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Abstract. For a post-critically finite branched covering of the sphere that is a subdivision
map of a finite subdivision rule, we define non-expanding spines which determine the
existence of a Levy cycle in a non-exhaustive semi-decidable algorithm. Especially when
a finite subdivision rule has polynomial growth of edge subdivisions, the algorithm
terminates very quickly, and the existence of a Levy cycle is equivalent to the existence of
a Thurston obstruction. To show the equivalence between Levy and Thurston obstructions,
we generalize the arcs intersecting obstruction theorem by Pilgrim and Tan [Combining
rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys. 18(1) (1998),
221–245] to a graph intersecting obstruction theorem. As a corollary, we prove that for
a pair of post-critically finite polynomials, if at least one polynomial has core entropy zero,
then their mating has a Levy cycle if and only if the mating has a Thurston obstruction.
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1. Introduction
Obstructions for topological objects to have geometric structures are important subjects
of study in topology and geometry. For example, the geometrization theorem is about
topological obstructions for a 3-manifold to have one out of eight geometries. W. Thurston,
who conjectured and proved a large part of the geometrization theorem, also proved a
geometrization theorem, named Thurston’s characterization, in complex dynamics. He
found obstructions, called Thurston obstructions, for a post-critically finite branched
covering of the 2-sphere to be isotopic to a rational map [DH93]. Levy cycles were
introduced at first as simple cases of Thurston obstructions in the study of the mating
problem [Lev85, Tan92]. Recently, it turned out that a Levy cycle itself is an obstruction
for a post-critically finite branched covering to be isotopic to an expanding dynamical
system [BD18]. Therefore, it is important to determine the existence of a Levy cycle as
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well as a Thurston obstruction for post-critically finite branched coverings. In this paper,
we investigate a new method to detect the existence of a Levy cycle for a broad family of
branched coverings, called subdivision maps of finite subdivision rules.

1.1. Obstructions of post-critically finite topological branched self-coverings of the
sphere. A continuous map f : S2 Ñ S2 is a topological branched covering if it locally
looks like z ÞÑ zd for some integer d ą 0. A point x P S2 is a critical point if f is not locally
injective at x. The collection of the critical points �f is the critical set of f and its forward
orbit Pf := Ť8

k=1 f ˝k(�f ) is the post-critical set. If Pf is finite, f is a post-critically finite
branched covering, or simply a Thurston map. A marked post-critically finite branched
covering is a map f : (S2, A) ý such that A Ą Pf , |A| ă 8, and f (A) Ă A. Every
element a P A is called a marked point and A is called the set of marked points of
f : (S2, A) ý. Since f : (S2, A) ý contains the information of being post-critically finite
and the set of marked points, we often abbreviate it just as a branched covering and write
more words when they are necessary.

Two branched coverings f : (S2, A) ý and g : (S2, B) ý are combinatorially equiva-
lent (by φ0 and φ1) if there exist homeomorphisms φ0, φ1 : (S2, A) Ñ (S2, B) such that:
(1) φ0(A) = φ1(A) = B; (2) φ1 is homotopic relative to A to φ0; and (3) the following
diagram commutes:

(S2, Pf ) (S2, Pg)

(S2, Pf ) (S2, Pg)

φ0

f g

φ1

A post-critically finite topological branched covering which is not doubly covered by a
torus endomorphism is combinatorially equivalent to a post-critically finite rational map if
and only if it does not have a Thurston obstruction [DH93], see §7.1.

Definition 1.1. (Levy cycle) A Levy cycle, or a Levy obstruction, of a post-critically finite
branched covering f : (S2, A) ý is a collection of simple closed curves tγ1, γ2, . . . , γnu
that are essential relative to A with the following property: for each 1 ď i ď n, there is
a connected component γ 1

i of f ´1(γi) which is isotopic to γi+1 relative to A, and f |γ 1
i

:
γ 1
i Ñ γi is a homeomorphism.

Since a Levy cycle is a homeomorphically periodic cycle, a branched covering cannot be
expanding along a Levy cycle. The Schwartz lemma implies that every post-critically finite
rational map g : (Ĉ, Pg) ý is expanding with respect to the conformal metric on ĈzPg ,
except for a few cases. Therefore, a Levy cycle is an example of a Thurston obstruction.
Shishikura and Tan found an example of mating of cubic polynomials that has a Thurston
obstruction but does not have a Levy cycle [ST00]. Although Shishikura and Tan’s example
is not conjugate to a rational map, it has an expanding metric, and many objects in the
study of rational maps, such as Julia sets, are still well defined. These branched coverings
are called Böttcher expanding maps, see [BD18] for Böttcher expanding maps. Rational
maps are Böttcher expanding maps by the Schwartz lemma. Recently, it was shown that a
post-critically finite topological branched covering which is not doubly covered by a torus
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endomorphism is combinatorially equivalent to a Böttcher expanding map if and only if
it does not have a Levy cycle [BD18]. Therefore, Thurston and Levy obstructions can
be viewed as obstructions for conformal structures and expanding dynamics on branched
coverings of the sphere, respectively.

1.2. Analogy with surface diffeomorphisms. There are analogues between surface dif-
feomorphisms and branched coverings of the sphere. Pseudo-Anosov maps are geometric
in a sense that they are affine maps expanding along one dimension and contracting along
the other one dimension with respect to appropriate conned Euclidean structures; rational
maps are conformal geometric and Böttcher expanding maps are metric geometrically
defined. In a pseudo-Anosov mapping class, there is a unique pseudo-Anosov map up to
conjugation; in an isotopy class of post-critically finite topological branched coverings,
a rational map or a Böttcher expanding map is unique up to conjugation if it exists
[BD18, DH93]. For non-periodic mapping classes, reducing multicurves are obstructions
to pseudo-Anosov mapping classes; Thurston obstructions and Levy cycles are also
multicurves, which are obstructions to being isotopic to rational maps and Böttcher
expanding maps, respectively.

In spite of this analogy, however, algorithms to determine the existence of obstructions
for branched coverings of the sphere are relatively less studied compared with surface
diffeomorphisms. Let us review some results on algorithms about branched coverings of
the sphere. Exhaustive searches for Levy cycles or Thurston obstructions are decidable
[BBY12, BD18]. For topological polynomials, a non-exhaustive algorithm, which finds
either Levy cycles if they exist or Hubbard trees otherwise, was developed in [BLMW22].
D. Thurston’s positive characterization also gives a non-exhaustive algorithm to detect
both Levy cycles and Thurston obstructions for hyperbolic post-critically finite branched
coverings [Thu20]. Although these algorithms work efficiently for many examples in
practice, no theoretical upper bound of the complexity is known for any of these
algorithms. An upper bound for the computational complexity was studied for nearly
Euclidean Thurston maps in [FPP18a]. Poirier proved that an abstract Hubbard tree H is a
Hubbard tree of a polynomial if and only if H is expanding [Poi10]. This gives an efficient
algorithm to check whether a Thurston obstruction (equivalently a Levy cycle in this case)
exists, and one can easily find an upper bound for the complexity of this algorithm, though
it is not stated in [Poi10]. In this paper, Theorem 6.21 provides a new non-exhaustive
algorithm to detect Levy cycles when post-critically finite branched coverings are given
as subdivision maps of finite subdivision rules. When edges have polynomial growth of
subdivisions, Theorem 8.6 implies that this algorithm terminates very quickly, and the
complexity is polynomial about the number of cells. However, we do not compute the
complexity in this paper.

1.3. Finite subdivision rules. A finite subdivision rule R consists of a partition SR of S2

into polygons and its subdivision R(SR) such that a subdivision map f : R(SR) Ñ SR
is homeomorphic on each open cell, see Figure 1 for an example and §4 for a precise
definition. One can also see a finite subdivision rule as a sort of Markov partition. Because
Pf Ă Vert(SR), the subdivision map is a post-critically finite topological branched
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FIGURE 1. A finite subdivision rule of z ÞÑ (z2 ´ 1){(z2 + 1). The sphere is decomposed into two triangles in
SR. Each triangle subdivides into two triangles under the subdivision R. The subdivision map f : R(SR) Ñ
SR sends each shaded or unshaded triangle in R(SR) to the shaded or unshaded triangle in SR, respectively.

covering. By iterating subdivisions, we have a further subdivision Rn(SR) and an iterated
map f n : Rn(SR) Ñ SR for each n P N. It is an open question to determine which
topological post-critically finite branched coverings are isotopic to subdivision maps of
finite subdivision rules. See §4.3 for a list of topological branched coverings that can be
represented as subdivision maps.

To detect a Levy cycle, for each n ě 0, we define a level- n non-expanding spine Nn

which is a graph with a train-track structure encoding non-expanding parts of Rn(SR), see
§6. A finite set A Ă Vert(SR) is called a set of marked points of R if Pf Y f (A) Ă A.
A point a P A is called a Fatou point if its forward orbit contains a periodic critical point.
Otherwise, a P A is called a Julia point. We say that the level-n non-expanding spine Nn is
essential relative to A if it contains (more precisely carries as a train-track) a closed curve
that is homotopic relative to A neither to a point nor to some iterate of a peripheral loop of
a Julia point in A.

THEOREM 6.21. Let R be a finite subdivision rule and f : R(SR) Ñ SR be its subdi-
vision map which is not doubly covered by a torus endomorphism. Let A Ă Vert(SR) be
a set of marked points, that is, Pf Y f (A) Ă A. Then the post-critically finite branched
covering f : (S2, A) ý has a Levy cycle if and only if the level- n non-expanding spine
Nn is essential relative to A for every n ě 0.

We first prove the equivalence between the existence of a Levy cycle and the existence of
a sequence of curves with certain properties in §5 using the theory of self-similar groups.
Then we show in §6 the equivalence between the existence of such a sequence of curves
and the level-n non-expanding spine being essential at every level n ě 0.
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1.4. Algorithmic implication. Theorem 6.21 improves [BD18, Algorithm 5.5] by replac-
ing the exhaustive semi-decidable search for nuclei of orbisphere bisets by checking if the
non-expanding spines are essential, which terminates in finite time if there is no Levy
cycle. There is an example showing that an arbitrarily higher level of non-expanding spine
is required to be checked, see Proposition 9.9 in §9.3.

Question 1.2. Is there an upper bound function U : Z+ Ñ Z+ such that f : (S2, A) ý
has a Levy cycle if and only if Nn is essential relative to A for every n ă U(k), where k is
the number of tiles in R?

1.5. Finite subdivision rules with polynomial growth of subdivisions. We will see that
the growth of the subdivision of an edge is either exponential or polynomial in Theorem 3.6
and Proposition 8.2. If every edge has polynomial growth of subdivisions, then the level-n
non-expanding spines Nn are independent of n ě 0. Hence, the existence of a Levy cycle
is decidable very quickly.

THEOREM 8.6. Let R be a finite subdivision rule with polynomial growth of edge
subdivisions and f be its subdivision map which is not doubly covered by a torus
endomorphism. Let A Ă Vert(SR) be a set of marked point, that is, f (A) Y Pf Ă A. Then
the following are equivalent.
(1) The branched covering f : (S2, A) ý does not have a Levy cycle.
(2) The level-0 non-expanding spine N0 is essential relative to A.
(3) The branched covering f : (S2, A) ý is combinatorially equivalent to a unique

rational map up to conjugation by Möbius transformations.

1.6. Equivalence between Levy cycles and Thurston obstructions. Another important
implication of Theorem 8.6 is the equivalence between the existence of a Levy cycle
and the existence of a Thurston obstruction. As explained earlier, there are topological
branched coverings which do not have a Levy cycle but have a Thurston obstruction
[ST00]. For some families of post-critically finite topological branched coverings, e.g.,
post-critically finite topological polynomials or branched coverings of degree 2, the
existence of a Thurston obstruction implies the existence of a Levy cycle, by Levy et al
[Hub16, Tan92]. We add two new families to this list: subdivision maps with polynomial
growth of edge subdivisions (Theorem 8.6) and matings of polynomials one of which has
core entropy zero (Corollary 7.10).

COROLLARY 7.10. Let f and g be post-critically finite hyperbolic (respectively possibly
non-hyperbolic) polynomials such that at least one of f and g has core entropy zero. Then f
and g are mateable if and only if the formal mating (respectively degenerate mating) does
not have a Levy cycle.

The equivalence between the existence of a Levy cycle and of a Thurston obstruction
follows from the graph intersecting obstruction theorem, which is a generalization of the
arcs intersecting obstruction theorem by Pilgrim and Tan [PT98]. Here, htop indicates the
topological entropy.
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THEOREM 7.6. (Graph intersecting obstruction) Let f : (S2, A) ý be a post-critically
finite branched covering and G be a forward invariant graph such that htop(f |G) = 0.
Then every irreducible Thurston obstruction intersecting G is a Levy cycle.

1.7. Examples: Critically fixed anti-holomorphic maps. In §9, we define an orientation
reversing finite subdivision rule with no edge subdivision from every 2-vertex-connected
planar graph G. Then f 2 : (S2, Vert(G)) ý and fτ := τ ˝ f : (S2, Vert(G)) ý are
post-critically finite topological branched coverings, where τ is an orientation-reversing
automorphism of G. Then we show in Theorem 9.4 that these maps do not have Levy
cycles (or equivalently, Thurston obstructions) if and only if G is 3-edge-connected. While
this article was being written, two papers [Gey22, LLMM23] were published where it is
shown that every critically fixed anti-holomorphic map is constructed in this way and a
theorem almost the same as Theorem 9.4 is proved.

