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Abstract: The advent of modern, high-speed electron detectors has 
made the collection of multidimensional hyperspectral transmission 
electron microscopy datasets, such as 4D-STEM, a routine. However, 
many microscopists find such experiments daunting since analysis, 
collection, long-term storage, and networking of such datasets remain 
challenging. Some common issues are their large and unwieldy size 
that often are several gigabytes, non-standardized data analysis rou-
tines, and a lack of clarity about the computing and network resources 
needed to utilize the electron microscope. The existing computing and 
networking bottlenecks introduce significant penalties in each step 
of these experiments, and thus, real-time analysis-driven automated 
experimentation for multidimensional TEM is challenging. One solution 
is to integrate microscopy with edge computing, where moderately 
powerful computational hardware performs the preliminary analy-
sis before handing off the heavier computation to high-performance 
computing (HPC) systems. Here we trace the roots of computation in 
modern electron microscopy, demonstrate deep learning experiments 
running on an edge system, and discuss the networking requirements 
for tying together microscopes, edge computers, and HPC systems.

Keywords: electron microscope, edge computer, high-performance 
computing, 4D STEM, electron detectors

Introduction
Ernst Ruska built the first transmission electron micro-

scope (TEM) during his doctoral studies, and it celebrates its 
eightieth anniversary this year [1–3]. Interestingly, this system 
was built and was operational less than a decade after experi-
mental results from Davisson and Germer proved de Broglie’s 
hypothesis about the dual wave-particle nature of electrons 
[4,5]. Optical microscopes inspired the first TEM, and since 
then several new imaging modalities have been implemented, 
such as electron holography [6,7], Lorentz electron microscopy 
[8], and scanning TEM (STEM) [9]. Even with the introduction 
of new imaging modalities, the electron microscope developed 
by Knoll is remarkably like machines in use today. However, in 
these past eight decades, TEMs have continued to gain capabili-
ties such as energy dispersive X-ray spectroscopy (EDX) [11], 
electron energy loss spectroscopy (EELS), annular dark field 
(ADF) detectors, and aberration-corrected optics both in the 
TEM and STEM modes.

These advancements have allowed the S/TEM to play a 
crucial role in analyzing nanometer-scale structural phenom-
ena in physical and life sciences. It has helped tie together the 
structure-property relationships in materials systems as diverse 
as interfaces [12], superlattices [13], domain walls [14,15], grain 

boundaries [16], nanoparticles [17], and catalyst surfaces [18]. 
This has led to the discovery of novel applications such as 
phonon modes at polar vortices and two-dimensional electri-
cal liquids at oxide interfaces [19–21]. In the physical sciences, 
these applications have been in fields as diverse as lithium-ion 
batteries, catalyst systems, and alloy designs to integrate elec-
tronic circuits [22–26]. Hardware advancements in electron 
microscopy, such as specialized holders for cryogenic, heating, 
biasing, or liquid-cell work have also enabled nanoscale studies 
of dynamic systems such as materials under mechanical strain, 
thermal gradients, switching behavior in oxide ferroelectrics, 
and reaction phase systems such as catalysts. So extensive have 
been the advancements that microscopists have rightly pointed 
out that the modern TEM with its capabilities for electron imag-
ing, electron diffraction, spectroscopy, and operando studies is 
“A Synchrotron in a Microscope” [27,28].

Along with the advancements in physical sciences, TEMs 
have been an absolute game changer for observing biological 
tissue. Biological TEM followed the development of the original 
electron microscope closely, with Ernst Ruska’s brother Helmut 
using the TEM for imaging bacteria and viruses as early as 1939 
[29]. The development of cryogenic sample processing and 
microscopy, combined with ultra-fast high-sensitivity direct 
electron detectors, have opened the entire world of biological 
systems such as viruses and individual proteins. As the global 
coronavirus pandemic continues its onslaught worldwide, some 
of the most widely circulated electron microscopy images have 
been cryo-EM images of the SARS-CoV-2 virus.

