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RENDEZVOUS SEARCH WITH REVEALED
INFORMATION: APPLICATIONS TO THE LINE

STEVE ALPERN,* London School of Economics

Abstract

The symmetric rendezvous problem on a network Q asks how two players, forced to
use the same mixed strategy, can minimize their expected meeting time, starting from a
known initial distribution on the nodes of Q. This minimum is called the (symmetric)
‘rendezvous value’ of Q. Traditionally, the players are assumed to receive no information
while playing the game. We consider the effect on rendezvous times of giving the players
some information about past actions and chance moves, enabling each of them to apply
Bayesian updates to improve his knowledge of the other’s whereabouts. This technique
can be used to give lower bounds on the rendezvous times of the original game (without
any revealed information). We consider the case in which they are placed a known
distance apart on the line graph Q (known as ‘symmetric rendezvous on the line’). Our
approach is to concentrate on a general analysis of the effect of revelations, rather than
compute the best bounds possible with our technique.
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1. Introduction

In this paper we consider how the revelation of information can affect an important unsolved
problem in rendezvous theory: the symmetric rendezvous problem on the line or line graph
(whose nodes are the integers, Z) posed in [1], dubbed I'. (In fact, given the recent solution
by Weber [14] of the symmetric rendezvous problem on the complete graph K3, I' is arguably
the main unsolved problem.) The problem I" begins with a chance move «, called the initial
configuration. This move consists of both the placement of two players (rendezvousers), I and
I1, at nodes of Z a known distance (taken as 2) apart and their orientation (facing them to the left
or to the right, independently). The random orientation models the assumption that the players
do not have a common notion of direction along the line. The players then choose paths s; and s ;
with respect to their forward directions, using independent randomization from a common mixed
strategy 1. This constraint is what makes the game player symmetric, modeling the assumption
that the players cannot meet beforehand to agree a joint strategy. (If they can, this is the player-
asymmetric, or distinguishable-player, version studied in [2].) Given these choices, they arrive
at some common node at a first (meeting) time 7 = T'(s;, s;, @). Their common aim is to
minimize (under p) the expected value of the meeting time 7', with the expectation taken with
respect to both 1 and the given distribution of «, the initial configuration. This minimum time
is called the (symmetric) rendezvous value, v = v(I"), of I' and the minimizing distribution,
[, is called the optimal mixed strategy. For such symmetric rendezvous problems, it is equally
valid to take the viewpoint that p is either chosen by a single optimizer, such as the author
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2 S. ALPERN

of a rendezvous protocol which is routinely given to people such as hikers, or programmed
into a control unit of parallel computers to tell the players when and where to exchange their
information. Such problems were first studied by Anderson and Weber [7] for the complete
graphs K,,, and a general formulation, including continuous time and more complex notions
of orientation, was subsequently given by the author [1].

Symmetric rendezvous problems on graphs [5] are traditionally studied under the assumption
that each player receives no information about the other’s whereabouts or strategy during the
course of the play. In this paper we vary the ‘no revealed information’ assumption in such
a way that, after a known number of moves n, both players receive a signal which depends
on their actions and on chance moves up to that time. Suppose that their possible actions
(n-move sequences of forwards or backwards) are sy, ..., s, and the initial chance moves are
ai, ..., ag. The state of the game at time 7 (i.e. after n moves) depends on the triple (s;, s, ax),
where s; and s; are the respective sequences chosen by players I and II, and ‘Nature’ (chance)
chooses ay. For some triples T (s;, sj, cx) < n, in which case the game is already over at
time n. For the rest, which form the uncertainty set U = U,,, the game continues. The signal
received by the players consists of the information of which element P of a given partition P
of U contains the state (s;, 5, o). If the original rendezvous problem (game) is called I', then
we call this revealed information version (where the players know n and & from the outset)
I'(n, P). After learning P, and knowing s;, player I (for example) can update his priors on «
and player II’s action, s, given the knowledge of the common mixed strategy w that both have
used to pick their actions. The players then play optimally in the subgame I'(n, P), which,
depending on P, may or may not be a symmetric game. The trick is to choose the partition 5
so that the optimal strategy in each subgame I'(n, P) can be determined. We can then ensure
that the rendezvous value, v(#), of the revealed information game I"(n, &) can be calculated
(either definitively or in terms of v), yielding the inequality

v(P) < v,

because the additional information in & cannot increase the rendezvous time (it can always be
ignored). The same observation shows that coarser partitions & give higher values of v(#)
and, hence, stronger lower bounds on the original rendezvous value v. Such lower bounds on
rendezvous values are usually difficult to come by.