1.8. Notation for integer intervals. We introduce a non-standard but intuitive notation
for integer intervals to distinguish them from real intervals. For a ă b P Z:

‚ [a, b]Z := ta, a + 1, . . . , bu;
‚ [a, 8]Z := ta, a + 1, . . .u Y t8u;
‚ [´8, b]Z := t´8u Y t. . . , b ´ 1, bu;
‚ [´8, 8]Z := Z.

The interval [a, b] without the subscript Z indicates the real interval tx P R | a ď x ď bu.

2. Monotonicity of lengths under subdivisions
In this section, we see combinatorial properties of a CW-complex without dynamics. We
follow some terminology defined in [FPP18b]. Let T be a finite CW-complex structure
on S2. An n-gon, or a polygon if n is not specified, is a two-dimensional CW-complex
structure on the closed 2-disc D2 whose 1-skeleton consists of n edges on BD2. For every
closed 2-cell t of T , there is a polygon t and a characteristic map φt : t Ñ T such that φt

is cell-wise homeomorphic and φt (t) = t .

Definition 2.1. (Bands and bones) A band of T is a triple (t ; e1, e2), where t is a closed
2-cell, and e1 and e2 are edges on the boundary of t. We allow e1 = e2(= e) only when two
boundary edges of a polygon t are identified to e by the characteristic map φt : t Ñ T . We
say that e1 and e2 are the sides of the band. The bone of (t ; e1, e2) is the homotopy class
(or ambiguously a representative of the class) of curves which are properly embedded into
(t , Bt) with endpoints on the interiors of e1 and e2 (see Figure 2).

Let T (n) denote the n-skeleton of T . Any curve γ Ă S2zT (0) transverse to T (1) is sub-
divided by T (1) into consecutive subcurves γ1, γ2, . . . , γk such that each γi is a maximal
subcurve embedded in a closed 2-cell. The set tγ1, . . . , γku is the T -decomposition of γ

and each curve γi is a T -segment of γ .
If γ is not closed, then γ2, . . . , γk´1 are called inner T -segments. The terminal

T -segment γ1 or γk is an outer T -segment if one of its endpoints is in the interior of
a closed 2-cell; if both endpoints are on the 1-skeleton, then we still call them inner
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FIGURE 2. Bones of bands. The figure on the right shows the case when two sides of the band are the same.

T -segments. If γ is closed, all segments are called inner segments. A curve γ is T -taut if
every inner T -segment is the bone of a band, that is, it cannot be pushed away from the
2-cell, it is contained by an isotopy relative to T (0).

Definition 2.2. Two curves in S2zT (0) are combinatorially equivalent relative to T , or
simply T -combinatorially equivalent, if they are isotopic by a cellular isotopy of T , that
is, an isotopy from the identity map whose restriction to each cell X is also an isotopy on X.

Define the T -length of γ , denoted by lT (γ ), to be the number of inner T -segments.
The T -length of a curve is an invariant of a combinatorial equivalence class. The following
criterion is straightforward from the bigon criterion [FM12].

PROPOSITION 2.3. Let T be a finite CW-complex structure on S2. Let γ be a curve in
S2zT (0) transverse to T (1). Then lT (γ ) is minimized in its homotopy class within S2zT (0),
relative to endpoints if γ is not closed, if and only if γ is taut. Moreover, in the homotopy
class, the taut curve is unique up to T -combinatorial equivalence.

The following lemma is immediate.

LEMMA 2.4. Let T be a finite CW-complex structure on S2. For every l ą 0, there are
only finitely many, possibly closed or non-closed, curves δ in S2zT (0) with lT (δ) ă l up to
combinatorial equivalence relative to T .

Definition 2.5. (Subbands) Assume T is a finite CW-complex structure on S2 and T 1 is its
subdivision. A band (t 1; e1

1, e1
2) of T 1 is a subband of (t ; e1, e2) of T if t 1 Ă t and e1

i Ă ei

for i = 1, 2.

PROPOSITION 2.6. (Monotonicity of lengths under refinements of CW-complexes) Let T
and T 1 be finite CW-complex structures of the 2-sphere S2 such that T 1 is a subdivision
of T . Let γ be a T -taut curve and γ 1 be a T 1-taut curve such that γ and γ 1 are
T -combinatorially equivalent. Then

lT (γ ) ď lT 1(γ 1).

Let γ1, . . . , γk be the inner T -segments of γ and γ 1
1, . . . , γ 1

k1 be the inner T 1-segments
of γ 1. Then the equality holds if and only if, under a proper reordering of indices, γi is a
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FIGURE 3. The bold edge is an edge of T and the dotted edge is an edge of T 1 that is not an edge of T .

bone of (ti ; ei,1, ei,2) and γ 1
i is a bone of (t 1

i ; e1
i,1, e1

i,2) such that (t 1
i ; e1

i,1, e1
i,2) is a subband

of (ti ; ei,1, ei,2) for any 1 ď i ď k = k1.

Proof. Take unions of consecutive γ 1
i terms to get δ1, . . . , δl such that each δj is a

T -segment of γ 1. If endpoints of δi are on the same edge of T as below, then remove
it by an isotopy pushing δi away from the 2-cell in which it was contained so as to make
δi´1 Y δi Y δi+1 be properly embedded into the 2-cell where the subcurves δi´1 and δi+1

were properly embedded as shown in Figure 3.
Repeating this reduction, we obtain a T -taut curve γ̄ homotopic to γ . Let γ̄1, . . . , γ̄m

be its subcurves with respect to T , and γ̄i be properly embedded into a band (t̄i ; ēi,1, ēi,2).
Since taut curves are unique in the homotopy class up to combinatorial equivalence, after
reordering indices, we have k = m and (t̄i ; ēi,1, ēi,2) = (ti ; ei,1, ei,2). Then k = m ď l ď
k1. The equality condition immediately follows from the constructions of δi and γ̄i .

3. Directed graphs and topological entropy of graph maps
A directed graph will be used throughout this article to understand the dynamics of
branched coverings. In this section, we review basic notions of directed graphs and prove
properties that we need in subsequent sections.

Let G be a finite directed graph. A path is a sequence of edges (e1, e2, . . . , en) such
that the terminal vertex of ei is equal to the initial vertex of ei+1 for every i P [1, n ´ 1]Z.
The length of path is the number of edges in the sequence. The initial vertex of e1 is the
initial vertex of the path and the terminal vertex of en is the terminal vertex of the path. If
the initial and terminal vertices of a path p are v and w, then we call p a path from v to w.
Let p and p1 be paths of length n and n1 with n1 ą n. If the first n subsequence of edges of
p1 is equal to the sequence of edges of p, we say that p1 is an extension of p and p is the
first n-restriction of p1.

A cycle is a path whose initial and terminal vertices coincide. A vertex is periodic if
it is contained in a cycle and preperiodic if it is not periodic but there is a path from the
vertex to a periodic vertex. For a subset W Ă Vert(G), the subgraph generated by W is the
subgraph of G consisting of W and edges connecting vertices in W.

Definition 3.1. (Recurrent paths) For a periodic vertex v P Vert(G), a path p from v is
recurrent if there exists a path from the terminal vertex w of p to v, that is, v and w
are contained in one cycle. We also consider a periodic vertex as a recurrent path of
length 0.

https://doi.org/10.1017/etds.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.115


2658 I. Park

Definition 3.2. (Ideals) Let G be a directed graph. A subset X Ă Vert(G) is an ideal if
the following condition holds: for every v P X, if there is a path from v to w for some
w P Vert(G), then w P X.

For v P Vert(G), the ideal generated by v, denoted by xvy, is the collection of vertices
w P Vert(G) where there is a path from v to w.

Example 3.3. Assume we have a directed graph as

v1 v2 v3 v7

v4 v5 v6

e1

e2

e3

e4 e7

e5

e6

Vertices v1 and v4 are neither periodic or preperiodic; v2, v3, v5, and v6 are periodic; v7 is
preperiodic. Starting from v3, the paths (e4, e3, e5) and (e4, e3, e5, e6, e4, e3) are recurrent,
but the paths (e4, e2, e1) and (e4, e3, e5, e6, e4, e2) are not recurrent. There are only four
ideals: tv4u, tv1, v4u, tv1, v2, v3, v4, v5, v6u, and Vert(G).

3.1. Adjacency matrices. Let G be a finite directed graph and Vert(G)=tv1, v2, . . . , vnu.
The adjacency matrix A of G is defined by

Aij = the number of edges from vi to vj ,

where the Aij is the entry of the ith row and jth column of A. The adjacency matrix depends
on the choice of indices of vi , and matrices defined by different choices of indices differ by
conjugations by permutation matrices. In particular, if the index satisfies i ă j only when
there exists a path from vi to vj , then the adjacency matrix is an upper triangular block
matrix.

A =

⎛
⎜⎜⎜⎜⎜⎝

A1 ˚ . . . ˚ ˚
0 A2 . . . ˚ ˚
...

...
. . .

...
...

0 0 . . . Ak´1 ˚
0 0 . . . 0 Ak

⎞
⎟⎟⎟⎟⎟⎠

, (UTB-form)

where Ai is irreducible or a 0 matrix. A non-negative m ˆ m square matrix M is
irreducible if for every 1 ď i, j ď m, there exists k ě 1 such that (Mk)ij ą 0. An
irreducible non-negative matrix M has a simple eigenvalue, called the Perron–Frobenius
eigenvalue, which is a positive real number and equal to the spectral radius of M. The
spectral radius of A is equal to the maximum of Perron–Frobenius eigenvalues of the
irreducible Ai . See [BP94, Ch. 2].

3.1.1. Asymptotic growth of entries of An. Let B be a non-negative irreducible matrix
and denote by v and wT the right and the left eigenvectors of B which are normalized by
wT v = 1. By the Perron–Frobenius theorem, for the Perron–Frobenius eigenvalue ρ of B,
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we have

lim
nÑ8 Bn{ρn = vwT .

Hence, the (i, j) entry of Bn is asymptotic to ρn ¨ vi ¨ wj . This implies the following
proposition. The proof is left to the reader.

PROPOSITION 3.4. Let A be an N ˆ N non-negative upper triangular block matrix such
that A1, . . . Ak are blocks on the diagonal like equation (UTB-form). Let Ai be an Ni ˆ Ni

matrix so that N = řk
i=1 Ni . For i P t1, . . . , Nu, let li P [1, k]Z such that Ali contains

the (i, i)-entry of A. Let Rn,i (respectively Cn,i) be the ith row (respectively column) sum
of An, that is, the sum of the entries in the ith row (respectively column) of An. Then$’&

’%
limnÑ8

1
n

¨ log(Rn,i ) = maxliďjďk log ρj ,

limnÑ8
1
n

¨ log(Cn,i ) = max1ďjďli log ρj ,

where ρj is the spectral radius of Aj .

3.2. The growth rate of the number of paths

3.2.1. Polynomial and exponential growth rate. Suppose we have a sequence tan | an P
Rą0, n ě 1u. We consider sequences which are uniformly bounded or diverge to infinity
when n tends to infinity. We say that the sequence has exponential growth, or grows
exponentially fast, if there exists C ą D ą 1 such that for any sufficiently large n ą 0,
we have

D ă |log an| ă C,

and the sequence has polynomial growth of degree d, or grows polynomially fast with
degree d, for a non-negative integer d if there exists C ą D ą 0 such that for any
sufficiently large n ą 0, we have

D ¨ nd ă an ă C ¨ nd .

LEMMA 3.5. Suppose tan | n ě 1, an ě 0u is a non-decreasing sequence. If there exist
k, l, m ą 0 such that ak¨n+l ě m ¨ nd (respectively ak¨n+l ď m ¨ nd ) for every n ą 0, then
there exists C ą 0 such that an ą C ¨ nd (respectively an ă C ¨ nd ) for any sufficiently
large n.

Proof. Since the sequence tanu is non-decreasing, we have a(k+1)¨n ě m ¨ nd for any
n ą l{k. Then, for any sufficiently large n ą 0, we have

an ě a(k+1)¨tn{(k+1)u ě m ¨
Z

n

k + 1

^d

ą m

(k + 2)d
¨ nd ,

where txu means the largest integer less than or equal to x. The same argument also works
for the inverse direction.
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FIGURE 4. A graph with polynomial growth rate of P(v, n). Any arrow indicates paths, any dotted arrow means
it may not exist but if exists it indicates a path, and any circle indicates a cycle. In each cycle, the incoming vertex

and the outgoing vertex could be the same.

Let G be a directed graph. Two paths in G are different if their sequences of edges are
different. Let P(v, n) be the number of different paths of length exactly n starting from v.
The following criterion on the growth rate of P(v, n) is well known. See [Sid00, Ufn82].
We restate the criterion with a slight improvement for the case of polynomial growth.