The Transition to Computer-Enabled Electron 
Microscopy

However, as Kirkland observed, advances in microscopy 
and computers happened almost independently of each other 
for the first few decades of electron microscopy, with compu-
tation most used for simulating electron microscopy images 
[30]. This situation persists to a certain extent, and a signifi-
cant portion of electron microscopy as practiced today is often 
anecdotal and susceptible to operator bias. Electron transpar-
ent samples require significant manual input for their prepa-
ration, and the regions of interest (ROI) that are imaged are 
decided by the microscopist. This region is often chosen based 
on the visual intuition of a trained microscope operator and 
the data collected from the ROI only. While automated sample 
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preparation and interfacing with electron microscopes are out-
side the purview of the current perspective, this current situ-
ation is a direct consequence of the fact that microscopy and 
its associated analysis have continuously operated in a storage 
and computation-constrained world. Thus, it fell upon a trained 
microscopist to choose which areas to image and which images 
to analyze.

Several changes have made microscopy and computa-
tion much more closely coupled. First, several individual lens 
parameters, such as aberration and astigmatism, have been 
abstracted away due to the computer-controlled operation of 
individual microscope components. This was necessary due 
to the advent of aberration-corrected electron optics, which 
iteratively minimized lens aberrations through a combination 
of multiple quadrupole, hexapole, and octupole lenses. Second, 
electron microscopy has almost entirely moved away from 
using film as the data acquisition media in favor of CCD- and 
CMOS-based detectors.

As a result, S/TEM alignment, operation, and data collec-
tion have become significantly automated. Thus, the volume of 
data that can be generated in a single day of microscopy is often 
several terabytes, while current-generation fast direct electron 
detectors can generate tens of gigabytes of data in a minute. 
Similarly, in situ experiments with modern detectors, which 
often have 4k pixels along a dimension, are often run for sev-
eral hours and generate hundreds of gigabytes of data per hour. 
Currently, very few microscopy facilities have on-site computa-
tional capabilities to compress, process, and archive such data 
streams from microscopes in real-time, let alone use that data 
for decision-making to drive automated experiments. Several 
recent publications, notably a recent perspective by Spurgeon et 
al. [31], have raised the issue of the volume of data generated by 
modern electron microscopes and the communities’ scattered 
responses in dealing with the issue.

Thus, there is a need for integrating on-site microscope 
facilities with computing and storage systems, at the local or 
remote edge, to form seamless ecosystems wherein significant 
measurement collection and instrument steering operations 
can be automated and remotely orchestrated. In the coming 
sections, we will give a brief overview of the data deluge in 
electron microscopy, briefly discuss current computational 
efforts in the field, and elucidate the path forward for edge 
computing infrastructure for electron microscopy in the 
materials community.

Multidimensional Electron Microscopy Enabled 
by Detector Advances

Electronic detectors have been used for TEM image acqui-
sition since the early nineties. For a long time, such detectors 
were charge-coupled devices (CCD). However, these detectors 
were indirect, as the CCDs did not record the electrons them-
selves. Instead, the electrons would interact with scintillators. 
The scintillators would convert electrons to photons, which 
were transferred to the detector through fiber optics that cou-
pled the detectors with the scintillators. However, such a setup 
degrades the detector quantum efficiency (DQE) and blurs the 
detector point spread function (PSF) for electron detection. 
Issues with scintillators are also present for X-ray photon detec-
tion and, thus, over the last two decades semiconductor-based 

direct detectors have been designed, initially for synchrotrons 
to detect X-ray photons and subsequently for electron detection. 
Direct electron detectors record individual electron impinge-
ment events without intermediate conversion to photons and 
thus mitigate the DQE and PSF issues with scintillator coupled 
detectors. A side effect of direct electron detectors is that, along 
with DQE, the PSF also improves. This impetus for direct elec-
tron detectors was from the biological cryo-EM community, 
where the samples are often highly susceptible to electron dose 
rates with the maximum allowable dose often below 10e–/Å2.