We apply these notions to the symmetric rendezvous problem on the line. The literature on
this problem will be discussed in Section 2, and the application of revealed information to it will
be analyzed in Sections 3 to 6, constituting the bulk of the paper. The only versions of revealed
information in this context seem to be the papers of Baston and Gal [9] on the problem on the
line, where each player learns his partner’s starting point if he ever reaches it (by observing
a marker left there), and Anderson and Weber [7] (who mentioned the possibility of players
leaving messages at locations they have visited, but did not allow this in the versions of the
problem on K, that they analyzed).

A revealed information version of [7], published at about the same time, is the paper on
‘repeated coordination games’ by Crawford and Haller [10], who considered the complete
graph K,, (m locations) with the players’ locations (actions) revealed after each move. For
small m, there are simple solutions. For m = 2, the best the players can do is randomize
forever on the two locations, meeting in Bernoulli expected time 1/ % = 2. This is equivalent to
Anderson and Weber’s result [7] for the complete graph K> on two nodes, since in that case the
other player’s location is ‘revealed’ (by the two not meeting). If m = 3 and their first locations
are distinct, then the players should both go to the unique location unoccupied during the first
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period, where they will meet at time 2; the least expected meeting time is thus
Ix1+31+1D=3. 1)

For m = 5, two strategies are salient. Assuming that their initial locations are distinct, the
players can (i) coordinate on these two locations forever (essentially playing the m = 2 game),
meeting in expected time % x 14 %(1 +2) = 15—3 or they can (ii) go randomly among the
three unoccupied locations and, if these are distinct, coordinate on the fifth location, with lower
expected meeting time

Ixl+i+ix1+2x2=1

2. The symmetric rendezvous problem on the line

In this section we formalize the description of I', the player-symmetric rendezvous problem
on the line, and describe some of the literature giving upper bounds on v, the rendezvous value
of I'.

Problem I' begins with a chance move in which the two players are placed a distance
D = 2 apart on the real line (or two nodes away on the line graph Z), and randomly faced in
directions that each calls ‘forward’ forever. From an observer’s perspective, player I is placed
on the left of player II and Nature chooses equiprobably among four initial configurations,
ar, k = 1,2,3,4, each of which gives a £1-valued direction d; (k) to player I and d>(k) to
player II (see Table 1). This chance move models the assumption that the players have no
common notion of direction along the line, and that the first move of each must therefore be in
a random direction, independent of the direction of their partner’s first move.

Since we will need to display three-dimensional (i, j, k) arrays, we will often include the
final coordinate, k, in the (i, j)-labeled entries of a 2 x 2 array of the following form:

oy <~ — | ap: > — @)
o3 < < oy: — <
In each period r = 1, 2, ..., a player moves a distance of one unit in either his forward (F)

or backward (B) direction. (A justification of this reduction to discrete moves can be found in
[11] and, in a related context, [12].) A pure strategy is thus an infinite sequence of F's and Bs.
(By symmetry of the line, we may assume without loss of generality that strategies begin with
an F.) For numerical calculations, we take F = +1 and B = —1. If a player adopts strategy
s = (s(1),s2),...), with s(¢) € {F, B} = {41, —1}, his net motion at time ¢ from his start,
in his forward direction, is given by

t

S0y = s(r). 3)

r=1

TaBLE 1: Initial configurations.

k oy dp dy
1 <« - -1 +1
2 - - +1 41
3 « <« -1 -1
4 - <« 41 -1
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If player I adopts strategy s, player Il adopts strategy s’, and Nature picks the initial configuration
ag, then the directed distance from player II to player I at time ¢ (i.e. player II’s location minus
player I’s location) is given by

D(s,s", a) (1) = (d2(k)8' (1) +2) — (d1()§ (1)),
and the players therefore meet at time

T(s, s, ap) = mtin{t: D(s,s’, ar)(t) = 0}.

Since oy is picked equiprobably by Nature, their expected meeting time is given by the averaged
function

4
1
T(s,s") = 1 Z T(s,s', o)
k=1

(which we give the same name, T'). For example, if s begins with FFB and s’ begins with FBF,
it is easy to see that the meeting times corresponding to the four initial configurations oy, given
in the two-dimensional ordering of (2), are

2
1 9

where the entry ‘?” signifies that the players have not met by time 3; that is, 7' (s, s’, k) > 3 for
k=1,3.