THEOREM 3.6. Let G be a directed graph and v P Vert(G).
(1) If there exist two different cycles passing through v, then P(v, n) has exponential

growth.
(2) If there exists w P Vert(G) such that there are two different cycles starting from w

and a path from v to w, then P(v, n) has exponential growth.
(3) If v does not satisfy item (1) or (2), then P(v, n) has polynomial growth. Moreover,

if the maximum number of (disjoint) cycles that a path from v can intersect is d + 1,
then the degree of the polynomial growth of P(v, n) is d. When the maximum number
of cycles is zero, then P(v, n) = 0 for every sufficiently large n and we define the
degree of polynomial growth to be ´1.

Proof. The number of paths of length ď n is counted in [Ufn82] and we slightly modify
it. If two cycles of lengths p and q pass through v, then there are at least 2n paths of length
npq starting from v. Let M be the maximal number of outgoing edges from one vertex in
G. Then the number of paths with length n is less than Mn. This proves items (1) and (2)
is immediate from item (1).

Assume that v does not satisfy item (1) or (2). Let W = xvy be the ideal generated by
v. There exist totally ordered finite subsets W1, . . . Wk such that v P Wi for each i and
W = Ťk

i=1 Wi . More precisely, we think of a directed graph H obtained by collapsing
each cycle in G to a vertex. Since v does not satisfy item (1) or (2), the graph H does not
have any cycle. Let v1 be the vertex of H corresponding to v. Then v1 is the only minimal
element of Vert(H). Let w1, w2, . . . , wm be the maximal elements of Vert(H). Choose
any w P Vert(W).

Then the subgraph Gi generated by Wi is isomorphic to the graph in Figure 4. Since
every path from v is supported in some Gi , it suffices to show item (3) when G is the graph
of the type shown in Figure 4.

Assume G is a graph of the type in Figure 4. Let it have d + 1 cycles of lengths
p1, p2, . . . , pd+1. Let pM and pm be the maximum and minimum of tp1, . . . , pdu,
and K and L be the number of vertices and edges of G, respectively. Let X(n) be the
set of d-tuples (n1, . . . , nd) of non-negative integers satisfying n1 + ¨ ¨ ¨ + nd ď n. The
set X(n) has

(
n+d
d

)
elements.
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CLAIM. For any n ě 1, P(v, pm ¨ n){K ď (
n+d
d

) ď P(v, pM ¨ n + L).

Proof of claim. For any n, we define an injective map from X(n) to the set of paths from
v of length pM ¨ n + L as follows. For any (n1, . . . , nd) P X(n), we have a path from
v which goes around the ith cycle ni times for i ď d . The path has length not greater
than pM ¨ n + L. There is a unique extension of the path which: (1) does not further go
around the first d cycles, that is, the additional rotations occur only in the last cycle and
(2) has length exactly equal to pM ¨ n + L. We assign the extended path to the element
(n1, . . . , nd) P X(n). Hence, we have

(
n+d
d

) ď P(v, pM ¨ n + L).
Similarly, we define another map from the set of paths of length pm ¨ n to X(n) by

assigning the numbers of times that each path goes around the first d cycles. Suppose
that two such paths p1 and p2 have the same image in X(n). Since p1 and p2 start from
the same vertex v and have the same length, their terminal vertex are the same if and
only if p1 and p2 are the same. It follows that the number of preimages of the map is
less than K.

As
(
n+d
d

)
is a degree d polynomial in n, it follows from Lemma 3.5 that the P(v, n) has

polynomial growth of degree d as a sequence in n.

The polynomial growth rate of P(v, n) implies the recurrent extension is unique.

PROPOSITION 3.7. (Extension of recurrent paths) Let G be a directed graph and v P
Vert(G). Let γ be a path from v of length m ą 0. If γ is recurrent, then for any n ą m,
γ has at least one extension to a recurrent path of length n. Moreover, if P(v, n) grows
polynomially fast as n tends to 8, then the extension is unique.

Proof. Since γ is recurrent, the initial and the terminal points of γ belong to one cycle C
of G. Then we can extend γ by repeatedly traveling along C. If P(v, n) grows polynomially
fast, then C is the only cycle that passes through v. Hence, traveling along C is the only
way to extend γ .

3.3. Graph maps with zero topological entropy. Let G be a finite graph and Vert(G) be
its vertex set. A continuous map f : G Ñ G is Markov if f (Vert(G)) Ă Vert(G) and f is
a homeomorphism or constant on each component of Gzf ´1(Vert(G)). Then the edges
form a Markov partition of f. Denote by e1, e2, . . . the edges of G. Note that every edge is
mapped to a union of edges. The adjacency matrix Af of f : G Ñ G is defined in such
a way that f (ei) covers ej as many as the (i, j) entry of Af . Under a suitable choice
of indexing ei terms, we may assume that Af is an upper triangular block matrix. Let
A1, . . . Ak be the block matrices on the diagonal as in equation (UTB-form).

The spectral radius λ of Af is either equal to zero if every Ai is zero or equal
to the maximum of Perron–Frobenius eigenvalues of the irreducible Ai terms. The
topological entropy htop(f ) of f is equal to zero if λ = 0 or equal to log(λ) if λ ą 0. The
relationship between the topological entropy and the Perron–Frobenius eigenvalue follows
from [MS80].
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There is a directed graph Df such that Vert(Df ) = Edge(G) and the directed edges are
defined as follows: for ei , ej P Edge(G), if f (ei) covers ej exactly k times, then we draw
k directed edges of Df from ei to ej . Then Af is equal to the adjacency matrix of Df . We
refer to Df as the directed graph of the Markov map f : G Ñ G.

The following lemma is elementary, but we prove it for the sake of self-containedness.

LEMMA 3.8. Let M be an irreducible non-negative integer matrix and λ(M) be its
Perron–Frobenius eigenvalue. Then λ(M) ě 1 and the equality holds if and only if M is a
permutation matrix.

Proof. Because the characteristic polynomial of M is a monic polynomial with integer
coefficients, the absolute value of the product of eigenvalues is a positive integer. Hence,
the spectral radius λ(M) is at least one. If M is a permutation matrix, then trivially λ(M) =
1. Assume λ(M) = 1. Let H be a directed graph whose adjacency matrix is M. Since M
is irreducible, for any pair (v, w) of vertices of H, there exists a path p1 from v to w and
a path p2 from w to v. If there exists a vertex x ‰ v, w through which both paths p1 and
p2 pass, there are two different cycles passing through x. By Theorem 3.6, the number of
length-n paths P(x, n) grows exponentially fast. Since P(x, n) is the sum of entries in the
row of Mn corresponding to the vertex v, it follows that λ(M) ą 1. So p1 and p2 form a
cycle which passes through vertices exactly once. If there is a vertex x that is not contained
in this cycle, then there is a path from x to v and a path from v to x. Then two different
cycles pass through v so P(v, n) grows exponentially fast and λ(M) ą 1. Hence, H is a
cycle passing through every vertex exactly once, and M is a permutation matrix.

PROPOSITION 3.9. Let f : G Ñ G be a Markov map. Then the following are equivalent.
(1) The topological entropy htop(f ) is zero.
(2) Every irreducible block Ai of the upper-triangular block form of the adjacency

matrix Af is a permutation matrix.
(3) The directed graph Df of the adjacency matrix Af has disjoint cycles, that is, every

pair of different cycles has disjoint vertices.
(4) There exists a positive integer d such that (Af

n)ij = O(nd) for all i, j .

Proof. (3) ô (2) ñ (1) is trivial and (4) ô (3) is immediate from Theorem 3.6. Assume
htop(f ) = 0. Then the Perron–Frobenius eigenvalue of every irreducible block Ai of the
adjacency matrix Af is one. (1) ñ (2) follows from Lemma 3.8.

4. Finite subdivision rules
A finite subdivision rule R consists of the following:
(1) a subdivision complex SR which is a two-dimensional finite CW-complex such that

the underlying space is the union of its closed 2-cells, that is, every 0- or 1-cell is on
the boundary of a 2-cell;

(2) a subdivision R(SR) of SR that is a CW-complex for which every open cell is
contained in an open cell of SR; and

(3) a subdivision map f : R(SR) Ñ SR which is continuous and cell-wise homeomor-
phic, that is, its restriction to each open cell is a homeomorphism onto an open cell.
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We say that R is orientation preserving if every 2-cell can be oriented in such a way that
f preserves the orientation. Similarly, R is orientation reversing if f reverses the orientation
on every cell. For any closed 2-cell t of SR, there exists a n-gon t and the characteristic
map φt : t Ñ t is cell-wise homeomorphic. The CW-complex t is called the tile type of the
closed 2-cell t. Similarly, for a characteristic map of a 1-cell φe : e Ñ e, e is the edge type
of a closed 1-cell e.

A two-dimensional CW-complex X is an R-complex if it is the union of its closed 2-cells
and there is a continuous cell-wise homeomorphism g : X Ñ SR. By pulling back the
subdivision Rn(SR) of SR through g for each n ą 0, we also have a subdivision Rn(X)

of X and a cell-wise homeomorphism f ˝n ˝ g : Rn(X) Ñ SR. For example, SR itself and
any tile type t are R-complexes, so for any n P N, their level-n subdivisions Rn(SR) and
Rn(t) are defined. For any edge type e, its level-n subdivision Rn(e) is also similarly
defined.

We call a closed 2-cell (respectively a closed 1-cell, a 0-cell) a tile (respectively an edge,
a vertex) of a two-dimensional complex. Every level-0 tile or edge of an R-complex is also
an R-complex. See [CFP01] for more details on finite subdivision rules.

4.1. Notation. As we wrote in the previous paragraph, we use bold fonts for the
domains of characteristic maps and normal fonts for the corresponding closed cells in the
CW-complexes. For example, for a closed 2-cell t in a CW-complex X, we write φt : t Ñ t

for the characteristic map. Thus, t is always homeomorphic to the closed 2-disk, but t may
not be.

Remark 4.1. Unlike in other articles on finite subdivision rules, every tile type is not
assumed to have at least three vertices in this article. This modification allows the graphs
in Theorem 9.4 to have bigon faces, see Example 9.8.

4.2. Subdivision maps as post-critically finite branched coverings. Throughout this
article, we assume SR is homeomorphic to the 2-sphere S2. Considering R(SR) and SR as
different complexes on the same underlying 2-sphere, we may think of the subdivision map
f : R(SR) Ñ SR as a topological branched self-covering of S2. Since the set of critical
points �f is a subset of the set of vertices of R(SR), f is post-critically finite.

A set of marked points A of R is a subset of Vert(SR) with Pf Y f (A) Ă A. With a
choice of a set of marked points A, the subdivision map can be considered as a marked
post-critically finite branched covering f : (S2, A) ý.

4.3. Branched coverings represented as subdivision maps. If f is a subdivision map,
then the 1-skeleton S

(1)

R is a graph such that: (1) it contains Pf ; (2) it is connected; and (3)
it is forward invariant under f. Conversely, if there is a graph satisfying the three conditions,
then it defines a finite subdivision rule. Below is a list of some forward invariant graphs
that are known to exist.
• Spiders of polynomials [HS94].
• Hubbard trees that can be augmented to be invariant trees [ST19].
• Jordan curves [BM17] and trees [Hlu17] of expanding Thurston maps.
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• Tischler graphs of critically fixed rational maps [Hlu19, PT98].
• Jordan curves [GHMZ18] and trees [Hlu17] of Sierpiński Carpet rational maps.
• Extended Newton graphs for post-critically finite Newton maps [LMS21].
• A sufficiently large iterate f n of any post-critically finite branched covering f without

a Levy cycle is homotopic to a subdivision map [FPP20]. Its 1-skeleton is invariant up
to homotopy.

There are post-critically finite branched coverings whose any iterates cannot be represented
as subdivision maps [FPP20, §4].

4.4. Combinatorial properties of R and Levy and Thurston obstructions. A finite
subdivision rule R is edge separating if for every tile type t and pair of disjoint closed
edges e and e1 of t, there exists a positive integer n such that no subtile of t in Rn(t)
contains both a subedge of e and a subedge of e1. Similarly, R is vertex separating if for
every tile type t and pair of vertices v and w of t, there exists a positive integer n such that
no subtile of t in Rn(t) contains both v and w. These two separating conditions are a part
of the sufficient condition for a subdivision map not having a Levy cycle or a Thurston
obstruction.
• If R is vertex separating and edge separating, then f does not have a Levy cycle

[FPP18b, Proposition 5.1]. There is a finite subdivision rule which is neither edge
separating nor vertex separating but does not have a Levy cycle, see Example 4.2.

• If R is vertex separating, edge separating, and conformal (we do not define this
conformality in the article), then f does not have a Thurston obstruction [CFKP03].
There is an example [CFKP03, Example 4.6] of finite subdivision rule which is
not conformal but does not have a Thurston obstruction, thus it is combinatorially
equivalent to a rational map. See [CFKP03] for a definition of conformal finite
subdivision rules.

Example 4.2. The finite subdivision rule R given in Figure 5 is [FPP18b, Example 5.3].
Its CW-complex SR of the 2-sphere consists of two square tiles. The edges of white and
shaded tiles are glued to form a pillowcase. Since the shaded tile does not subdivide, R
is neither edge separating nor vertex separating. However, it easily follows from Theorem
6.21 that the subdivision map does not have a Levy cycle.

