construction of the Solution Formula for 0

From now on we denoteby D = {z € C" : p(z) < 0} abounded convex domain with
C°°-smooth boundary of finite type M. We also define Dy := {z € C" : p(z) < 4}
for small absolute values |4|. The defining function p can be chosen in such a way
that there exists a neighborhood U of OD such that |dp(z)| > 1/2 forall { € U and
all the domains D, are convex domains of finite type M. For details, see [Fi, §2].

If 7 is the unit outward normal vector at ¢ on the hypersurface {z : p(z) =
p(C)}, we define w = ®({)(z — (), where the unitary matrix ®(() satisfies ®({)7i, =
(1,0,...,0) forall ¢ € U. The following definitions are in [DiFo1]:

pcw) = p(C + (B(O)'w),

M .
_ ; 1 9/
_ 2 2 L op¢ o
Sew) =3w; + Kwy — ¢ g N-o; E ol we 0)w
=2 lal=j
a;=0

for N > 0 suitably large and ¢ > 0 suitably small (all independent of (). We define
i ' as
j — ¢ -
Qlw) = /0 gy (W j=1 o

and

Q(Z7 C) = (QI(Z7 <)7 R Qn(z7 C))
= ()" (QUR(z =), ..., AUz — () .
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We put S(z, () = §<(<I>(g)(z —()). Then S(z, ¢) is a support function on D, holomor-
phicin z € D and C* in { € U with the following estimates. Let ¥ be a unit vector
complex tangential to the level set {p = p({)} at . Define

a+[3

. 0 .
an5(C, V) = Wﬂ(c + M) [r=o-

Then there are constants K, ¢,d > 0, such that one has for all points z written as
z = ¢ + pi¢c + AW with p, A € C the estimate

2ReS(z,¢) < — | Rep| — K(Im p)?
M
—c> > aap(C, DI + dsup{0, p(2) — p(O)}-
=2 a+f=j

Since we want to define Q for all ¢ we choose two neighborhoods D € U, &
U, € U of the boundary and a smooth cut off function 0 < x < 1 such that
Xx(¢) = 1for ¢ € Uy and x(¢) = 0 for ¢ € D\ U,. Using this we can define

Q(Zv C) = X(C)Q(Za C)
Lemma 3.1 ([AhCh])  There exists a constant C, such that for all z, { € D we have
B —Re({Qz ),z = () +Cip(Q)) Z —pl2) = p(Q) + |z = (M.

Now we define

j=1

1 L
Q0 ="5 ;Qj(z, Q)d¢;

with the constant C; from Lemma 3.1 and G(\) = A~ for A € C. For convenience
we also introduce the notation

S(Zv C) = <Q(za C)a z— C) + Clp(()
Using the above (1,0)-form Q(z, ¢), the Berndtsson—Andersson kernel [BeAn] be-
comes
sA (OQ) A (Os)r—1—V
<5(Cvz)7g _Z>H—I/ ’

n—1
K(z,0) =Y CuyG” (1+(Q(z,0),2—C))
v=0

Now we introduce the notation K(z, ¢) for the part of the kernel which is of degree
(0, q) with respect to z and define

Tyf(2) = f(Q) ANKy(z, Q).
¢ep
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Since due to the weight function, the kernel vanishes for { € 0D, the integral opera-
tors T, are indeed solution operators for 0 in D. For convenience we write

n—1
K(z,¢) = > K"(z,0),
v=0

where

sA (OQ) A (Os)r—1—V

(3.2) K"(z,0) = Cp, G¥ (14 (Q(2,(), 2 — C)) (5(C,2),C — 2)n—v

4 Integral Estimates for the Bochner-Martinelli Kernel With Weight
Factor

First we note that in (3.2) if v = 0, our kernel becomes the well-known Bochner—
Martinelli kernel with some weight factor. Define

K f(z) = f(O) AK(z,0).