The problem for the players (or for the author of a book which they each read for instructions)
is to find the strategy which, when simultaneously adopted by both players, minimizes their
expected meeting time. Clearly no pure strategy s will do so, as in initial configurations oy and
a3 (the ones where the players face in the same direction) their initial distance of 2 is preserved
and they never meet. The problem is therefore to find the mixed strategy p« which minimizes
the expected meeting time. (The existence of such a strategy is guaranteed by the analysis given
in[1].)

If the players do have a common sense of direction along the line, then we may take this
direction to be player I’s forward direction and, so, only average over the two cases k = 2, 4.
The rendezvous value for this problem, v°, certainly cannot exceed v, as the players could
choose to ignore this information. It has recently been observed by Shmuel Gal, and analyzed
by Alpern and Gal [4], that if both players adopt FBB as their first three moves and have not met
by then, then they know that k € {2, 3}. That is, they know they both chose the same forward
direction. Consequently, they are now playing the common-direction game I'¢, with value v°.
It is widely thought that, in the symmetric rendezvous problem on the line, having a common
sense of direction does not help the players. Weber [14] has shown that, on the triangle graph
K3, having a common notion of clockwise does not help the players, which result tends to lend
credence to the following conjecture.

Conjecture 1. (The common-direction conjecture.) v¢ = v.

In the author’s original paper [1] a very simple strategy was proposed (and naively con-
jectured to be optimal). In each three-period time interval, choose a random direction to call
‘forward’, and move FBB. If k equals 2 or 3, the respective meeting times are 1 and 3. In the
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remaining cases (k = 2, 4), the players move in parallel and at the end of the last move they
again face the original problem I'. Hence, the expected meeting time for this mixed strategy is

T=1x1+1x3+13+7), thatis, T=5.

Subsequently, other authors have successively obtained lower expected meeting times by
judicious choices of sets of longer move sequences (and appropriate probability distributions):
Anderson and Essegaier [6] used { FFBBB, FBBBFF, FBBFBB, FBFBBB} and Baston [8] used
{FBBFFBB, FBBBFFF, FBFFFBBBF, FFBBB}. Recent work by Uthaisombut [13] and further
work by Han et al. [11] has reduced the upper bound on v to 4.574. The latter authors have
conjectured that v = v° = 4.25.

3. Revealed information and partitions

Thus far, the literature on rendezvous search theory has been restricted to the case in which
the players each receive no additional information in the course of play — except, of course,
that each has not yet met the other. Strategies are therefore simply paths, traveled under the
assumption that no meeting has taken place. This is in contrast to most other dynamic games,
in which information (about other player’s actions or chance moves) is revealed at various
stages. Cards being turned over constitute an important example of revealed information in
parlor games.

Unlike Crawford and Haller [10], we consider games in which the players are given infor-
mation feedback only once, at a preassigned time n. Take n = 2, for example. Recalling our
observation that players may begin with an F, there are only two move sequences of length 2,
namely s; = FF and s = FB. So the action set A = +;, which describes all the player and
Nature choices up to time 2, is the 2 x 2 x 4 = 16 element set {(i, j,k): i,j € {1,2}, k €
(1,2, 3,4}}, where (i, j, k) stands for the actions s; (for player I) and s; (for player II) and
theinitial configuration o. If the players have not met by time 2, they know that actual triple
(i, j, k) is one for which T'(i, j,k) = T(s;i,sj, o) > 2. This subset of +4 is called the
uncertainty set Us.

The information we give the players after move 2 is described by a partition & of U,. If
(i, j, k) € U, is played, then the players are told which element P of & contains it. We call
such a game I'(2, &) (or more generally I"(n, &), if they are told the element of the partition
P of U, after move n). The set U, consists of the 10 elements with ‘?’ as the entry in the
following three-dimensional array 7 (i, j, k), written with the third dimension, k, expressed as
a2 x 2 array in the ordering of (2):

sy =FF s, =FB

? ? ? 2
S1=FF

2011?21 4

s» = FB

That is, U is the set
{1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,3),(2,1,1),(2, 1, 2), (2,2, 1), (2, 2, 2), (2, 2, 3)}.
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When partitions of a fixed set are considered as a variable, the two to look at first are JP2, the
partition into one set, and & !, the partition into singletons. The first gives no new information,
so I'(n, $?) is the same problem (game) as I'. The second, #!, gives the players complete
information, so the resulting subgame at time n is easy to optimize: simply go towards the
other player. Thus, if the distance between the players at time n is d = D(s;, s}, o), they will
optimally meet at time n 4 d /2, so replacing all the ‘?’ entries with n 4-d /2 represents the best
the players can do in each case (i, j, k). In fact, this is what was done by Uthaisombut [13] to
obtain a lower bound for v, the value of I", without regard to information structures. Forn = 2,
this fills in the array (4) as follows:

s1 =FF s) = FB
6 2 4
| 2T32F5 245 | 2
242 1 [2+3%] 1 )
2+3 1 2+4 | 243 | 2+
s» = FB 2 2 2 2
2 L2435 ] 1