4.5. Edges, bands, bones, and curves of subdivision complexes. For n ě 0, a level- n
tile, edge, or band of R is a tile, edge, or band of Rn(SR). See Definition 2.1 for definitions
of bands and their bones. There is a bijection between level-0 tiles (respectively edge) and
tile types (respectively edge types); a level-0 tile t is the image of the tile type t under the
characteristic map φt : t Ñ t .

We will use superscripts to indicate the level of tiles, edges, etc. Since frequently
considering level-0 objects, we sometimes omit the superscript 0 for simplicity.

For n ą m, a level-n tile tn is a subtile of a level-m tile tm if tn Ă tm. Let t be a tile
type and t be the corresponding level-0 tile. A level-n tile tn is of type t if f n(tn) = t .
Subedges and their types are similarly defined. A band type is a level-0 band. For a band
type (t ; e1, e2), a level-n band (tn; en

1 , en
2) is of type (t ; e1, e2) if the f n-image of its bone is
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FIGURE 5. An example of expanding finite subdivision rule which is neither edge separating nor vertex separating.

the bone of (t ; e1, e2) (or, equivalently, if tn is of type t and en
i is of type ei for i = 1, 2. For

n ą m, a level-n band (tn; en
1 , en

2) is a subband of a level-m band (tm; em
1 , em

2 ) if tn Ă tm

and en
i Ă em

i for i = 1, 2. If deg(f ) = d , there are dn level-n tiles, edges, and bands of the
same type.

Definition 4.3. (Abbreviations for level-n bands and bones) There are many level-n bands
that are not subbands of level-0 bands. However, the only level-n bands that we consider
are level-n subbands of level-0 bands. Since these objects will be very frequently used, for
the sake of simple notation, by a level-n band, we mean a level-n subband of a level-0 band.
Similarly, by a level-n bone, we mean the bone of a level-n subband of a level-0 band.

Definition 4.4. (Non-expanded level-n curves) Let R be a finite subdivision rule. Let
I be a closed interval [k, l], (´8, k], [k, 8), or (´8, 8) for k ă l P Z. For n ě 0, a
curve γ n : I Ñ Rn(SR) is a non-expanded level-n curve if γ n([i, i + 1]) is a level-n
bone for every i P Z with [i, i + 1] Ă I . A non-expanded level-n curve is recurrent if
it consists of level-n bones that are recurrent. The recurrent bands and bones are defined in
Definition 4.8.

4.6. Two directed graphs defined from finite subdivision rules

4.6.1. Directed graphs of edge subdivisions. Let E be a directed graph such that Vert(E)

is the same as the set of level-0 edges. To avoid confusion, we denote by [e] the vertex
of E corresponding to an edge e. A directed edge from [e] to [e1] corresponds to a level-1
subedge of e of type e1. We call E the directed graph of edge subdivision of R. The next
proposition is straightforward from the definitions.
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PROPOSITION 4.5. There is an 1–1 correspondence between the paths in E of length n
starting from [e] and the level-n subedges of e. Thus, the number of level-n subedges is
equal to PE ([e], n), the number of paths of length n starting from [e].

Definition 4.6. (Periodic and recurrent edges) Let R be a finite subdivision rule and E
be the directed graph of edge subdivisions of R. We define level-0 periodic edges and
recurrent level- n edges as follows.
• A level-0 edge e is periodically (respectively preperiodically) subdividing, or simply

periodic (respectively preperiodic), if [e] P Vert(E) is periodic (respectively preperi-
odic). Equivalently, e is periodic if and only if there exists a level-n subedge of e of
type e for some n ą 0.

• A level-n edge en is a recurrent subedge of e if it corresponds, by Proposition 4.5, to a
recurrent path in E which starts from [e] and has length n, or equivalently if a further
subdivision of en contains a subedge of type e. If e1 is the type of a recurrent subedge
of e, then there is a cycle passing through both [e1] and [e]. Only periodic level-0 edges
have recurrent subedges.

• We also refer to periodic level-0 edges as recurrent level-0 edges, which is sometimes
useful for concise statements.

4.6.2. Directed graphs of bands. Let B be a directed graph such that Vert(B) is the set
of level-0 bands (t ; e1, e2). To avoid confusion, we use brackets such as [(t ; e1, e2)] to
denote vertices of B. Every directed edge from [(t ; e1, e2)] to [(t 1; e1

1, e1
2)] corresponds to

a level-1 subband of (t ; e1, e2) of type (t 1; e1
1, e1

2). We call B the directed graph of bands
of R. The following proposition is an analogue to Proposition 4.5.

PROPOSITION 4.7. There is a 1–1 correspondence between the paths in B of length n
starting from [(t ; e1, e2)] and the level-n subbands of (t ; e1, e2).

Definition 4.8. (Periodic and recurrent bands and bones) Let R be a finite subdivision rule
and B be the directed graph of bands of R. We define level-0 periodic bands and level-n
recurrent subbands as we did for edges.
• A level-0 band (t ; e1, e2) is periodic (respectively preperiodic) if [(t ; e1, e2)] P

Vert(B) is periodic (respectively preperiodic). Equivalently, (t ; e1, e2) is periodic if
and only if there exists a level-n band (tn; en

1 , en
2) of type (t ; e1, e2) which is a subband

of (t ; e1, e2) for some n ą 0.
• A level-n subband (tn; en

1 , en
2) of (t ; e1, e2) is a recurrent subband of (t ; e1, e2) if

it corresponds, by Proposition 4.7, to a recurrent path of length n starting from
[(t ; e1, e2)], or, equivalently, if (tn; en

1 , en
2) is a subband of (t ; e1, e2) and has a subband

in its further subdivision which is also a subband of (t ; e1, e2). If (t 1; e1
1, e1

2) is the
type of a recurrent subband of (t ; e1, e2), then there is a cycle passing through both
[(t 1; e1

1, e1
2)] and [(t ; e1, e2)]. Only periodic level-0 bands have recurrent subbands.

• We also refer to periodic level-0 bands as recurrent level-0 bands, which is sometimes
useful for concise statements.

We say that a level-n bone is recurrent if its corresponding level-n band is recurrent.
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A continuous map between two directed graphs is a graph homomorphism if it sends
vertices to vertices and edges to edges preserving directions. From a finite subdivision rule
R, we have defined two directed graphs E and B. There are natural graph homomorphisms
ι, τ : B Ñ E defined by ι([(t ; e1, e2)]) = [e1] and τ([(t ; e1, e2)]) = [e2]. The next lemma
follows from the fact that ι and τ are homomorphisms.

LEMMA 4.9. If (t ; e1, e2) is a periodic level-0 band, then e1 and e2 are periodic edges.
If (tn; en

1 , en
2) is a level-n recurrent subband of (t ; e1, e2), then the sides en

1 and en
2 of

(tn; en
1 , en

2) are level-n recurrent subedges of e1 and e2.

4.7. Parents and children. We define parents and children for various objects regarding
finite subdivision rules. The following are some important properties of the parent–child
relationship. For any i ą 0, Xi stands for a level-i object, which can be an edge, a band, or
a curve consisting of the bones of bands.

(Transitivity) For n ą m ą l ě 0, if Xn is a child of Xm and Xm is a child of object
Xl , then Xn is a child of Xl . A similar statement holds for parents.

(Unique existence of parents) For n ą m ě 0, every level-n object Xn has a unique
level-m parent Xm. If Xn is recurrent, then so is Xm.

(Existence of recurrent children) For n ą m ě 0, every level-m recurrent Xm has at
least one level-n child Xn that is also recurrent. We note that it does not work for
non-expanded curves consisting of more than one bone in general.

4.7.1. Edges. Suppose that a level-n edge en is a subedge of a level-m edge em where
n ą m. Then we say that en is a level- n child of em and em is a level- m parent of en.

The transitivity is straightforward. If both en and em are subedges of a level-0 edge e,
then they correspond to directed paths in E of length n and m, say p and p1, respectively,
such that both p and p1 start from [e] and p1 is the first length-m restriction of p. Then
the unique existence of parents follow. The existence of recurrent children follows from
Proposition 3.7.

4.7.2. Bands and bones. Suppose that a level-n band bn is a subband of a level-m band
bm for some n ą m. Then we say that bn is a child of bm and bm is a parent bn. The
transitivity, the unique existence of parents, and the existence of recurrent children follow
from a similar argument used in the case of edges.

We define parents and children for bones according to the parents–children relationship
of their corresponding bands.

4.7.3. Non-expanded curves. Let I be a closed interval with integer ends, such as [k, l],
(´8, k], [k, 8), or (´8, 8) for k ă l P Z. For n ą m ě 0, let γ n : I Ñ Rn(SR) and
γ m : I Ñ Rm(SR) be level-n and level-m non-expanded curves, respectively. Recall that
γ n([i, i + 1]) (respectively γ m([i, i + 1])) is a level-n (respectively level-m) bone for
every i P Z with [i, i + 1] Ă I . If γ n([i, i + 1]) is a level-n child of γ n([i, i + 1]) for
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every i P Z with [i, i + 1] Ă I , then we say that γ n is a level-n child of γ m and γ m is a
level-m parent of γ n.

The transitivity and the unique existence of parents follow from a similar argument used
before. However, the existence of recurrent children does not work for curves in general;
the level-n children of level-m bones constituting γ m may not be joined as they are at
level-m.

Definition 4.10. (Genealogical sequence of non-expanded curves) Let R be a finite
subdivision rule. Let I denote a closed interval [k, l], (´8, k], [k, 8), or (´8, 8)

for k ă l P Z. A sequence of level-n non-expanded curves tγ n : I Ñ Rn(SR)uně0 is
genealogical if γ n+1 is a child of γ n for every n ě 0.

5. Levy cycle and genealogical sequence of homotopically infinite curves
The purpose of this section is to prove the following theorem.

THEOREM 5.1. Let R be a finite subdivision rule and A Ă Vert(SR) be a set of marked
points. Suppose that the subdivision map f : R(SR) Ñ SR is not doubly covered by
a torus endomorphism. Then f : (S2, A) ý has a Levy cycle if and only if there is a
genealogical sequence of non-expanded recurrent bi-infinite curves tγ n : (´8, 8) Ñ
Rn(SR)u such that each γ n is homotopically infinite with respect to a hyperbolic
orbisphere structure ord : A Ñ [2, 8]Z (hence with respect to any hyperbolic orbisphere
structure because the definition of Levy cycles is independent of the choice of orbisphere
structures).

The ‘only if’ direction is not hard. We can use a Levy cycle to construct the
desired genealogical sequence of non-expanded curves. The other direction, however, is
non-trivial. Even if we have a genealogical sequence of non-expanded curves, it is difficult
to explicitly find a Levy cycle. We prove the existence of a Levy cycle in a non-constructive
way using algebraic machinery, called self-similar groups [Nek05]. We use the term
‘orbisphere bisets’ rather than self-similar groups to be consistent with our main reference
[BD18].

5.1. Contracting orbisphere bisets. Let A be a finite subset of the sphere S2. An
orbisphere structure on (S2, A) is an order function ord : A Ñ [2, 8]Z. We say that ord
is an orbisphere structure of a post-critically finite branched covering f : (S2, A) ý if it
satisfies:
(1) ord(a) ¨ degf (a) | ord(f (a)) for every a P S2, where ord(a) = 1 for a R A; and
(2) ord(a) = 8 only if a P A is a Fatou point.
In item (1), 8 is considered as a multiple of any integer or 8 itself. It follows that
ord(a) = 8 for every a in a periodic cycle containing a critical point. The triple
(S2, A, ord) is called an orbisphere.

The orbisphere group π1(S
2, A, ord) of an orbisphere (S2, A, ord) is defined by

π1(S
2, A, ord) = π1(S

2zA){ xtγ ord(a)
a | a P A and ord(a) ‰ 8uy,

where γa is a peripheral loop of a P A and γ
ord(a)
a = 1 if ord(a) = 8.

https://doi.org/10.1017/etds.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.115


Levy and Thurston obstructions of finite subdivision rules 2669

Remark 5.2. When A = Pf , the order of x, ord(x), is usually defined as the least common
multiple of tdegf n(y) | y P f ´n(x) for n P Nu. When A contains periodic points which
do not belong to Pf , however, the least common multiples of their degrees equal to one so
that it is not an orbisphere structure we care about. The reason that we require ord(a) ą 1
for every a P A is that if ord(a) = 1, then γa vanishes in π1(S

2, A, ord) so that algebraic
properties of π1(S

2, A, ord) cannot carry any information of the a P A.

The Euler characteristic χ(S2, A, ord) of an orbisphere (S2, A, ord) is defined by

χ(S2, A, ord) = 2 +
ÿ
aPA

(
1

ord(a)
´ 1

)
. (1)

The orbisphere (S2, A, ord) is hyperbolic if χ(S2, A, ord) ă 0.
Let p be a base point of π1(S

2, A, ord). Define a set B(f , A, ord) by

tγ : [0, 1] Ñ S2zA | γ (0) = f (γ (1)) = pu{ homotopy relative to (A, ord).