¢eD

Theorem 4.1  Let f € L7 (D).
(i) For0<o <1 [Kflla_.m S Ifll--

(i) Foro > 1 [[Kfll-(o—1) < I fll-o-

Proof (i) In [AhCh], we proved that
/ 1p(O) 77| V.K(z,0)|dV(¢) < |plz)|™° forallz € D.
ceD

Thus we get [V, K°f(2)| < ||f]l-o|p(2)| ¢ for all z € D. By the Hardy-Littlewood
lemma, we get the result.
(i) We have

p(C) |N 1
S(Zv C) ‘Z_C‘anl'

(4.) K0l 5 |

It follows from (3.1) of Lemma 3.1 that the support function satisfies the estimate

(4.2) 1S(z,0)| 2 |Im S(z, ¢)| — p(¢) — plz) + |z — ¢

for every z, ( € D. Moreover, we have

(4.3) dp(O) A d(Im S(z, () # 0

https://doi.org/10.4153/CMB-2006-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-049-3

Growth Spaces and Growth Norm Estimates for O 515

for ¢ close enough to 9D and |z — (| < €, sufficiently small ¢y > 0. Recall that
Im S(z,¢) = ImS(z, () for ¢ close enough to D. To see (4.3) it suffices to prove
9,p(0) A 0,5(¢, ) # 0. By simple observation [DFF, (2)] we know that

0S(¢,¢) =3 (B(O)1,jdz;,

j=1

where (®(¢)),; is the (1, j)-element of the unitary matrix ®(¢) satisfying ({)7; =
(1,0,...,0). Since dp(¢) and 7 are same vectors up to a constant, we have 9p(¢) A
0S(¢,¢) # 0. We fix z € D close to OD, and we use the coordinate system t; = p((),

f = Im8(z,() = IMS(z,0), t5(2) = -+ = tayl2) = 0, [t(C) — t(C)] ~ [¢ — ]
and |t(¢)| < 1 in a neighborhood D N B(z,~y) of z. We prove the inequality for the
first term in the right side of (4.1). By (4.2), we can see that the only singularity is of
the form |z — (|~ and so everything is bounded if |z — (| > +. So it is enough to
consider the case that z and ( are in a neighborhood of 9D and ¢ € B(z, 7).

We have

\wﬂms/ FOIK 2 0l dv(Q)
(GD

SWfl-e [ 101 7K 0l av(O).
¢eD
From (4.1) and (4.2) it follows that

M@:/ (O] IK (2, O] AV (€)
CEDNB(z,7)

Ip(QOIN—7
< d

€DNB(z,y) ‘S(Zv C)|N|Z - C|2n71

< / |P(C)|l\1_(7 av(¢)
~ Jeepnseny ([ ImS(z, O] + |p(O] + [p(2))N]z — ¢[*!

< / |ty |N=7 dt, dt,dt’
lman)<t (] + [t2] + [p) PN [¢[>!

</ [ty |N=9 dt, dt,
~ i< (il + 18] +1p@DN (0] + )

If we make the change of variables t; = |p|t{ and t, = |p|t;, and omit the primes,
this becomes

o t|N=o dt dt
I()(Z) S ‘p(Z)| (o 1)/ | 1| Nl 2
waere (Al + ] + DN([t] + [t2])

< T e < —(o—1)
< lp(2)| . G DN dfy < |p(2)] :

Thus we get the result (ii). [ |

https://doi.org/10.4153/CMB-2006-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-049-3

H. R. Cho

Integral Estimates for the Kernels K”(z, )
For ¢ € U and € < ¢ we define some sort of boundary distances by
T((, ¥, €) =sup{r > 0: [p(C + \V) — p(Q)] < & |A]| < n, A € C}.

The quantity 7 measures the size of the largest complex disc centered at ¢ lying on
the line spanned by ¥ that fits in the domain {z : p(z) < p({) +€}. Next we define the

e-extremal basis (Vy, ..., ¥,) centered at ( of McNeal [Mc]. The first vector ¥, is the
unit vector in the direction of dp((); having chosen ¥y, . . ., ¥;_;,let ¥; be a unit vector
orthogonal to ¥, ..., %_;. In this way we obtain a basis (¥, ..., V,) depending on

both ¢ and € > 0. We denote the v-th component of the coordinates with respect to
this basis by z, ¢ .. We call the coordinates by (¢, €)-extremal coordinates. We write
7,(C, €) == 7((, ¥, €). We can now define the non-isotropic polydiscs

AP.(Q) ={z€ C:|z,¢(| <AT((,€),v=1,...,n}.
The following lemma can be found in [Mc].

Lemma 5.1
(i)  There are constants C; > 1 and ¢, < 1 (independent of  and €) such that

(5.1) CiP,(¢) D %Pf(() forall(, e
(5.2) Ci1P(¢) C P(C) forallt < ce,(,e€.