Averaging the values overk = 1, 2, 3, 4 gives a corresponding lower bound matrix for I'(2, #!):

1 /12 11
= ply —
B=BQ2,¥ )—4<11 10).

Now the players know they are playing I'(2, #') and, so, facing the payoffs B. Hence,
for i = 1,2, they choose to play s; with probabilities p; such that the probability vector
p = (p1, p2) minimizes pBp " . Thus, the value of the game I"(2, ) is given by

V2,2 =minpBp’ = (0,1)B0, 1) =2.5,
P

with the pure strategy s; = FB played exclusively. Since the players have (much) more
information in the game I'(2, $') than they did in the original game, I, we have the lower
bound of [13],

V() > 2.5.

Of course, since P! is the finest partition, this will be the smallest lower bound obtainable
using our methods. By analyzing coarser partitions, we will obtain higher lower bounds
(without increasing n). However, to do this we must have methods of analyzing the subgames
corresponding to the elements of the partitions that we consider. Some of the subgames that
occur will be analyzed in the following section.

A third general partition that we refer to is the one that tells each player the actions of the other.
We will call this partition 3. Its elements are the sets Ui,y =1{0,j k)eU: @, j)=0aupnh
which reveal all player actions but no chance moves.

To summarize, we have defined three partitions of U = U,,, namely
1
2
3

: partition into singletons, where all actions by chance and by players are revealed,;
: trivial partition into single element U, nothing is revealed; and 6)

P
P
7 : partition into sets U; ;, where only player actions are revealed.
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4. Analysis of the subgames I'*, T'(d, e), and T

In the array (5), we have filled in certain entries as n +d /2, where d is the distance between
the players at time n. The number d/2 is trivially the value of the simple rendezvous problem
where two players are placed a distance d apart and told the direction to the other player. This
game is too simple to be given a name, but for some other subgames that arise we give a name
and analyze the best strategy and the corresponding rendezvous value.

The first subgame to be considered here, called I'*, is the symmetric game that arises from
" at time 1 if the players have not met by then. This is in fact a sufficient description of I'*,
but for completeness we give an explicit definition as well.

Definition 1. In I'* player I is placed at 0, facing to the right. Player II is placed equiprobably
in the following three positions: (i) at 2, facing to the right; (ii) at —2, facing to the right; and
at —4, facing to the left. The initial placement is identical from both players’ points of view, so
the setup is symmetric, and we require a symmetric solution.

We next consider a family of asymmetric subgames, f‘(d, e), d > e > 0, which arise from
the partition element {(i, j, 1), (i, j, 3)}; haved =2 + A; and e = |A |, with

A; = 5i(n),
the excess of F's to Bs in the n-move sequence s;; and take player II's starting position as the
origin.

Definition 2. The game I'(d, ¢), d > e > 0, is played on a line labeled in the same way for
each player, so each knows where they are. Player I is placed equiprobably at £d and player II
is placed equiprobably at +-e.

In the next section we will need to know the rendezvous values of these two games. They
are easy to calculate, as follows.

Lemma 1. Let v denote the value of the original game, ', v* the value of '*, Vg . the value
of I'(d, e), and v° the value of the common-direction game I'°. Then

| v*=4v—4’

3

3d —
2. Vg = 7 eford>e, and
3. v°>2v—5.

Proof. 1. We know by compactness [1] that v, the value of the original game, exists. We
have shown that we can assume that the first move of both players is F'. Consider the situation
after one move. For initial configuration a4 (k = 4), in which the players face each other, they
meet in time 7 = 1. For the remaining initial configurations (k = 1,2,3), T > 1. Consider
the situation after one move from the point of view of, say, player II, who now views his current
location as 0 and the direction he has just moved in as ‘right’. If the initial configuration was o1,
then from his point of view the location of player I is —4 and his forward direction must be left;
if the initial configuration was o, then player I must be at —2 with forward direction right; and
if the initial configuration was «3, then player I must be at location +2 with forward direction
right. Since the three possibilities for k are equiprobable, player I’s state relative to player 11
is as in I'*. The same is true for player II’s state relative to player I. Thus, with probability 4—1‘
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—d
FIGURE 1: Optimal play for I'(d, e).