By the homotopy relative to (A, ord), we mean a homotopy relative to A together with
one more homotopy condition: for any a P A with ord(a) ă 8, the ord(a)th power of the
peripheral loop of a is considered to be homotopically trivial.

There is a natural π1(S
2, A, ord)-action on B(f , A, ord) from both left and right. More

precisely, for γ1, γ2 P π1(S
2, A, ord) and for δ P B(f , A), the product γ1 ¨ δ ¨ γ2 is the

concatenation of γ1, δ, and the lift of γ2 through f starting at the endpoint of δ, in order.
The left action is free, and the right action is transitive. The set B(f , A) equipped with
the left and right actions is called the orbisphere biset of (S2, A, ord). If an orbisphere
structure ord : A Ñ [2, 8]Z is given, we implicitly assume that B(f , A, ord) has the left
and right π1(S

2, A, ord)-actions. When an orbisphere (S2, A, ord) is understood in the
context, we simply write B(f ) for B(f , A, ord).

Caution 5.3. There are two conventions depending on whether you concatenate curves
from right to left or from left to right in the operation of orbisphere group. Many
documents, including [Nek05], follow the ‘from right to left’ convention, but we will
follow the ‘from left to right’ convention for the sake of convenience in citing [BD18].
Thus, a biset has a free left action and a transitive right action, which is opposite to a
bimodule in [Nek05].

A tensor square B(f ) b B(f ) can be defined in two different ways. Topologically, the
tensor product δ1 b δ2 for δ1, δ2 P B(f ) is defined as a concatenation of δ1 and the lift of δ2

starting at the endpoint of δ1. Algebraically, it is a quotient of B(f ) ˆ B(f ) by the relation
(δ1 ¨ γ ) b δ2 = δ1 b (γ ¨ δ2). The left and right actions naturally extend to B(f ) b B(f ).
Similarly, B(f )bn has a left free and a right transitive π1(S

2, A, ord)-action for any n ě 1.
A basis X for B(f ) is a collection of representatives of left orbits of the biset B(f ).

Its cardinality |X| is the same as the degree of f. For any n ě 1, the tensor power Xbn of
X is a basis for B(f )bn. Topologically, a basis is a choice of curves from the base point
p of π1(S

2, A, ord) to the d preimages f ´1(p) = tp1, p2, . . . , pdu, where d = deg(f ).
Let δi be a curve from p to pi for i P [1, d]Z. Then tδ1, δ2, . . . , δdu is a basis for B(f ),
and every basis of B(f ) is of this form. Fix n ě 1. Let i1, i2, . . . , in P [1, d]Z. We simply
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write

δi1i2...in := δi1 b δi2 b ¨ ¨ ¨ b δin ,

which gives a bijection ([1, d]Z)n Ø Xbn.

Definition 5.4. (Contracting biset and nucleus) Let f : (S2, A) ý be a marked
post-critically finite branched covering and ord : A Ñ [2, 8]Z be an orbisphere structure.
Let X be a basis for B(f ). The orbisphere biset B(f ) is contracting if there exists a
finite subset N Ă π1(S

2, A, ord) satisfying the following: for every g P π1(S
2, A, ord),

the inclusion Xbn ¨ g Ă N ¨ Xbn holds for every sufficiently large n ą 0. The minimal
N satisfying this property is the nucleus of (B(f ), X).

The contracting property does not depend on the choice of basis [Nek05, Corollary
2.11.7], but the nucleus does. See Remark 5.8 for the independence of the choice of
orbisphere structures.

Definition 5.5. (Böttcher expanding map and local rigidity) Let f : (S2, A) ý be a
post-critically finite branched covering and ord : A Ñ [2, 8]Z be an orbisphere structure.
Denote by A8 the subset of A consisting of a P A with ord(a) = 8. Then f : (S2, A) ý
is Böttcher (metrically) expanding if there is a length metric μ on S2zA8, satisfying the
following conditions.
• For every rectifiable curve γ : [0, 1] Ñ S2zA8, the length of any lift of γ through f

is strictly less the length of γ .
• (Local rigidity near critical cycles) For every periodic point a P A8, the first return

map of f near a is locally topologically conjugate to z ÞÑ zdega(f n), where n is the
period of a.

Every Böttcher expanding map f : (S2, A) ý also has the Fatou set and the Julia set,
which have similar properties of the Fatou and Julia sets of rational maps, see [BD18].

A post-critically finite rational map f is Böttcher expanding since it has the Böttcher
coordinates and enjoys the Schwarz lemma about the conformal metric. The next theorem,
which follows from [BD18, Theorem A, Corollary 1.2], is an analogue of Thurston’s
characterization and rigidity.

THEOREM 5.6. [BD18, Theorem A, Corollary 1.2] Let f : (S2, A) ý be a post-critically
finite branched covering which is not doubly covered by a torus endomorphism and ord :
A Ñ [2, 8]Z be an orbisphere structure. Then the following are equivalent:
(1) f : (S2, A) ý is combinatorially equivalent to a Böttcher expanding map;
(2) the orbisphere biset B(f , A, ord) is contracting;
(3) f : (S2, A) ý has degree ą 1 and does not have a Levy cycle.
Moreover, if it exists, the Böttcher expanding map is unique in the combinatorial equivalent
class up to topological conjugacy.

Remark 5.7. In [BD18], the orbisphere structure used in Theorem A is required where
ord(a) = 8 if and only if a is a periodic Fatou point, which is a little stronger than the
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definition of orbisphere structures in this paper. However, this slight generalization follows
almost immediately.

Remark 5.8. The definition of B(f , A, ord) depends on the orbisphere structure ord :
A Ñ [2, 8]Z, but the definition of Levy cycles of f : (S2, A) ý does not. Hence,
Theorem 5.6 implies that whether or not B(f , A, ord) is contracting is also independent
of the choice of orbisphere structure.

5.2. Semi-conjugacy to Böttcher expanding maps. The idea of semi-conjugacy was
introduced by Rees [Ree92] and Shishikura [Shi00] to show that, for any mateable pair
of post-critically finite polynomials, the topological mating is topologically conjugate to
the corresponding rational map. Then the idea was further developed by Cui, Peng, and Tan
[CPT12] to a form that can be applied for not only matings but also general post-critically
finite branched coverings and rational maps. We slightly further generalize the theorem
of Cui–Peng–Tan by applying Bartholdi and Dudko’s recent work on Böttcher expanding
maps [BD18].

The next theorem is a generalization of [CPT12, Theorem 1.1, Corollary 1.2] replacing
rational maps by Böttcher expanding maps.

THEOREM 5.9. (Semi-conjugacies to Böttcher expanding maps) Let f : (S2, A) ý be a
post-critically finite branched covering which is locally rigid near critical cycles. Suppose f
is combinatorially equivalent to a Böttcher expanding map F : (S2, B) ý. Let FF and JF

denote the Fatou and the Julia sets of F, respectively. Then there exists a semi-conjugacy h :
(S2, A) Ñ (S2, B) from f to F, that is, h ˝ f = F ˝ h, such that the following properties
are satisfied.
• h´1(w) is a singleton for w P FF and a full continuum for w P JF .
• For x, y P S2 with F(x) = y, the set h´1(x) is a connected component of

f ´1(h´1(y)). Moreover, the degree of the map f : h´1(x) Ñ h´1(y) is equal to
degx(F ); more precisely, for every w P h´1(y), we haveÿ

zPh´1(x)Xf ´1(w)

degz f = degx(F ).

• If E Ă S2 is a continuum, then h´1(E) is a continuum.
• f (h´1(E)) = h´1(F (E)) for every E Ă S2.
• f ´1( pE) = {f ´1(E) for every E Ă S2, where pE := h´1(h(E)).

Proof. In [CPT12], the complex structure of the Riemann sphere was used for two
purposes: (i) the conformal metric is expanding; and (ii) there are Böttcher coordinates
near critical cycles. Since Böttcher expanding maps also have these two properties, the
proof in [CPT12] still works for this setting. For example, we have the following.
• In [CPT12], they use post-critically finite branched coverings on the Riemann sphere

Ĉ that are holomorphic near critical cycles. Given a post-critically finite branched
covering (on the topological sphere) which is locally rigid near critical cycles, we
may define a holomorphic structure on the sphere so that the branched covering is
holomorphic near critical cycles.
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• The orbifold metric in [CPT12, §2] can be replaced by the Riemannian orbifold
metric in [BD18]. Then we still have the expansion property of homotopic lengths of
paths.

Definition 5.10. (Homotopic length) Let (X, μ) be a metric space and γ be a curve joining
x to y. Then the homotopic length lμ([γ ]) is the infimum of the lengths of rectifiable curves
that joins x to y and homotopic to γ relative to tx, yu.

LEMMA 5.11. Let f : (S2, A) ý be a post-critically finite branched covering of degree
d ě 2 which is not doubly covered by a torus endomorphism. Suppose ord : A Ñ [2, 8]Z
is an orbisphere structure and X is a basis for the biset B(f ). Suppose that f does
not have a Levy cycle such that there exists a semi-conjugacy h : (S2, A) Ñ (S2, B)

where F : (S2, B) ý is a Böttcher expanding map, expanding about a metric μ, which
is combinatorially equivalent to f. Then there exists C ą 0 such that lμ([h(w)]) ă C for
every n ą 0 and w P Xbn. Here w is considered as a curve joining the base point p of
π1(X, A, ord) to a point in the preimage f ´n(p), as described in §5.1.

Proof. Since the metric μ blows up near marked points of infinite order, we should take
a compact subset away from the points of infinite order. Let B8 = h(A8), where A8 is
the subset of A consisting of elements having infinite order. There exists a small neigh-
borhood U of B8 such that for M := S2zU and M 1 = f ´1(M), we have M 1 Ă M and
f : M 1 Ñ M is a branched covering which has a uniform expanding constant λ ą 1 in the
following sense: for every curve γ Ă M and any of its lifting γ 1 through f, we have

λ ¨ lμ([γ 1]) ă lμ([γ ]).

Let X = tδ1, δ2, . . . , δdu, where each δi joins the base point p of π1(S
2, A, ord) to one

of the d preimages f ´1(p). Define D ą 0 by

D = max
1ďjďd

lμ([h(δj )]).

Let w = δi1i2...in P Xbn, where il P t1, 2, . . . , du. Then w is the concatenation of δi1 , a
lift of δi2 through f, a lift of δi3 through f 2, and so one. Every curve δi and its any lifting
can be contained in M up to homotopy. Hence, we have

lμ([h(w)] ă D ¨
(

1 + 1
λ

+ 1
λ2 + ¨ ¨ ¨

)
= D ¨ λ

λ ´ 1
.

5.3. Homotopically infinite non-expanded curves and Levy cycles

Definition 5.12. (Homotopically infinite curves) Let (S2, A, ord) be a hyperbolic orbi-
sphere and p : D Ñ S2zA8 is the orbifold universal covering map. A closed curve γ :
[0, 1] Ñ S2zA is homotopically infinite with respect to ord if for a connected component rγ
of p´1(γ ), both ends of rγ have a limit point on the boundary BD. A half-infinite curve γ :
[0, 8) Ñ S2zA (respectively bi-infinite curve γ : (´8, 8) Ñ S2zA) is homotopically
infinte with respect to ord if the end (respectively both ends) of its lift rγ has a limit point.

The next proposition is immediate from standard properties of the hyperbolic geometry.
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PROPOSITION 5.13. Let (S2, A, ord) be a hyperbolic orbisphere. A closed curve γ is
homotopically infinite if and only if γ is neither homotopically trivial in S2zA nor
homotopic relative to A to some iterate of the peripheral loop of a P A with ord(a) ă 8.

Each of the following two propositions is each direction of the equivalence in
Theorem 5.1. We split them because the ideas of the proofs are quite different.

PROPOSITION 5.14. Let R be a finite subdivision rule and A Ă Vert(SR) be a set
of marked points. Suppose that the subdivision map f : R(SR) Ñ SR is not doubly
covered by a torus endomorphism. If f : (S2, A) ý has a Levy cycle, then there is a
genealogical sequence of non-expanded closed curves tγ n : I Ñ Rn(SR)uně0 that are
recurrent and homotopically infinite with respect to any hyperbolic orbisphere structure
ord : A Ñ [0, 8]Z. Moreover, by iterating traveling along the closed curves, we may
assume that each γ n is a bi-infinite curve.

Proof. Assume there exists a Levy cycle, that is, there are an integer p ą 0 and an essential
simple closed curve γ of (S2, A) such that a connected component γ 1 of f ´p(γ ) is
isotopic to γ relative to A and deg(f p|γ 1) = 1. We may assume γ is SR-taut so that γ 1 is
Rp(SR)-taut.

CLAIM. We may assume that γ and γ 1 are SR-combinatorially equivalent.

Proof of Claim. For every k ě 1, f ´kp(γ ) has a connected component γkp that is isotopic
to γ relative to A and deg(f kp|γkp

) = 1. For every k ě 1, it follows from Proposition
2.6 that l0(γkp) ď lkp(γkp) and from deg(f kp|γkp

) = 1 that lkp(γkp) = l0(γ ), where ln(¨)
means lRn(SR)(¨). By Lemma 2.4, there exist k1 ą k2 ą 0 such that γk1p and γk2p are
combinatorially equivalent relative to SR. Then we can replace γ by γk2p and p by
(k1 ´ k2)p.