(i) Wehaver (¢, e) ~ eand /> S7y(C,e) < -+ <ma(C,€) S /M. Forz € P(()
we have |z — (| < €'/M and z ¢ P.(C) implies |z — (| 2 e.

For integral estimates we define a family of polyannuli based on polydiscs from
above. Using the constant C; from (5.1) of Lemma 5.1, we put

Pi(¢) = CiPyc(Q) \ 3P (Q).

By (5.1) and (5.2) we see that

UPT(O 2 PO\ and [ JPUQ) D P (O \ PQ).
i=0 i=0

Lemma 5.2 ([DiMa]) For integer i we have

(5.3) [5Gz, Q) 2 2'e

uniformlyinz € DN U, ¢ € P(z) N D.

Lemma 5.3 Let p = |p(z)|. Then we get the estimate

d
(5.4) / 419) e < (ep)'™.
¢

€P,(2) 71(20, Cp)z H;’:n—ll+2 Tj(ZO’ Cp)2|Z0 -
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Proof To estimate the integral (5.4) we make use of the (cp)-extremal coordinates
at zy. Then it is bounded by

/ duldvl
[wi|<Ti(20,¢p) T1 (ZO, Cp)2

i / Cdujdv; "7 ”“/  dwdv;
: |wi|<Ti(z0,cp) TJ(ZOan) |wi|<Ti(z0,cp) (Z ‘W |)2n =t
I<Tj i<Tj

j=n—v+2

(cp)''™ pn—2v—1 "
1
S / Sy dr S ()M,
0

For v > 1 we define

K" f(z) = f(¢) NK"(z,() forallz € D.
ceD

Theorem 5.4 Letv > landlet f € L7 (D).
() For0 <o < 55 K flla .00 S 1l

(i) Foro = 35 [IK” fllemowy S |11l =1/a-
(iii) Foro > 30 K" fll—o—1/a0 S 1]l =0

Proof For the proof of (i) and (ii), it is enough to prove that
IVKY f(2)| S |1 fll—olp(2)| VM=~ forallz € D.

Thus we prove that
(5.5) / 1p(O)] 7| V.K" (2,8)| dV(C) < |p(2)| VM=~ forall z € D.
ceD

For ¢ € P.(z;) we have

(56) |szV(ZOa<)|

PO N ;
~ 1Sz, O |p(QPTC O [T e Ti(C €220 — (P21

Let ¢y > 0 be sufficiently small. By (3.1), we can see that the only singularity is of
the form |z — (|~ and so everything is bounded if |z — {| > €. So it is enough to
consider the case that  is in U and ¢ € P, (z). For fixed z, we will define p = |p(z)|
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and then split the polydisc P, (zo) into the two parts P,(zy) and P, (z9) \ P,(2). Recall

that P,(zy) can be covered by U?:OO P;i(zo). By (5.6), it follows that

1 (z0) = / O] VK (20, ) AV (€)
CEP, (20)

< / Ol
CEP, (20)
277pdv({)

P OPRG 2 P T ey 3G 27920 — (21

It follows from (3.1) that | Re S(z9, ¢)| 2 |p(20)| = p and so we have

p(C)
S(Z()a C)

N 1+0
(5.7) p(¢) ‘ < (M) PO
(20, €) p 2=ip
By (5.4) in Lemma 5.3, the integral can be estimated as follows
i o—i ( I+o | p(
() < / | 0 p <>|> ()
cer;y i 1P(O)] p 2-ip
% dv(¢)
T1(20,271p)? H?:n—u+2 7i(z20, 271 )| 20 — C[Pn—21
5 pflfo'(zfip)l/M _ (27i)1/Mp(1/M7(7)71.
This implies that

(5.8) / p(O VK" (20, O S Y (27 M /M=
CEPy(20) i=0
S pUM=TE = | ()M,

To estimate the integral over P, (z9) \ P, (29) we use the covering Ufjo Pf, (z9). Then
we have

R IR 2 SENSIPIETS
CEP;,(ZO)

s wor
CEPi(20)
2pdv(Q)

X . - . )
(O 27 )2 [1— i Ti((, 27)2 20 — 22t
It follows from (5.3) that for € P;,(zo) we have

p(Q) N |P(C)\)H”|P(C)‘
S(z0,C) p 2ip

p(C)
S(ZO; é')

< (21‘)7(1+(7)(
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By (5.4), the integral can be estimated as follows

Ii (ZO) < / (21')—(1+a) (|p(<))1+0 |p(C)|21p
U Jeeri p 2p

" dv(¢)
PO+ 11(20,270)* [T, p1p (20, 2/ p)* |20 — ([P =20
S (21)(1/M—U)—1P(I/M—U)—l.