(for k = 4) we have T = 1 and with probability % (for k =1, 2, 3) the minimum value of T is
1 4 v* (assuming optimal play in I'* starting at real time 1). Hence, we have
v=1x1+3(1+v9, thatis, u*=4”3 a 7
2. Since d > e, player I knows (or can infer) the direction of player II (namely towards 0)
and, hence, moves in that direction (indicated by the thin lines in Figure 1). The asymmetric
solution is fairly obvious. Assuming (without loss of generality) that player II is placed at +e
on a vertical line, he goes up to meet one path of player I (starting at +d) and then follows that
path down until it meets the other path of player I (starting at —d). This path is indicated by
the thick line in Figure 1. In general, against a partner with a finite set of known paths (here the
two possible paths of player I), the player’s optimal strategy is such that he meets one of these
paths as soon as possible, then another, and so on [2] (the same result appears as Theorem 16.10
of [3]). In the present situation, this means that player II either meets the path starting at +d
and then the one starting at —d (the best strategy, as indicated by the thick line), or vice versa
(which is worse). Consequently, with best play the players meet equiprobably at time (d —e)/2

and at time d; hence,
. Ifd—e +1d_3d—e ®)
Me=3\"2 2T T4

3. Recall that v¢ is the value of the common-direction game I'°. Consider the strategy FBB

followed by optimal play in the common-direction game that results if no meeting takes place
by time 3. Clearly v cannot exceed the expected meeting time for this strategy, so

v I x 1T+ x3413+09.

Solving for v¢ gives the required inequality.

5. Analysis of T (n, P)

In this section we define an information partition # = %, and find lower bounds for the
subgames corresponding to its elements. The partition P refines the partition 2> (see (6)),
namely that which only reveals player actions. Forn = 2, $3 is the partition of the 10 elements
of Uy (the “?’s) into the four 2 x 2 arrays in (4). Thus, in the partition & the players are told
the moves of the other player and perhaps something about the chance moves. To define & we
therefore have to define a further partition of each element U; ; of $°.
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To this end, fix n and for convenience number the 2"~! n-move strategies s;, i = 1,...,
2"=1 (since they all start with F), so thatif i < j then a player using s; and facing their partner,
who is facing in the same direction (initial configuration o), will catch their partner by time
n. That is,

T(,j,2) <n, orequivalently, (i, j,2) ¢ U, fori < j. )
For example, for n = 3 we have
s1 = FFF, s» = FFB, s3 = FBF, s4 = FBB. (10)

By symmetry, we need only analyze those i and j with i < j. A particular ordering of
the s; which satisfies (9) and in fact gives (10) for n = 3 can be defined as follows: let
y = y(s,s) :=min{r: s(r) # s'(r)} (where § is as defined in (3)) and use the order ‘<’, such
that s < s if and only if s(y) = F. We are listing the s; in dictionary (lexicographic) order
(although with the convention that F appears lexicographically before B).

Note that, since T'(i, j,4) = 1 for all i and j, the set U; ; is at most the three-element set
H-, using the two-dimensional ordering of (2). Furthermore, for i < j, U; ; is at most H (the
left-hand column), according to (9).

We are now in a position to describe how & partitions each set Ui, ;. This depends on i and
Jj in four combinations described in the following cases.

Case 1: U; j = {(i, j, k)}, a singleton, for some k. In this case each player knows the state
of the game, namely (7, j, k), and knows the direction and the distance,

Ajjk = D(si, 85, ar) >0,

to the other player. Consequently, they will move at unit speed towards each other and their

meeting time will be n + A, j x/2. Hence, if player I chooses path s; and player II chooses

path s, then b; ;, their expected meeting time in the game I'(n, &), is given by

Aijk
2

4 b,"j =n++ + Z i ks where lijk = T (s, S, o).

K #k
In the remaining cases we assume that U; ; has at least two elements, and we describe how
they are partitioned in .
Case 2: i < j. By (9) and the fact that #; ; 4 = 1 for all i, j, we have

Ui,j = {(l’ jv 1)7 (lv j? 3)}a

which we draw as follows to illustrate the fact that if we take U; ; to be a single element of P
then player I (corresponding to the arrows on the left) knows that player II is behind him (in
his backwards direction):

<~ —
«— <«

(k=1,3).