It follows from the claim that we can parameterize γ and γ 1 such that γ 1 : I Ñ Rp(SR)

is a level-p non-expanded closed curve and γ : I Ñ SR is the level-0 parent of γ 1 for
I = [0, l] for some l P Zą0. Being essential relative to A, γ and γ 1 are, in particular,
homotopically infinite relative to any hyperbolic orbisphere structure.

Let γ 0 := γ and γ p := γ 1. By lifting an isotopy between γ 0 and γ p through f p, we
have an isotopy from γ p to a level-2p non-expanded curve γ 2p : I Ñ R2p(SR) such that
γ p is the level-p parent of γ 2p. This way, we obtain a sequence of level-kp non-expanded
curves tγ kp : I Ñ Rkp(SR)ukě0 such that: (1) γ kp is the level-kp parent of γ (k+1)p for
every k ě 0; and (2) f p : γ (k+1)p Ñ γ kp is a homeomorphism. If we identify γ p with γ 0

via an isotopy preserving the 1-skeleton of SR, the map f p : γ p Ñ γ 0 can be considered
as a rotation of a circle of length l by an integer. Hence, there exists k0 ą 0 such that for
every n ą 0, the level-nk0p bone γ k0np([i, i + 1]) is mapped to γ 0([i, i + 1]) by f k0np,
which implies that γ kp is recurrent for every k ě 0. For every m ą 0 that is not a multiple
of p, we define γ m as the level-m parent of γ kp for some k ą 0 with kp ą m, which is well
defined up to Rm(SR)-combinatorial equivalence.

Since each γ m is homotopic to an essential simple closed curve of (S2, A), it is
homotopically infinite with respect to any hyperbolic orbisphere structure.
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PROPOSITION 5.15. Let R be a finite subdivision rule and A Ă Vert(SR) be a set of
marked points. Suppose that the subdivision map f : R(SR) Ñ SR is not doubly covered
by a torus endomorphism. Let ord : A Ñ [2, 8]Z be a hyperbolic orbisphere structure. If
there is a genealogical sequence of non-expanded bi-infinite curves tγ n : (´8, 8) Ñ
Rn(SR)uně0 that are recurrent and homotopically infinite with respect to ord, then
f : (S2, A) ý has a Levy cycle.

Proof. Suppose that f : (S2, A) ý does not have a Levy cycle. Then for any basis X
for the biset B(f ), there is a nucleus N , which is a finite set. For every k ą 0, we use
the sequence of finite restrictions tγ n|[0,k]uně0 to obtain an element hk P N such that
}hk} Ñ 8. Here, } ¨ } is a distance on π1(S

2, A, ord) with respect to a generating set,
which does not need to be specified. Then the nucleus N has infinitely many elements,
which contradicts the assumption that the biset is contracting.

Recall that we use p for the base point of π1(S
2, A, ord), each element of a basis X for

B(f ) is a curve from p to one of its f -preimages f ´1(p), and an element w P Xbn is a
concatenation of curves connecting an f i-preimage to an f i+1-preimage that are liftings
of elements in X.

Step 1: Construction of hk . Fix k ą 0. There is an infinite sequence n1 ă n2 ă ¨ ¨ ¨ , which
depends on k, so that γ ni ([0, k]) consists of the bones of the bands of the same types,
that is, there exists level-0 bands b0, b1, . . . bk´1 (possibly repeated) such that for every
j P [0, k ´ 1], γ ni ([j , j + 1]) is the bone of a level-ni band of type bj , which is
independent of i ą 0.

For every level-0 edge e, we fix a point me P int(e) and call it the midpoint of e. We
assume that a bone of a level-0 band is chosen in the homotopy class in such a way that
their endpoints are the midpoints of level-0 edges. For every level-0 edge e, we also choose
a path δe from p to me. Then, for each level-0 band b = (t ; e1, e2), we can assign an
element

gbi
:= δe1 ¨ bone(bi) ¨ δe2 P π1(S

2, A, ord),

where the overline ¨ means the reverse of the orientation of a curve and bone(bi) means
the bone of a band bi .

For g P π1(S, A, ord), we define N(g) Ă π1(S, A, ord) by the collection of elements h
with the following property: for infinitely many n ą 0, there exist v, w P Xbn such that
h ¨ v = w ¨ g. We remark that N(g) Ă N .

CLAIM. There exists C ą 0, independent of k, such that N(gk := gb1 ¨ ¨ ¨ gbk
) contains at

least one element hk with d(hk , gk) ă C.

Proof of Claim. Recall that for every i ą 0 and j P [0, k ´ 1]Z, γ ni ([j , j + 1]) is the
bone of a level-ni band of type bj , which is independent of i. Let e and e1 be level-0 edges
such that their midpoints me and me1 are the endpoints of γ 0([0, k]).

Let wni
P Xbni , which will be specified soon. Let vni

P Xbni and hk,ni
P

π1(S
2, A, ord) be defined by

hk,ni
¨ vni

= wni
¨ gk .
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FIGURE 6. The left figure is gk drawn in SR, and the right figure is hk,ni
drawn in Rni (SR). The bold line

segments are portions of 1-skeletons of SR and Rni (SR).

Let g̃k be the lift of gk through f ni starting from the terminal point of wni
. Let δ̃e and

δ̃e1 be the parts of g̃k where δe and δe1 are lifted. We specify wni
as an element of Xbni

satisfying the following: the curve gk with δe and δe1 being truncated is SR-combinatorially
equivalent to g̃k with δ̃e and δ̃e1 being truncated. See Figure 6.

Then hk,ni
and gk differ by the pre- and post-composition with loops wni

¨ δ̃e ¨ δe and
δe1 ¨ δe1 ¨ vni

. We have: (1) a uniform upper bound on the homotopic length of vni
and wni

(in the projection to the Böttcher expanding map) by Lemma 5.11; (2) a uniform upper
bound on the intersection between δe and S

(1)

R ; and (3) the upper bound in item (2) is also
an upper bound of the intersection between any level-n lift δ̃e and Rn(SR)(1). Therefore,
we have }wni

¨ δ̃e ¨ δe}, }δe1 ¨ δe1 ¨ vni
} ă C{2 for some C so that d(gk , hk,ni

) ă C. Since
there are only finitely many elements of π1(S

2, A, ord) within the distance C from gk ,
there exists hk such that hk = hk,ni

for infinitely many i terms.

Step 2: Proof of }hk} Ñ 8. Let gk and hk be as defined in Step 1. Since d(hk , gk) ă C, it
suffices to show }gk} Ñ 8 as k tends to 8.

Let e0 and ek be the level-0 edges whose midpoints are the endpoints of γ 0([0, k])
so that gk = δe0 ¨ γ 0([0, k]) ¨ δek

. Then }gk} Ñ 8 follows from the condition that γ 0 is
homotopically infinite.

6. Non-expanding spines
From Theorem 5.1, we know that the existence of a Levy cycle is equivalent to the existence
of a genealogical sequence of homotopically infinite recurrent non-expanded curves. Then,
how can we detect the existence of such a sequence? The direct search for the genealogical
sequence could be more complicated than the search for the Levy cycle. One motivation
for non-expanding spines is to have a simpler object with which we can efficiently detect
the genealogical sequence.

Since recurrent non-expanded level-n curves are concatenations of level-n recurrent
bones, that is, the bones of level-n recurrent bands, it is natural to consider the union
of level-n recurrent bones. The level-n non-expanding spine Nn is, roughly speaking, the
union of level-n recurrent bones equipped with a natural train-track structure.
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FIGURE 7. Train-track structures on non-expanding spines.

6.0.1. Motivation for the use of train-tracks. Let us see Figure 7. Let t denote the
hexagonal tile and e1, e2, e3 denote three of its boundary edges. Suppose that b1 =
(t ; e1, e2) and b2 = (t ; e1, e3) are level-0 recurrent bands so that each has two level-1
recurrent subbands of type b1 and b2. Then each level-1 recurrent subband of type b1 or
b2 has two level-2 recurrent subbands of type b1 and b2. Assume that we draw the bones
of these bands. At level-0, we have two curves each of which joins e1 to e2 or e3. As a
‘collection’ of these two curves, we might consider a tripod whose leaves are on e1, e2,
and e3. However, the tripod contains an unintended curve which joins e2 to e3. To exclude
such a curve, we use the idea of train-tracks, which makes the curve joining e2 and e3

illegal.

6.1. Train-track. Let G be a graph and v P G be a point, which could be a vertex or a
point in the interior of an edge. A direction at v is a germ of continuous curves starting
from v. The number of directions at v is equal to the number of connected components of
Uztvu, where U is a sufficiently small neighborhood of v. Denote the set of directions at v
by Dv .

Definition 6.1. (Train-tracks and gates) Let G be a finite graph. For any vertex v of G, a
train-track structure τ on G is an assignment of an equivalence relation on Dv for each
v P Vert(G). A train-track is a finite graph G equipped with a train-track structure τ and
denoted by (G, τ). For any v P Gz Vert(G), Dv has two directions and we define each
equivalence class of Dv to have each direction. Below is a list of definitions regarding
train-tracks.
• Each equivalence class of Dv is called a gate at v.
• A train path is an oriented curve γ in G such that at every vertex v, the gate through

which γ comes to v is different from the gate through which γ goes out.

Definition 6.2. (Train-track map) Let T1 = (G1, τ1) and T2 = (G2, τ2) be train-tracks. A
train-track map φ : T1 Ñ T2 is a continuous map φ : G1 Ñ G2 that is locally injective on
each edge such that for every v P G1 and d1, d2 P Dv , φ(d1) and φ(d2) are in the same
gate at φ(v) if d1 and d2 are in the same gate.
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Definition 6.3. (Homotopy relative to (BS, X)) Let f , g : (S, BS, X) Ñ (S, BS, X) be two
continuous maps. We say that f and g are homotopic (respectively isotopic) relative to
(BS, X) if there is a homotopy (respectively isotopy) tHt : S Ñ SutP[0,1] such that:
• H0 = f and H1 = g;
• Ht |X : X Ñ X = idX : X Ñ X; and
• for every t P [0, 1], Ht sends every connected component of BSzX to itself.

Definition 6.4. (Graphs properly embedded in (S, BS, X)) Let S be a compact surface
with a finite set of marked points X. Some marked points may be on the boundary BS.
A graph G Ă S is properly embedded in (S, BS, X) if (G, BG) is properly embedded in
(S, BS) and G Ă SzX, where BG is the set of leaves of G. We say that two graphs G and
H properly embedded in (S, BS, X) are homotopic (respectively isotopic) if there is an
ambient homotopy tHt : S Ñ SutP[0,1] (respectively isotopy) relative to (BS, X) such that
H0 = idS : S Ñ S and H1(G) = H .

Definition 6.5. (Train-tracks in surfaces) Let S be a compact surface possibly with
boundary BS and a finite set of marked points X Ă S. By a train-track in (S, BS, X), we
mean a train-track (G, τ) of a graph G satisfying (1) G is properly embedded in (S, BS, X)

and (2) the train-track structure τ is compatible with the planar structure in the following
sense: for every v P Vert(G), Dv has a cyclic order defined by a local orientation of S near
v. Then every gate at v consists of edges that are consecutive with respect to the cycle
order. We note that the consecutiveness is independent of the choice of local orientations,
and thus the definition also works for non-orientable surface S.

Remark 6.6. Train-tracks are commonly used to describe complicated curves or foliations.
For these purposes, train-tracks are often assumed to have additional properties, such as
that every vertex v has degree 3, the number of gates at each vertex is always two, and the
complement of a train-track is hyperbolic, all of which are not assumed in this article. See
[PH92].

Definition 6.7. (Carrying between train-tracks) Let S be a compact surface with a finite
set of marked points X Ă S. Let T1 and T2 be train-tracks in (S, BS, X). We say that T2

carries T1 if there is a train-track map φ : T1 Ñ T2 such that φ can be extended to a map
φ : S Ñ S that is ambient homotopic relative to (BS, X) to the identity map. In particular,
considering a possibly non-closed curve γ : I Ñ S properly embedded in (S, BS, X) as a
train-track with no vertex, we can say that a train-track T carries γ if γ is contained in S
up to homotopy in (S, BS, X).

Definition 6.8. (Homotopically infinite train-tracks) Let (S2, A, ord) be a hyperbolic
orbisphere. A train-track T in (S2, A) is homotopically infinite if T carries a homotopically
infinite closed curve with respect to the orbisphere structure ord.

6.2. Decomposition of graph with crossing condition on the unit disk. In this subsection,
we investigate a graph theoretic property which will be used to define non-expanding
spines.
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Let us consider a unit disk in the Euclidean plane and its boundary circle. A chord is an
Euclidean line segment joining to a point on the circle. We say that two chords intersect if
they intersect in the interior of the disk. Similarly, for two sets of chords S1 and S2, we say
that S1 and S2 intersect if there exist chords s1 P S1 and s2 P S2 so that s1 and s2 intersect.