Along with improvement in detection capabilities, the 
speed of detection devices has also improved. Again, this 
was partly driven by cryo-EM as samples degrade rapidly 
when exposed to electrons. Modern direct electron detectors 
employed for 4D-STEM experiments can capture over 10,000 
frames per second, with the camera developed at the Lawrence 
Berkeley National Laboratory (LBNL) capable of 87,000 frames 
per second [32].

After speed and sensitivity, the third focus area of electron 
detector research is “dynamic range.” Dynamic range refers to 
the ratio between the highest and lowest electron flux that can 
be detected simultaneously. While a detailed discussion about 
detector geometries is beyond the scope of this perspective, 
dynamic range issues can often be solved by using hybrid-pixel 
array detectors [33]. The first such detector used for electron 
microscopy was the Medipix detector developed at the Dia-
mond Light Source Synchrotron facility in the United King-
dom [34]. The second such effort, also a result of synchrotron 
detector work, is the Electron Microscope Pixel Array Detector 
(EMPAD) developed at Cornell University [35,36]. The EMPAD 
family of detectors is specifically optimized for high dynamic 
range (HDR), with EMPAD2 reaching a 100,000:1 range for 
detection. HDR detectors have advantages in both EELS and 
4D-STEM experiments since, in both cases, the ratio between 
scattered and un-scattered electrons may be very high.

4D-STEM datasets obtained from EMPAD detectors broke 
the TEM resolution limits of 0.4Å in 2018 [37] and 0.25Å in 2021 
[38] by using electron ptychography. Elastically scattered elec-
tron diffraction patterns (the 4D-STEM dataset) were used to 
solve for the microscope lens parameters and the transfer func-
tion of the sample being imaged. The second result reached the 
resolution limit before thermal vibrations from atom columns 
overtook lens aberrations as the primary source of blurring [38]. 
Ptychography results have demonstrated that given enough 
redundancy in 4D-STEM data it is possible to completely decon-
volve the electron lens transfer functions, probe decoherence, 
and positioning errors from the dataset to generate the pure 
material transfer function. As a result, the final image quality is 
significantly better than what can be obtained through classical 
aberration-corrected STEM imaging, with the added advantage 
of requiring lower electron dose rates [39].

Because of these advantages, many electron microscopes 
have been retrofitted with faster direct electron detectors for 
imaging, EELS, and 4D-STEM experiments. These advance-
ments have made the modern STEM truly multidimensional 
and multimodal, combining imaging, diffraction, and spec-
troscopy in a single instrument. Some of the most significant 
advancements in electron microscopy have been possible due 
to the advent of high-speed direct electron detectors with DQE 
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values approaching unity when combined with single-electron 
detection sensitivity [40,41].

Quantitative Analysis from Electron Microscopy 
Datasets

Advancements in microscopy hardware have made the 
extraction of quantitative information from electron micro-
graphs possible. Several recent open-source software packages 
have been developed to enable this. Some examples include 
STEMTool [42,43], py4DSTEM [44], Pycroscopy [45], PyXem 
[46], pixSTEM [47,48], and LiberTEM [49]. Each package focuses 
on a specific area of TEM analysis, such as Pycroscopy’s focus on 
image processing or py4DSTEM’s focus on 4D-STEM data anal-
ysis. The most common area of software development appears 
to be 4D-STEM, with pixSTEM, LiberTEM, and STEMTool all 
focusing on it. This focus on 4D-STEM is driven by the fact that 
such datasets are very complex and thus computational analysis 
is essential. However, since modern STEM is effectively a multi-
modal equipment, many other large multi-gigabyte datasets are 
also routinely generated, such as spectral maps from EELS or 
EDX and long-duration in situ TEM experiments.

In single-particle cryo-STEM, large datasets of more 
than several hundred gigabytes are routinely captured 
before alignment and particle picking. A brief search of the 
Electron Microscopy Public Image Archive (EMPIAR) [50] 
locates hundreds of datasets larger than several terabytes. The 
cryo-EM community has converged on a few open-source 
solutions such as Relion [51] or commercial software such 
as cryoSPARC [52] for particle reconstruction from images, 
while the materials science community is more diverse in its 
software choices.