Both know that player I's location at time n is a distance d = 2+ A; from player II’s starting
location, and that player II is a distance e = |A | from his own starting location. Hence,
they know they are playing the game I'(2 + A;, Aj), with value V244, a;, and in this case the
meeting times corresponding to the four initial configurations k are

N+ V24,4, fij2

n+vapa; | 1=1tij4
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and the expected meeting time, b; ;, satisfies
4b; j =2(n+ 1_)2+A,-,Aj) +tij2+ 1

Case 3: i = j with t;;1 < n. Note that if both players use the same move sequence
si, they will not meet if they are facing the same direction (k = 2, 3), so certainly U;; =
{(i,i,2), (i, i, 3)}. In this case we take U; ; to be an element of P. If the players are told that
they are in U; ;, they can conclude they are still a distance 2 apart and have moved in the same
direction. Hence, they are playing the common-direction game I"® and with best play will meet
in additional time v¢. Hence, the entries of the (i, i) arrays of this type for I (n, 33) are

tiil | n+°
n+v° 1

and4b; ; =t; ;1 +2n+ 20" + 1.

Case 4: i = j with t; ;1 > n. Here we consider two subcases. First let |A;| # 1. Since
tii1 > n, we have U;; = {(i,i, 1), (,i,2), (0, i,3)}. Since t;; 1 > n, we must also have
A; > 0. There are two reasonable ways to partition the three-element set

<~ — —>—>‘
Ui = s

<— <«

namely (in a notation that will become clear below)

23 ® ] it keqn3), @) and EZ)) o

with ke {{1}, {2, 3}}.

(11
Consider the first (left-hand) partition. If the players are told (a) that they are in the set
{G,i, 1), (,1,3)}, then they can conclude, as above, that they are playing the asymmetric
game ['(A; + 2, A;), with value Up42,0;, = (1 4+ A;)/2. If they are told (b) that they are in
{(i, 1, 2)}, then they are still a distance 2 apart and can meet in additional time 1. Thus, the sum
of the additional meeting times in the three cases (k = 1, 2, 3) is

1+ A;

2 +1=2+A;. (12)

Now consider the second (right-hand) partition. If the players are told (c) that they are in
the set {(i, 7, 1)}, then they each know the other’s direction and that their distance apart at time
nis A;;1 = 2+ 2A;, meaning that they can meet in additional time 1 + A;. If they are told
(d) that they are in {(i, i, 2), (i, i, 3)}, then they are in the common-direction game I'®, so the
additional time is v°. Hence, the sum of the three additional times is

14+ A +20°.

Since we are trying to maximize the entries (meeting times), we take the first set as our
partition of U; ; if and only if 2 + A; > 1+ A; 4 2v° or, equivalently, 1 > 2v¢, which is false.
(Note that certainly v¢ > %, the revealed information value (see (1)), and that v¢ > %, the
asymmetric-rendezvous value [2].) Therefore, in the partition # we use the second partition
of U; ; in (11). It follows that 4b; ; is the sum of the four entries corresponding to the values of

k=1,2,3,41in

n+1+24; | n+°
n 4 v° 1 ’
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so in this subcase

4b;; = 3n+20° +2+ A, (13)
In the second subcase of case 4 we let |A;| = 1. Note that this implies that n is odd. As
in the previous case, we have U; ; = {(i, i, 1), (i, i, 2), (i, i, 3)}. Take U; ; to be an element of

P. If the players are told that they are in this element of P, they can conclude that they are in
the symmetric game I'* defined in the previous section and, hence, that the minimal remaining
expected time until they meet is v*. In this subcase we thus have

4b,',,' =3+ v*) + 1.
Observe that this is a larger value than that in the previous case (see (13)), as

G+ vH+1D—-Cn+20+2+4))
4v—14
> <3<n+ . >~I—1)—(3n+2v+2)

=2v-35
13
>2X G-
>0
since v, the value of the symmetric game I', cannot be smaller than the value, %, of the

corresponding asymmetric game (see [2] or Theorem 9 of [3]).