Fix n ě 2 points on the boundary circle C of a unit disk. There are n(n ´ 1){2 different
chords joining the n points. Let S be a collection of these chords. The collection S can
also be considered as a graph. We abuse notation and use S to indicate the graph also. A
decomposition of a graph G is a collection of subgraphs G1, G2, . . . , Gk which gives a
partition on the set of edges.

LEMMA 6.9. Let v1, v2, . . . , vn be n ě 2 points on a circle. Let S be a collection of chords
joining pairs of vi terms. Suppose S satisfies the following crossing condition.

(Crossing condition) If two chords s, s1 P S are intersecting, then all the six chords
joining any pairs of four endpoints of s, s1 are also contained in S.

Then, as a graph, S is decomposed into mutually non-intersecting (1) complete graphs with
at least four vertices and (2) chords, which can also be considered as complete graphs with
two vertices.

Proof. The condition implies that if S contains two intersecting chords, then it contains
the complete graph of the four vertices. Suppose that a subset S1 of S forms a complete
graph. We first show that if there is a chord s in SzS1 that intersects S1, then S also contains
the complete graph generated by S1 Y tsu. Denote by v and w the endpoints of s. Since
s intersects S1, there exists s1 that intersects s. Let v1 and w1 denote the endpoints of s1.
For any vertex u1 of S1, as a graph, which is not v or w, either u1v1 or u1w1 intersects
s. In particular, by the crossing condition, the chords u1v and u1w are contained in S.
Since u1 was taken arbitrarily, the complete graph with vertex set Vert(S1) Y tv, wu is also
contained in S.

Then every complete graph in S can be extended until when it does not intersect other
chords in S, which proves the conclusion.

PROPOSITION 6.10. Let t be an n-gon for n ě 2. For a curve γ properly embedded in
(t , Bt , Vert(t)), we call the boundary edges of t that contain the endpoints of γ the side
edges of γ . Let S be a collection of homotopy classes of properly embedded curves joining
different boundary edges. Suppose that S satisfies the following crossing condition.

(Crossing condition) If x[α], [β]y = 1, then S contains the six homotopy classes of
curves connecting any pairs of the four side edges of α and β.

Then there is a train-track T properly embedded in (t , Bt , Vert(t)) such that for any curve
γ properly embedded in (t , Bt , Vert(t)), γ is carried by T if and only if [γ ] P S.

Proof. We may consider t as a closed disk. We also choose a point on each boundary edge
and take a representative of a homotopy class of curves properly embedded in t as a chord
joining the chosen points on the edges. Then S can be considered as a graph, see Figure 8.
By Lemma 6.9, S is decomposed into complete graphs (with at least four vertices) and
curves that are mutually non-intersecting.
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FIGURE 8. Transformation from a graph to a train-track. The dots on the boundary are vertices of a polygon. The
graph contains two complete graphs with more than three vertices. These graphs are transformed into star-like

trees of degree 4 and 5, respectively. We ‘zip-up’ at boundary points to define a train-track structure.

Suppose that S1 Ă S forms a complete graph with k ě 4 vertices in the decomposition.
Then we transform S1 into a star-like tree T 1 whose leaves are the k vertices of S1. We
transform all the complete graphs in the decomposition of S to star-like trees as above, see
the middle figure in Figure 8. Then we have a graph that is the union of some star-like trees
and curves which can intersect only in the boundary of t.

We define a train-track as follows.
(1) Let v be the center of a star-like tree. We define gates at v in such a way that each

gate has only one edge.
(2) At each intersection in Bt , we zip the intersecting curves up a little bit as in the right

figure in Figure 8. More precisely, assume that k edges, say e1, e2, . . . ek intersect at
a boundary point p. The transformation generates one vertex v of degree d + 1; the
vertex v is incident to the (deformed) k edges e1, e2, . . . , ek , and to one new edge, say
e, which joins p to v. There are two gates at v: tthe direction along ei | i P [1, k]Zu
and tthe direction along eu.

It is immediate from the construction that the train-track satisfies the desired property.

6.3. Non-expanding spines of tiles. Let t be a level-0 tile of a finite subdivision rule
R and n ě 0. For simplicity, we assume that t is homeomorphic to a closed 2-disc, that
is, boundary edges are not identified. We will define the level-n non-expanding spine of
t as a train-track properly embedded in t which is roughly speaking the union of level-n
recurrent bones in t. If boundary edges are identified, we first define a train-track in the
closed 2-disc t, which is the domain of the characteristic map φt : t Ñ t , and then define
the non-expanding spine as the image of the train-track by φt .

For a level-0 tile t and a level-n band bn = (tn; en
1 , en

2), we say that bn is a subband
of t if tn Ă t and en

1 , en
2 Ă Bt . We say that two level-n subbands bn

0 and bn
1 of a level-0

tile t intersect if their bones have non-zero intersection number, which must be one, of
the homotopy classes of curves properly embedded in (t , Rn(Bt), Vert(Rn(Bt))). It is
immediate that if two level-n subbands bn

0 and bn
1 intersect, then they are bands of the

same level-n subtile of t.
The next lemma, in particular the property (3), implies that the set of level-n recurrent

bones of t satisfies the crossing condition in the statement of Lemma 6.9 or Proposition
6.10.
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LEMMA 6.11. Let t be a level-0 tile of a finite subdivision rule. For a level-0 recurrent
band b0 = (t ; e0,1, e0,2), let A0 := tbi = (t ; ei,1, ei,2) | i = 1, . . . , ku be the collection of
level-0 recurrent bands that intersect b0. Suppose that A0 is non-empty. Then we have the
following properties.
(1) For any n ě 0 and i P [0, k]Z, there is a level-n subtile tn of t such that each bi has

a unique level-n subband bn
i = (tn; en

i,1, en
i,2), which is also recurrent. That is, in the

directed graph B of bands, [bi] belongs to only one cycle, say C, and there is no
directed path from C to another cycle.

(2) There exists p ą 0 such that b
np
i is of type bi for every i P [0, k]Z and any n ą 0.

Moreover, p can be chosen as the common period of the cycles in B containing [bi]
terms.

(3) For every pair (i, j), (i1, j 1) P [0, k]Z ˆ t1, 2u with ei,j ‰ ei1,j 1 , the band
(tn; en

i,j , en
i1,j 1) is a level-n recurrent subband of t for every n ě 0.

Proof. For any n ą 0, every level-n child of b0 intersects any level-n child of any bi .
Hence, all the level-n children of b0, b1, . . . , bk are bands of the same level-n subtile, say
tn, of t.

For n ą 0, we define a set An as the collection of level-n recurrent subbands of the
level-0 bands in A0. Since every recurrent level-n band has at least one recurrent child at
each higher level, we have a sequence of surjections A0 Ð A1 Ð ¨ ¨ ¨ which map recurrent
subbands to their parents.

To show the uniqueness in property (1), it suffices to show that the surjections (An+1 Ñ
An) are actually bijections. Since b0 is recurrent, for infinitely many n0 ą 0, the level-0
band b0 has a level-n0 recurrent subband b

n0
0 of type b0. In particular, tn0 is of type t.

Then the types of level-n0 subbands of bi for i P [1, k]Z injectively correspond to bj for
j P [1, k]Z. This implies that A0 Ð ¨ ¨ ¨ Ð An0 is a sequence of bijections. Since there are
infinitely many such n0 terms, A0 Ð A1 Ð ¨ ¨ ¨ is a sequence of bijections also.

(2) Let p be the least positive integer satisfying that b
p

0 = (tp; e
p

0,1, e
p

0,2) is of type b0 =
(t ; e0,1, e0,2). Such a p exists because b0 is recurrent. We claim that b

np
i is of type bi for

every n ě 1. Here is a sketch of the proof and we leave the details to the reader. Since tiles
and bands are objects embedded in the sphere, we can define an order on An according to
how close bn

i is to bn
0 . The order is preserved by the bijections Am+1 Ñ Am we discussed in

property (1), which implies b
np
i is of type bi for every n ą 0 and i P [1, k]Z. By exchanging

the roles of b0 with bi for any i P [1, k]Z, we obtain that p is the common period of the
cycles in B containing [bi] terms.

(3) Let p ą 0 be the number determined in property (2). It follows from property
(2) that for every n ą 0 and (i, j) P [0, k]Z ˆ t1, 2u, the level-np subtile tnp is of type
t and its boundary edge e

np
i,j is a subedge of ei,j and of type ei,j . Hence, for every

pair (i, j), (i1, j 1) P [0, k] ˆ t1, 2u with ei,j ‰ ei1,j 1 , the level-0 band (t ; ei,j , ei1,j 1) has
a level-np subband (tnp, e

np
i,j , e

np

i1,j 1) which is of type (t ; ei,j , ei1,j 1). Then (tn, en
i,j , en

i1,j 1) is
recurrent for every n ě 1.

PROPOSITION 6.12. Let t be a level-0 tile of a finite subdivision rule R. Then
there is a train-track T n(t) whose underlying graph is properly embedded in
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(t , Rn(Bt), Vert(Rn(Bt))) such that any curve γ properly embedded in (t , Rn(Bt),
Vert(Rn(Bt))) is carried by T n(t) if and only if γ is the bone of a level-n recurrent
subband of t.

Proof. We first assume that the tile t is a closed disk, that is, its boundary edges are not
identified. It follows from Lemma 6.11(3) that the collection of spines Bn(t) satisfies
the crossing condition in Proposition 6.10. Hence, we have the desired train-tack by
Proposition 6.10.

If t is not a closed disk, we can use Proposition 6.10 for its domain t, which is a closed
disk, of the characteristic map φt : t Ñ t to obtain a train-track T n(t) in t. Then we define
T n(t) as the φt -image of T n(t). If two level-n edges that are identified by φt have boundary
points of T n(t), then we also identify the boundary points when we define T n(t).

Definition 6.13. (Non-expanding spine of a tile) Let t be a level-0 tile of a finite subdivision
rule R. The level-n train-track of t, denoted by T n(t), is a train-track properly embedded
in (t , Rn(t), Vert(Rn(t))) defined in Proposition 6.12. Simply, T n(t) defined is by the
following procedure:
(1) draw the bones of level-n recurrent subbands of t;
(2) merge intersecting bones, which form complete graphs by Lemma 6.9, to a star-like

trees;
(3) zip-up bones meeting at a boundary point of t as in Figure 8.

Definition 6.14. (Non-expanding spines) Let R be a finite subdivision rule. For every
n ě 0, the level-n non-expanding spine Nn of R is a train-track that is defined by the
union of level-n non-expanding spines T n(t) of all the level-0 tiles t. When two tiles t and
t 1 have the common level-n edge en such that both T n(t) and T n(t 1) have boundary points
on en, then we identify the boundary points when we take the union to define Nn.

Remark 6.15. From the definition, we may consider bones of level-n recurrent bands as
curves contained in the level-n non-expanding spine Nn or non-expanding spine T n(t) of
tiles t. We will in particular consider curves supported in Nn as a concatenation of bones
of bands.

Definition 6.16. (Essential non-expanding spines) Let R be a finite subdivision rule and
f : R(SR) Ñ SR be its subdivision map. Let A Ă Vert(SR) be a set of marked points. We
say that the level-n non-expanding spine Nn of R is essential relative to A if it contains
(more precisely carries as a train-track) a closed curve that is homotopic relative to A
neither to a point nor to some iterate of a peripheral loop of a Julia point in A.

Example 6.17. See Figure 9. The upper two squares are level-0 tiles (or tile types). One tile
is shaded and the other is not shaded. There are four level-0 edges (or edge types) A, B, C,
and D. The lower two squares are subdivisions at level-1. The bi-recurrent components of
the level-0 and level-1 non-expanding spine are both homotopic to a peripheral loop of
a Julia vertex. By Theorem 6.21, the subdivision map does not have a Levy cycle. Later,
in Example 8.7, we will show that the subdivision map also does not have a Thurston
obstruction.
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FIGURE 9. An example of level-0, 1 non-expanding spines, which are non-essential.

Definition 6.18. (Nested sequence of non-expanding spines) For any n ą m ě 0, there is
a natural map φn

m : Nn Ñ Nm sending every level-n recurrent bone to its level-m parent.
Since Rn(SR) is a subdivision of Rm(SR), we may consider Nn and Nm as train-tracks in
the same complex Rm(SR). Then the map φn

m is ambient homotopic to the the identity map
relative to the 1-skeleton Rm(SR)(1) of the level-m subdivision complex, that is, there is an
extension φn

m : Rm(SR) Ñ Rm(SR) that sends, possibly non-homeomorphically, every
edge to the same edge and fixes vertices point-wisely. It is straightforward from definitions
that the map φn

m : Nn Ñ Nm is a train-track map. Then we have a sequence of train-track
maps

N0 φ1
0ÐÝ N1 φ2

1ÐÝ N2 φ3
2ÐÝ ¨ ¨ ¨ .

We call this sequence the nested sequence of non-expanding spines.

For example, in Figure 7, each tripod is mapped to a curve by φ1
0 and φ2

1 .

PROPOSITION 6.19. Let R be a finite subdivision rule and Nn be the level-n
non-expanding spine of R. For any n ą m, if Nn is essential relative to A, then Nm

is also essential relative to A.