Along with software development, advances in computa-
tional capabilities, including accessible CPU/GPUs, implemen-
tation of algorithms, and physical models, have led to significant 
developments in computational simulations spanning a range 
of time and length scales. Therefore, using either experimen-
tal or simulated data to construct artificial intelligence (AI)- 
and machine learning (ML)-based frameworks for analyzing 
microscopy datasets is common.

While many studies involve utilization of already devel-
oped classification or regression algorithms, frameworks 
to appropriately find features of interest (such as atoms or 
defects) from images, capturing dynamic behavior of the sys-
tems, and finally porting them to a simulation environment 
for a comprehensive understanding of the material are still in 
their infancy. Even though the primary software used for anal-
ysis codes, such as PyTorch [53], TensorFlow [54], Scikit-Learn 
[55], and JAX [56], are all open-access, materials- or problem-
specific workflows are often not made public. However, the 
learning curve required for adapting to existing workflows 
can be challenging and time-consuming. This is applicable 
even for simulation packages, most of which are developed 
in C++, FORTRAN, and Java programming languages, that 
may not be straightforward. Alternative ways of using these 
programs rely on open-source post-processing codes. A list 
of available and widely used tools includes p4vasp, vasptools, 
OVITO [57], Atomsk [58], Packmol [59], Avogadro [60], ASE 
[61], LIGGGHTS, ParaView, PyMol, VMD, and Vesta. The 
challenge of making these flexible and extensible to process 

various outputs generated in different formats with varying 
accuracies, along with integrating them with an experimental 
setup, remains to be addressed.

Toward Edge Computing in Electron Microscopy
Because of the multiple modalities of data generated with 

an electron microscope, there is often diversity in terms of size, 
shape, and generation rates. Thus, there is no single computa-
tional solution for analyzing and automating microscopy exper-
iments. Microscope simulations and training can occur on 
HPC systems, while initial analysis and trained models should 
be run on connected edge-computational systems, which have 
low latency between the microscope detectors to the computer 
memory. HPC refers to systems that are composed of multiple, 
often thousands of, CPUs and GPUs. These are often monolithic 
systems with megawatts of power consumption. HPC systems 
are very rarely used all at once by a single program and are often 
used by multiple groups running multiple programs simulta-
neously. Compared to HPC, edge computing is a more recent 
term and refers to systems intermediate in capability between 
HPC and desktop systems. HPC systems often have multiple 
GPUs, with a power draw of several kilowatts. The system cur-
rently deployed at ORNL has Nvidia DGX boxes as the edge 
system, while the HPC system is Summit, which is currently the 
fourth fastest computer globally with a peak of 200 petaflops. 
ORNL will transition to Frontier in the coming months, which 
is the fastest system globally and the only exascale computer 
currently available.

Ongoing Edge-Computing-Enabled Automated 
Electron Microscopy Experiments in the Physical 
Sciences

A typical experimental STEM workflow proceeds as 
follows. First, a 2-dimensional high-angle annular darkfield 
(HAADF) image is obtained over a relatively large area. Then, 
a human operator selects a ROI for more in-depth explora-
tion based on prior knowledge and specific phenomena they 
are interested in (for example, properties around dopants and 
defects) or, in some cases, a simple “educated guess.” Here, the 
“in-depth” exploration refers to acquiring a 1D or 2D spectro-
scopic signal in designated pixels of the 2D image that measures 
a function (property) of interest (Figure 1a–1c). Alternatively, 
one can measure a spectroscopic signal in every pixel of the 
original image. However, the behaviors of interest are typically 
localized in relatively small regions of the sample. The entire 
grid scan is time-consuming, usually imparts a very high elec-
tron dose to the specimen, and is only reasonable without prior 
knowledge about the system.

Such a setup can be used for automated analysis of mul-
tidimensional datasets. Ophus et al. have demonstrated that 
the py4DSTEM package can be integrated with microscope 
data acquisition for automated crystallographic orientation 
mapping [62]. In another example, it was demonstrated that 
the obtained 4D-STEM datasets can be used to perform single 
sideband (SSB) ptychography [63] in real time by using GPU-
based solvers on a connected edge system [64,65].