For the ordering (10), which holds for n = 3, the partition and the numbers making up b; ;
can be seen from the following array, where, by symmetry of the players (and the matrix B),
we can confine our analysis to strategy pairs i < j:

s1 = FFF s» = FFB s3 = FBF s4 = FBB
348 13408 340 3 |3+70 2 |3+470 2
5| = FFF 5 5,1 5,1 5,1
3+0° 1 3+ 05 1 3+ 05 1 3+ 05 1
34+0v* [340v* | 340 2 340 2
sy — FFB + + + v31 + v3,1
3+ v* 1 3403 1 3403 1
3 * 13 *1340 3
s3 = FBF A e Y
34+ v* 1 3+v3 1
3 340
s4 = FBB
3+0° 1
(14)

The set U3 consists of all the entries which are not written as a single number (including
the entry 3 + %). The partition, &, of the nonnumeric entries in each 2 x 2 array is based on
identical-form entries.

If we combine all the cases, use (7) and (8) to evaluate v* and v in terms of v, and assume
the common-direction conjecture (v = v) to hold, we obtain the following theorem.

Theorem 1. Let P be the partition of U, described above, and let T'(n, ) be the game in
which the players play symmetrically as in T for n moves and, if they have not met by that time,

https://doi.org/10.1239/jap/1175267160 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1175267160

12 S. ALPERN

are then told the element of the 5 to which the action triple (i, j, k) belongs. If, based on this
information, the players choose n-move strategies s; and s; and subsequently play optimally,
then, assuming the common-direction conjecture to hold, for i < j the expected time to meet,
5,-,]-, is given by

3A; — |4 .
ZH+T+li,j,2+4y 1 <], tlijj1>n,t;3>n,
A+ Aj+2 .
n—{—f—}—h’]’z_‘_tl,]y?j_{_la l<,}7 tl',j,1>n7 tl',j,3§na
Aj —Aj .

451_’]_ _n + —2 + i1+ tij2 + 2, I <J, tij1=n,tj;3>n,
L +tijo+tj3+1, i< j, tij1=<n, tj3=n,
tii1+2(n+v)+1, i=j, tii1<n,
3n+2v+2+ 4, i=j, tii1>n, |A]#1,
3n +4v -3, i=j, tij1>n,|A]=1

The matrix B = I§n = {l;i’ j}is symmetric. It has entries which are constants or linear functions
of v with positive coefficients. The (rendezvous) value, v = vy, of the symmetric rendezvous
problem I' (n, P) is given by
Uy = min pB.p"
{p:pi=0. 3 pi=1}

<.

If we do not assume the common-direction conjecture to hold, then the result remains the same,
except with v replaced by v° in the next-to-last case in the definition of b; ;.

We illustrate the construction of B, and the calculation of ¥, by considering the case n = 3
with the strategy ordering s = FFF, s; = FFB, s3 = FBF, s4 = FBB. Using the formula for

b;,; given above, and array (14), we obtain

2414 17 16 16
- 1l 17 av+e 13 13
B=Bw =71 14 13 4046 14
16 13 14 20° 410
w414 17 16 16
1 17 s+ 13 13 s
=7| 16 13 4v+6 14 |
16 13 14 20410

under the common-direction conjecture.
We want to find v = 03, that is,

3,(v) = g(v) = min pBp", n=3,
p

where the minimum is taken over probability 4-vectors p, in terms of v. In particular, under the
common-direction hypothesis (v¢ = v) we find the unique minimizing p to have the components
4v -5 4v -7 8v—14

205 = ) = ) = 9
p1 P2 = T6v — 26 P3= T6v — 26 P4= T60 — 26
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yielding
16v% 4+ 160v — 303
gv) =
4(16v — 26)

Since the game I'(3, #) gives the players more information than does I', we have v > g(v),
which holds for

114245
2—

v ~ 3.868.

So, assuming the common-direction conjecture to hold, we have v > 3.868. The corresponding
estimate if we reveal everything (that is, use partition 5’1) at time n = 3 is v > 3, as obtained
by Uthaisombut [13]. A related bound of v¢ > 3.5869 for n = 3 has been obtained by Han
et al. [11] (under the assumption that the players have a common notion of direction along the
line) by revealing everything if different move sequences are used and telling the players that
they have used the same move sequence, given that that has occurred. Substituting this lower
bound of [11] for v¢ for n = 3 into (15) gives the bound

U3 > 3.829, (16)

which is obtained by considering only move sequences of length 3 (whether or not there is
a common notion of direction). By formulating a relaxed version of the problem as one of
semidefinite programming, Han et al. [11] were able to handle the large matrices that occur
for n < 7, obtaining for n = 7 the bound v® > 4.1520. Bootstrapping their estimates of v°®
obtained for these n would give higher lower bounds for v, in each case, but apparently the
improvement lessens for greater values of n. In a literal sense, we could use these bounds to
obtain better estimates for v3, but this would be a rather unfair estimate for comparison, as they
require the analysis of n-move sequences (that is, long ones), while (16), as mentioned above,
requires only the analysis of 3-move sequences.