Since (1/M — o) — 1 < 0, it follows that

0o
(59) / |p(€)|7U|VZKV(Z(), C)| 5 Z(zi)(l/an)flp(l/an)fl
CEP(20)\Py(20) i—0

S p(l/M—U)—l _ |p(Zo)|(l/M_g)_l.

From (5.8) and (5.9) we get (5.5).
Now we prove (iii). For { € P.(z,) we have

€

K0, 01 5 | o] |
’ ~ 5(2074) |p(C)\7'1(C,e)2 H:—VJrZ Tj(<7€)2|20 _ <‘2n721/71

Let €y > 0 be sufficiently small. For fixed z, we will define p = |p(z)| and then
split the polydisc P, (zo) into the two parts P,(zy) and P, (2y) \ P,(z). Recall that

P,(z) can be covered by Uzo Pp_i(zo). By (5.6), it follows that

T (z0) = / PO K (20, O V()
CEP, (20)

5/ o] 22
CGPp’(ZO)

(20, ¢)

" 27pdv(()
|p((:)|7'1(<, 2_"/))2 HZ—wrz 7-]4(C7 2—ip)2|zo _ qzn—zu_1 :

It follows from (3.1) that | Re S(zo, ¢)| 2 |p(20)| = p and so we have

p(Q) ‘N < (Ip(C)I)”Ip(C)I
S(z0,¢)1 Y\ p 27ip~

By (5.4), the integral can be estimated as follows

» 27 11N p(Q)]
i < ;
I, (20) S /qu/,i(ZO) |p(<)|1+n ( p ) 27ip

. 4v (o)
T1(20, 277 p)? H?:n,,,” Ti(20, 271 )|z — [P =21
5 pfo'(zfip)l/M _ (zfi)l/Mpf(afl/M)'
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This implies that

(5.10) / PO K" (20, QO S D (27N p= 7=t
CEP,(20) Py
S p*(crfl/M) — |p(zo)‘7(071/M)'

To estimate the integral over P, (z9) \ P,(29) we use the covering Ufﬁo Pﬁ) (z9). Then
we have

Jizo) = / PO K (20, )] dV Q)
CEP,(20)

< / PR
(EPi(20)
2ipdv(C)

PGP RDE 1., (¢, 272z — (P2t

p(C)
S(Z()a C)

It follows from (5.3) that for ¢ € P} (z) we have

(© (O] 1o
S(pZO,C) ’N ~ ( pzlp |)

By (5.4), the integral can be estimated as follows

; PO 1+
4 <
]V(ZO)N/CEPL(ZO)( zp ) p
av(¢)

Ip(C)I“"Tl(zO,le)2 [Ticsia Ti(20, 27 p)2 |20 — (22!

S (21')—(0—1/M)p—(<7—1/M).

Since o — 1/M > 0, it follows that
s PO K"z, O)
CEP(20)\Py(20)

< Z(z )~ (o0— l/M (0—1/M) < pf((rfl/M)
= |p(z0)| 7M.
From (5.10) and (5.11) we get (iii). [ |

By Theorem 4.1 and Theorem 5.4, we get Theorem 1.1.
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6 Sharpness of the Estimates

In this section we give an example to show that the estimates in Corollary 1.2 are
optimal in some sense. We restrict ourselves to the complex ellipsoid in C2.
Let D = {(z1,22) € C%|z1|* + |22/M < 1} where M is an even positive integer.