Recently at ORNL, a probabilistic machine learning 
workflow for intelligent sampling of measurement points 
toward physics discovery was demonstrated. The approach is 
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based on deep kernel active learning (DKAL) that combines 
a deep neural network with a Gaussian process and allows 
learning relationships between local structure and functional-
ity encoded in spectra on-the-fly. Each measurement informs 
the subsequent measurement by increasing the model’s knowl-
edge base for the structure-property relationship of interest. 
It was first demonstrated for the bulk and edge plasmon dis-
covery in STEM-EELS experiments and later applied to rapid 
studies of symmetry-breaking distortions and internal elec-
tric and magnetic fields in 4D STEM experiments on graphene 
(Figure 1) and MnPS3.

A DKAL experiment starts with featurizing a 2D HAADF 
image by splitting it into patches at each pixel coordinate. The 
patch size can be determined by the characteristic length scale 
of the structure of interest, or it can be chosen ad hoc (Figure 
1a). The next step is to determine a scalarizer function, that 

is, a function that converts a spectral signal (Figure 1b) to the 
physical structure of interest. The scalarizer can, for example, 
be a peak energy or maximum intensity of selected mode(s) 
in EELS, or the center of the mass shift in 4D-STEM (Figure 
1c). It can also be based on more advanced analyses, such as 
those involving physics-based inversion of the 4D-STEM data 
toward the scattering potential with a subsequent selection of 
the associated features of interest. After featurizing the struc-
tural image and defining the scalarizer, several measurements 
in randomly selected pixel coordinates are obtained and corre-
sponding image patches and scalarized spectra used to train a 
DKL model. The trained model is then used to predict the next 
measurement point. After performing a measurement at the 
suggested location, the training set is updated and the model 
training and prediction steps repeated. The process is iterated 
until the experimental budget is exhausted, the uncertainty in 

Figure 1:  Deep kernel learning from microscopy data. (a) HAADF-STEM atomic-resolution image used as the starting point for patch identification. Multiple varieties 
of image patches exist, from pure MoS2, to MoS2 with dopants. (b) Multimodal datasets accompany the atomic resolution HAADF-STEM image, such as simultane-
ously collected EELS or 4D-STEM datasets. (c) The multimodal datasets are scalarized to develop relationships with the imaging data. This scalarization can be of the 
peak maxima for EELS spectra or center of mass for 4D-STEM diffractograms. (d) An active learning module can be built to reside on a connected edge computing 
system that takes in the features from the HAADF-STEM images and relates them to the scalar features in the correlated multimodal datasets (EELS or 4D-STEM). 
Adapted with changes from [67].
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predictions falls to a required level, or the required predictabil-
ity is achieved (Figure 1d).

Based on this scheme, automated experiments in both 
STEM-EELS and 4D-STEM using DKL were performed in real 
time [66,67]. NION microscopes were used where the NION 
Swift control software allows flexible Python-based control of 
the microscope hardware elements needed to conduct auto-
mated experiments [68,69]. An example [66] highlights the 
use of automated experiments where a previously unknown 
plasmon edge mode in 2D MnPS3 was discovered using the 
DKL approach. By scalarizing the EEL signal in such a way 
as to maximize a ratio of low-energy to high-energy spectral 
peaks, the correlation between material edges and this EEL 
peak ratio was actively learned during the experiment. For 
beam-sensitive specimens like MnPS3, automated experi-
ments are even further justified. In the context of 4D-STEM, 
diffraction patterns can be scalarized according to center of 
mass shifting and correlated to structural features in gra-
phene where the exploration of the sample can be performed 
by learning where the maximum center of mass shifts are most 
likely to occur.