6. Partitions with incomplete information subgames

We now consider revealed information variants of the symmetric rendezvous problem on
the line, without the assumption that & refines $3. That is, we do not assume that each player
is given information which includes the past actions of his partner. If the game is stopped at
time n, then without any revealed information the private knowledge of player I is simply the
n-move strategy sequence he has used, namely i (corresponding to the path s;). He does not
know the other player’s strategy sequence, j, nor Nature’s move, k. If the partition & does
refine 3, then the subgames I'(n, P), P € &, all have complete information.

Suppose, however, that & has an element (set) P which contains elements of the information
space U, with distinct player-I strategies, say i and i’. In the subgame I"(n, P) corresponding
to P, player I knows his type (i ori’), since he knows his previous moves, but player II does not
know this. The subgame therefore has incomplete information. However, given the common
distribution p over n-move strategies that both players are employing, each can update the
distribution of the other’s type. The game I'(n, P) is thus a Bayesian game.

For example, when n = 3 the elements of U3 fori = 1 (FFF),i = 2 (FFB), and j = 4
(FBB) are the four elements (1, 4, 1), (1,4, 3), (2,4, 1), and (2, 4, 3). In the partition P of the
previous section, these four elements were partitioned into two sets, {(1,4, 1), (1,4, 3)} and
{(2,4,1),(2,4,3)}. Thatis, i and j were revealed, but not k. Recall that in the first instance
this led to the subgame I'(5, 1), with value vs | = %, and in the second instance to I'(3, 1), with
value v3,1 = 2. In both games player I knows the direction to player II, so to him the distance
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FIGURE 2: Player II knows player I starts at +3 or +5.

is strategically irrelevant: he simply moves in that direction. How does this uncertainty affect
player II? Let p; and p; denote the respective probabilities with which player I chooses paths
s1 and s>. Player II knows that with probability p; player I is starting the subgame a distance
5 (in either direction) from player II’s starting point in the original game. Moreover, player 11
is a distance 1 from that point (and knows what direction it is in).

Therefore, player I’s four possible paths start at +5 or £3, as indicated by the four thin lines
in Figure 2. If p; is sufficiently large then player II clearly should take the line (which we have
drawn starting at —1) which minimizes the expected time to reach the equiprobable paths of
player I starting from +5. Similarly, if p, is large he should take the thick line which we have
drawn starting at +1. (We could have drawn both paths starting from the same point, but it
would have been less clear.) The expected meeting times for the two paths are given by

1 1 1 1 9 4
p1<5 x4—|—§ x5>+p2<§ X1+§ ><3) =¥ for the black line,

1 1 1 1 7 5
p1<§ x2+§ x5>+p2<§ X 1+§ ><4) =¥ for the gray line.

Consequently, player II should use the ‘black’ strategy if p» > 2p; and the ‘gray’ strategy
otherwise.

Now consider the partition % indicated by identical forms in (14), and change it so that
the twelve cells with entry either 3 + vs | or 3 + v3,; together form a single element of a new
partition. Player II can calculate the probability, g1, that d = 5 and the probability, ¢», that
d = 3 (in the subgame I'(d, e)) based on the strategy sequence, j, that he has used up to
time 3. For instance, if he has used strategy sequence j = 4, then g1 = p1/(p1 + p2 + p3).
This partition (and generalizations to higher n) gives player II less information than he had in
L'n, P 3), and cannot result in smaller rendezvous values. For n = 3 it is of no help, because
p1 = 0 in the optimum probability 4-vector, but in general this idea will give higher lower
bounds than can be obtained using the b; ;j from Theorem 1.

7. Conclusions

Giving the rendezvousers some (revealed) information during the course of their search can
be used both to describe real problems, where such information is available or can be sent,
and to obtain lower bounds on rendezvous values of existing problems which have no such
information. In the latter case the information partition J, describing the information to be
given at time n, must be carefully chosen to be as coarse as possible while still having all its
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subgames I'(n, P), P € &, amenable to analysis. This will probably be a useful technique for
certain rendezvous problems and not for others.

As observed by an anonymous referee, the information revelation described in this paper
is not the only sort that might be considered. We could also consider a situation in which the
revealed information depends on the mixed strategy chosen by the rendezvous team, although
such a model would take us out of the usual game tree description.
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