Sharpness of the case 0 =0

This was proved in [Ral].
Let 0 > 0. Define v: D — Cby v(z) = z,/(1 — z;)°, where we use the principal
branch for the (1 — z;)?. It follows that the (0,1)-form

f: (-91/: de/(l —Zl)o

is O-closed on D. Let p(z) = |z |* + |2,/ — 1. We have

1
@I If@] <0 =zl - |ZZ\M)UW S
— 41

Thus we have f € L(T)f’l)(D).
Sharpness of the case 0 < 0 < 1/M

Proposition 6.1 Suppose u € A, (D) satisfies Ou = f on D. Then o < 1/M — 0.
Proof For0 < d < 1/2, the integral

(6.1) A(d) = / hWM[u(l —d,z) —u(l —2d,2)] dz,

is well defined, and if u € A, (D), one obtains

‘A(d)| 5 de . dl/M

by direct estimation. On the other hand, Ou—v)=0,s0u=v+h withh € O(D).
By Cauchy’s theorem we can replace u by v in the integral (5.1). Therefore

1 1
6.2 Ad) = | — — Z) d
(62) D=7~ ) [, 2
_rr 1 . /M
-7 (2d)0} amid
Ifa>1/M — o, (6.1) and (6.2) lead to a contradiction as d — 0. [ |
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Sharpness of the case 0 = 1/M
We have

|22 1
_Z1|1/M+l |1_ZI‘I/M.

Vv S
11
Since |z;| < (1 — |z )M < |1 — z,|'/M, it follows that

1
Vv S 77—
|1—Zl‘
We note that
@ =1—|af — 2" <1—|z| <|1-z].
Thus we have

1
V| < ——.
V2 Lo

By the Hardy-Littlewood lemma, v € BMO(D) (see [Ra2]).
For 0 < d < 1/2 we consider the integral

B(d) :/ v(1 —d,z) — v(1 — 2d, 2,)] dz,.
oz =t/

If v € A (D), we see that
(6.3) |B(d)| < d°-d'/™.

However, we have

1 1

. /M
—dl/M_i(Zd)l/M 2mi dPM.

(6.4) B(d) = [

We can see that (6.3) and (6.4) lead to a contradiction as d — 0. Thus v ¢ A.(D) for
any € > 0.

Proposition 6.2 Suppose u satisfies Ou = f on D. Then u ¢ A.(D) for any e > 0.

Proof
Since v € BMO(D), v € L*(D). Letr,, = (1 — |z|*)'/M. We consider the inner
product (h,v) for every h € L*(D) N O(D). By Fubini’s theorem, we have

(h,v) = /D h(z) v@) dV (2)

dA(z) /
= —_— 2h(z1,2) dA(zy).
‘/Zl|<1 (11— Zl)l/M 22| <1z, B ’

https://doi.org/10.4153/CMB-2006-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-049-3

Growth Spaces and Growth Norm Estimates for O 523

Putting z, = re'?, we see

Tz 27 ) )
/ 2 hz1,22) dA(z) = / / Pz 1) dodr
2| <y, 0 0

|
2 . .
:/ rz(/ e’eh(zl,re’e)dé‘) dr
0 0
:/er2~0~ dr=0,
0

since h(z;, -) is holomorphic. Thus v is orthogonal to L*(D) N O(D), i.e., v is the
canonical solution for Ju = f.

Assume that Ju = fandu € A.(D). By [McSt], it follows that Pu € A.(D), where
P is the Bergman projection on D. Thus v = u—Pu € A.(D). This s a contradiction.
Hence there is no solution u in A.(D) to the equation Ju = f fore > 0. [ |

Sharpness of the case o > 1/M

Note that
lz] o 1 1

—2z1|7 Y1 =z |[TTUM Y | p(z)|o 1M

S
Thus v € L=~ Y/M)(D).
Proposition 6.3 Suppose u € L~°(D) satisfies Ou = f on D. Then o > o — 1/M.
Proof For 0 < d < 1/2, we consider the integral
C(d) = / u(l —d,z) dz.
|22 |=dV/M
Ifu € L=%(D), then

|C(d)|§/ / |u(l — d, z,)| |dz,|
2|=dl/M

1
S ———— |dz,|.
/szl/M |p(1 — d’ 22)‘(1 | 2|
We have

p(1—d,z)|=1-1—d? = |zM>1-01-d)?>d
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Thus we have

1
(6.5) C@| s o ™.
On the other hand, d(u —v) = 0, s0 u = v+ h, with h € O(D). By Cauchy’s theorem
we can replace u by v in the integral (5.1). Therefore

1
(6.6) Cld) = — - 2mi dM.
Ifa <o —1/M,(6.5)and (6.6) lead to a contradiction as d — 0. [ |
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