From the Edge Computer to High-Performance 
Compute Clusters

Comprehensive studies utilizing an open-access, 
overall framework capable of directly mapping between 

experimental observations and computational studies using 
deep learning approaches are still in their developmental 
stages. The primary roadblocks are the difference in time, 
length scales between two regimes, and associated latencies 
to model and understand a physical behavior. At ORNL, a 
deep learning-based framework to address such challenges 
has been developed by employing deep convolutional neural 
networks to identify atomic features (type and position) in 
a material. Specifically, features within the AtomAI utility 
functions were used to construct a bulk conventional unit 
cell, supercell, or surface, based on the type of simulations 
performed and material properties of interest [70,71]. Post-
AtomAI analysis, initialization of numerical simulations to 
find the optimized geometry and temperature-dependent 
dynamics of system evolutions are used. The outputs, along 
with associated uncertainties in predictions at various levels, 
are obtained using this framework. These may subsequently 
be used to evaluate and modify experimental conditions and 
ROIs to drive an automated experiment and to build a plat-
form that can “learn” material properties on-the-fly during 
an experiment. This entire framework can be performed such 
that observational data are directly transferred from a micro-
scope to an edge computer, such as the Jetson AGX Xavier. 
This GPU-based platform is then used to analyze, train, or 
tune pre-trained DL models, followed by simulations using 
CPU-based HPC resources. Altogether, the feedback from 

Figure 2:  Schematic of connection between the microscope and high-performance computing through network-assisted storage gateways. The schematic shown 
here demonstrates a setup for connecting two separate electron microscopes to a common internal network gateway, along with access to remote HPC systems 
through wide-area connections.
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measurements, simulations, and DL models are then intro-
duced back to the workflow to guide experiments while learn-
ing from theoretical models [72].

Seamless Connectivity Between Microscopes, 
Edge Systems, and HPC Clusters

The schematic of the system at ORNL is demonstrated in 
Figure 2. The scheme connects two separate electron micro-
scopes. Each microscope has a connection between the micro-
scope and the control computer, while the control computer is 
connected to a gateway workstation and network-assisted stor-
age (NAS) through a site gateway switch. Through this gateway 
switch, the gateway workstation can be connected to lab-area 
HPC resources and remote HPC resources (such as NERSC at 
the LBNL) through wide-area networks. Recently, our team 
successfully used this setup to deploy a prototype system at 
ORNL; its connectivity diagram is demonstrated in Figure 3 
[73,74]. The workflow is executed as follows: the operator starts 
a Jupyter session on the data center and enters the desired 

microscope operation, with the notebook session itself oper-
able from any system on the network with verified credentials, 
as visualized through Process 1. This operation script is trans-
mitted through the Pyro client to a server running on NION 
Swift on the microscope control computer, as shown by Pro-
cess 2. NION Swift running on the control computer executes 
this script through Processes 3 and 4. The output data from the 
microscope detectors are streamed to the NAS (Process 5), with 
the state of the data collection communicated to NION Swift 
(Process 6). Since the NAS is also samba-mounted on the clus-
ter, these data are available immediately, as shown through Pro-
cess 7. As the data are collected on the NAS, the cluster starts 
processing it with the results being available to the operator as 
outputs in the Jupyter session.

Data Management Through Compression and 
Open-Source File Formats

A challenge in coupling microscopes and compute clus-
ters is that they are often geographically separated; thus, the 

Figure 3:  Current setup at ORNL for remote access and on-demand microscopy data transfer between remote workstations and NION microscopes. The commu-
nication between the microscopes, control computers, and network-assisted storage has eight separate components. The components themselves can be classified 
into data transfer (blue), management (green), and control (red) processes.
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bottleneck is often network connections that slow data trans-
fer. Many of these issues can be mitigated by developing phys-
ics-informed compression techniques, with the compression 
routines residing on the edge computer and transferring only 
compressed data to HPC clusters on the network. Both lossless 
and lossy compression are avenues that should be explored. 
Many current techniques, such as 4D-STEM strain mapping 
or EELS mapping, which focus on small data sections, would 
benefit tremendously from lossy data compression techniques.

Additionally, large datasets are often composed of mul-
tiple individual frames, which can be CBED patterns in 
4D-STEM, or individual frames in cryo-STEM or in situ 
TEM. In each of these cases, individual frames are often really 
similar to neighboring frames in a single dataset and are thus 
low-entropy datasets. Arithmetic coding-based lossless com-
pression approaches can be potent in many instances, lead-
ing to data compression by several factors. Compressed data 
should be stored in open-source data formats, and codes on 
HPCs should be built to work directly on compressed data 
without decompressing the data on the cluster.

In the last several years, a few groups in the materials com-
munity have tackled the issue of data storage formats. This has 
led to development of open-source microscope data containers 
capable of performing provenance tracking, such that com-
pressed data and analysis can live together in a single dataset. 
Work in this area has led to the development of the EMD data 
format [75], which is based on the open-source HDF5 specifica-
tion. Other recent work at ORNL has been the Universal Spec-
troscopic and Imaging Data (USID) [76,77], which has been 
accompanied by the open-source pyUSID package to read and 
write USID datasets [78].

Future microscopy systems should directly stream data 
from detectors to GPUs on a connected edge system, where 
online compression can be performed on the data being 
streamed. Alongside this, compressed data should be streamed 
to HPC systems, where the data are processed and stored in 
open-source data containers, and the processed results, which 
are often significantly sparser, streamed back to the microscope 
operator. The processed data can also be fed into decision-
making algorithms, which can be used to drive the microscope 
for results-guided automated experimentation. This setup will, 
however, lead to networking challenges, as data, decisions, and 
output will be streamed simultaneously. This will require the 
development of reliable switching and networking protocols to 
couple the microscopy and computation.

Continuous Provenance Tracking Through Digital 
Twins on Connected Edge and HPC Systems

As mentioned previously, a goal for the development of 
data containers is storage of metadata in machine-readable 
formats and provenance tracking. While microscope data 
files are often multidimensional arrays, making sense of them 
requires access to metadata. Based on the authors’ experience, 
current vendor-generated metadata is frequently incorrect and 
needs significant manual intervention to correct the data. Sec-
ondly, over the course of an experimental session, microscope 
parameters often “drift” and the stored metadata may reflect 
the initial starting conditions, while later experiments may be 
significantly different.

Modern microscopes have sensors that generate informa-
tion about individual lens and holder parameters, often in real 
time. One way to use these data is to build virtual infrastructure 
twins, where a simulation of the microscope runs on a cluster, 
which is updated in real time based on individual lens values. 
Such a system can then save the digital twin of a microscope 
and provide detailed provenance tracking at every time point 
of an experiment with errors in metadata noted if the observed 
sensor outputs don’t match. Notably, a setup like this would 
eliminate the need for a skilled operator to verify the accuracy 
of the metadata and generate the state of the microscope while 
analyzing the data, allowing for significantly more complex 
autonomous experiments where the microscope’s parameters 
change during an experiment.

Additionally, continuous state monitoring opens the door 
for Bayesian predictive experiments. Whether it is for inverse 
problems such as ptychography, or for in situ experiments, prov-
enance tracking provides completely automated, predictive sci-
ence. These data are already available, but are rarely collected in 
a single location in a machine parsable format. In situ holders 
for heating, biasing, or chemical reactions track the states con-
tinuously, while most modern microscopes track individual lens 
currents and settings. However, as far as the authors know, these 
datasets have not been used to build a digital microscope twin 
yet. Building a highly accurate digital twin also removes the need 
for conducting multiple experiments. Future systems will thus be 
able to run completely virtual experiments and collect experi-
mental data from a real-world microscope only when needed.

Conclusions
The challenges and opportunities we demonstrated in the 

roadmap above demonstrate that this is an exciting time for 
electron microscopy. Two fields, data science and microscopy, 
are coming together. Future microscopes will not be standalone 
systems, but multi-purpose scientific tools tightly coupled to 
local edge and remote HPC computational facilities. The cur-
rent divisions in physical sciences between materials synthe-
sis, characterization, and theory are not the future. All three 
aspects can and should be present in a single setup that can 
autonomously “learn the physics” directly from the experiment. 
Literally, a “Lab on a Beam” [79].
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