Proof. Since Nn is essential, there is a close curve γ supported in Nn such that γ is
neither homotopically trivial nor homotopic to some iterates of the peripheral loop of a
Julia point in A. Then φn

m(γ ) is a closed curve supported in Nm with the same property.
Then Nm is essential.
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6.3.1. Restriction of the ranges of non-expanded recurrent curves to Nn. Let R be a
finite subdivision rule. Let A Ă Vert(SR) be a set of marked points. It is straightforward
from Proposition 6.12 that a closed curve γ : I Ñ S2zA is homotopic relative to A to a
level-n recurrent non-expanded curve if and only if it is carried by Nn in (S2, A). Hence,
when considering a level-n non-expanded recurrent curve γ : I Ñ Rn(SR), we can restrict
the range to Nn Ă Rn(SR) and think of γ as a curve supported in Nn.

PROPOSITION 6.20. Let R be a finite subdivision rule and f : (S2, A) ý be the subdi-
vision map where A Ă Vert(SR) is a set of marked points. Let ord : A Ñ [2, 8]Z be a
hyperbolic orbisphere structure of f : (S2, A) ý. Then the level-n non-expanding spine
Nn is homotopically infinite for every n ě 0 if and only if there is a genealogical sequence
of level-n homotopically infinite non-expanded recurrent curves tγ n : (´8, 8) Ñ Nn Ă
Rn(SR)uně0.

Proof. If Nn is not homotopically infinite, then every closed curve is homotopically finite,
that is, either trivial or some iterate of the peripheral loop of a P A with ord(a) ă 8. Since
Nn consists of finitely many bones, any infinite curve in Nn is approximated by closed
curves. Then any infinite curve supported in Nn also cannot be homotopically infinite, so
the desired genealogical sequence of curves does not exist.

Suppose that Nn is homotopically infinite for every n ě 0. We are going to define a
set Cn of homotopically infinite non-expanded recurrent curves supported in Nn so that
the maps tφn

m : Cn Ñ Cm | n ą m ě 0u send any level-n non-expanded recurrent curves
to their level-m parents. We will also: (1) define a metric dn on each Cn for which the
continuity of φn

m easily follows and (2) show that every Cn is compact. Then the inverse
limit of tφn

m : Cn Ñ Cm | n ą m ě 0u is non-empty whose every element yields a desired
genealogical sequence of homotopically infinite non-expanded recurrent curves.

Recall that a level-n non-expanded curve α : (´8, 8) Ñ Rn(SR) is defined to satisfy
that for any n P Z, α([n, n + 1]) is a level-n bone. Let us define the set Cn as the collection
of (parameterized) level-n homotopically infinite non-expanded recurrent curves γ n :
(´8, 8) Ñ Nn up to reparameterization such that γ n does not contain a homotopically
finite closed curve, which is a closed curve whose free homotopy class corresponds to
the conjugate class of a torsion element of π1(S

2, A, ord). Each Cn is non-empty because
Nn is homotopically infinite. We define a metric dn on Cn by dn(γ

n, δn) = 2´m, where
γ n, δn P Cn and m ą 0 is the minimal integer satisfying γ n([´m, m]) ‰ δn([´m, m]) as
unions of level-n bones. It is easy to show that for αn, βn, γ n P Cn,

dn(α
n, γ n) = max(dn(α

n, βn), dn(β
n, γ n)),

so that dn is indeed a metric. It is immediate from the definition that φn
m : (Cn, dn) Ñ

(Cm, dm) is distance non-increasing. Hence, φn
m is uniformly continuous.

Lastly, let us show that (Cn, dn) is sequentially compact. Suppose that tγ n
i P Cnuiě1

is any sequence in Cn. Recall that γ n
i ([0, 1]) is a bone of level-n band so that, in

particular, γ n
i (0) is a point in Nn X Rn(SR)(1), which is a finite set. By dropping to

a subsequence, we may assume that there exists x P Nn such that γ n
i (0) = x for any

i ą 0. Let p : D Ñ S2zA8 be the orbifold universal covering map of (S2, A, ord), where

https://doi.org/10.1017/etds.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.115


2684 I. Park

A8 = ta P A | ord(a) = 8u. Choose rx P p´1(x). For every i ą 0, there exists a unique
lifting rγ n

i : (´8, 8) Ñ p´1(Nn) with rγ n
i (0) = rx. Define S0 := trγ n

i uiě1.
Fix r ą 0. Let B(rx, r) Ă D denote the hyperbolic ball of radius r ą 0 with the center

at rx. For any i ą 0 and some ki , li P Zě0, we say that rγ n
i ([´ki , li]) is the longest

initial subcurve of rγ n
i staying in B(rx, r) if rγ n

i ([´ki , li]) Ă B(rx, r) and rγ n
i (´ki ´ 1),rγ n

i (li + 1) R B(rx, r). The intersection B(rx, r) X p´1(Nn) has at most finitely many edges
of p´1(Nn). Since every element of Cn does not contain a homotopically finite closed
curve, any rγ n

i does not contain a closed curve. It follows that there exists m1 ă m2 ă ¨ ¨ ¨
such that every element of the subsequence trγ n

mi
uią0 of S0 has the same longest initial

subcurve staying in B(rx, r).
Take a sequence 0 ă r1 ă r2 ă ¨ ¨ ¨ with ri Ñ 8. For any m ą 0, define Sm as a

subsequence of Sm´1 whose elements have the same longest initial subcurve staying in
B(rx, rm). By taking the diagonal of a sequence of subsequences S0, S1, S2, . . ., we have
a subsequence trγ n

mi
u of S0 with the following property. There exist two strictly increasing

sequences of positive integers taiuiě0 and tbiuiě0 such that:
(1) rγ n

mi
([´ai , bi]) is the longest initial subcurve staying in B(rx, ri) and

(2) rγ n
mj

([´ai , bi]) = rγ n
mi

([´ai , bi]) for any j ą i, that is, the initial subcurves are
accumulated.

We define a curve rγ n : (´8, 8) Ñ p´1(Nn) by rγ n|[´ai ,bi ] = rγ n
i |[´ai ,bi ] for every i ě 1,

which is well defined by property (2). It follows from property (1) that for any i ě 1, we
have

dD(rx, rγ n(´ai ´ 1)), dD(rx, rγ n(bi + 1)) ą ri ,

where dD is the hyperbolic metric on D. Hence, γ n := p ˝ rγ n is homotopically infinite.
Then γ n

mi
Ñ γ n P Cn, which implies (Cn, dn) is sequentially compact.

THEOREM 6.21. Let R be a finite subdivision rule and f : R(SR) Ñ SR be its subdi-
vision map which is not doubly covered by a torus endomorphism. Let A Ă Vert(SR) be
a set of marked points, that is, Pf Y f (A) Ă A. Then the post-critically finite branched
covering f : (S2, A) ý has a Levy cycle if and only if the level-n non-expanding spine Nn

is essential relative to A for every n ě 0.

Proof. Let ord : A Ñ [2, 8]Z be an orbisphere structure. Any multiplication of ord by
a positive integer gives rise to another orbisphere structure with strictly decreased Euler
characteristic. Similarly, changing the order of every Fatou point in A into infinity also
yields an orbisphere structure with strictly decreased Euler characteristic, if some order
was actually changed. Hence, we always have a hyperbolic orbisphere structure ord : A Ñ
[2, 8]Z with the property that ord(a) = 8 if and only if a P A is a Fatou point. Then
a closed curve is homotopically infinite with respect to ord if and only if it is neither
homotopic relative to A to a point nor to some iterate of a peripheral loop of a Julia point
in A. Then the theorem follows from Propositions 5.14, 5.15, and 6.20.

7. Graph intersecting obstruction
7.1. Graph intersecting obstructions. Suppose that f : (S2, A) ý is a post-critically
finite branched covering. A graph G Ă S2 is forward invariant under f up to isotopy
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relative to A if there exist a subgraph H of f ´1(G) and a homeomorphism φ : S2 Ñ S2

such that φ(H) = G and φ is isotopic to the identity map relative to A. A graph G is
forward invariant under f if f (G) Ă G. A multicurve � on (S2, A) is forward invariant
under f up to isotopy relative to A if it is so as a graph. A multicurve � is backward invariant
under f up to isotopy relative to A, or f-stable, if every connected component of f ´1(γ )

for γ P � is either isotopic relative to A to an element of � or peripheral to A. When f and
A are understood, we omit ‘under f ’ and ‘relative to A’.

PROPOSITION 7.1. Let f : (S2, A) ý be a post-critically finite branched covering and G
be a graph that is forward invariant up to isotopy. Then there exists ι : (S2, A) ý which
is isotopic to idS2 : (S2, A) ý relative to A, such that G is forward invariant under a
post-critically finite branched covering g : (S2, A) ý defined by g := f ˝ ι. Especially, f
and g are combinatorially equivalent by idS2 and ι.

Proof. Let H be a subgraph of f ´1(G) isotopic to G rel Vert(G). By extending the isotopy
to S2, we have ι : (S2, A) Ñ (S2, A) such that ι(G) = H , and ι and idS2 are isotopic
relative to A. Let g := f ˝ ι. Then id ˝ g = f ˝ ι and g(G) = f (ι(G)) = f (H) Ă G.

Due to Proposition 7.1, we may consider forward invariant graphs instead of graphs
that are forward invariant up to isotopy when discussing properties of combinatorial
equivalence classes, such as Levy cycles and Thurston obstructions.

Let � be a multicurve in S2zA. The Thurston linear transformation of � is a linear map
f� : R� Ñ R� defined by

f�(γ ) =
ÿ

γ 1Ăf ´1(γ )

1
deg(f |γ 1 : γ 1 Ñ γ )

[γ 1]� ,

where γ 1 is a connected component of f ´1(γ ) and [γ 1]� is an element of � isotopic to γ 1
if it exists. If no such connected component exists, then the sum is defined to be zero. Since
f� is a non-negative matrix, it has a non-negative real eigenvalue λ(f�) that is the spectral
radius of f� . If λ(f�) ě 1, then � is a Thurston obstruction. An n ˆ n non-negative square
matrix M is irreducible if for each i, j with 1 ď i, j ď n, there exists k ě 1 such that
the (i, j)-entry of Mk is positive. An irreducible multicurve � is a multicurve whose
Thurston linear transformation f� is irreducible. An irreducible Thurston obstruction is
an irreducible multicurve that is a Thurston obstruction.

Remark 7.2. A Thurston obstruction � is usually assumed to be f -stable. For any
multicurve � with λ(f�) ‰ 0, there exists a sub-multicurve �1 Ă � such that �1 is
irreducible and λ(f�1) = λ(f�). Such �1 is determined as the multicurve of an irreducible
diagonal block Ai of the upper-triangular block form in equation (UTB-form) of f� with
λ(Ai) = λ(f�). By Lemma 7.4, �1 extends to an f -invariant multicurve �2 with λ(f�2) ě
λ(f�). Hence, we may drop the f -condition condition from Thurston’s characterization.

LEMMA 7.3. If a multicurve � is irreducible, then � is forward invariant up to isotopy.
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Proof. For a contradiction, assume there exists γ such that for every γ 1 P �, no connected
component of f ´1(γ 1) is isotopic to γ . Then f� : R� Ñ R�ztγ u Ă R� , and thus f� is not
irreducible.

LEMMA 7.4. [Tan92, Lemma 2.2] For any multicurve � of (S2, A) that is forward
invariant up to isotopy, there exists a multicurve �1 which is backward invariant up to
isotopy such that �1 Ą � and λ(f�1) ě λ(f�).

Proof. Let �0 = � and �n be the set of homotopy classes of essential curves in f ´n(�0).
By the forward invariance up to isotopy, �0 Ă �1 Ă ¨ ¨ ¨ is an increasing sequence of
multicurves. Note that |A| ´ 3 is the maximal number of non-homotopic essential simple
closed curves that can be disjointly embedded into S2zA. Hence, there exists n such that �n

is f -invariant. The inequality λ(f�1) ě λ(f�) follows from the following: for non-negative
square matrices M and N, if Mij ě Nij for every (i, j), then λ(M) ě λ(N).

THEOREM 7.5. (Arcs intersecting obstructions [PT98, Theorem 3.2]) Let f : (S2, A) ý
be a post-critically finite branched covering and G be an invariant graph such that
f |G : G Ñ G is a graph automorphism. Then every irreducible Thurston obstruction
intersecting G is a Levy cycle.

We generalize it to a case when G is an f -invariant graph with htop(f |G) = 0.

THEOREM 7.6. (Graph intersecting obstruction) Let f : (S2, A) ý be a post-critically
finite branched covering and G be a forward invariant graph such that htop(f |G) = 0.
Then every irreducible Thurston obstruction intersecting G is a Levy cycle.

Remark 7.7. The graphs in Theorems 7.5 and 7.6 are possibly disconnected. Moreover,
the same statement works for graphs which are forward invariant up to isotopy by
Proposition 7.1 with a slight modification to define htop(f |G).

An arc of (S2, A) is a curve embedded in S2 such that its interior is embedded in S2zA
and its endpoints are in A. A geometric intersection number γ ¨ γ 1 between curves (arcs
and simple closed curves) is defined as the minimal number of intersection points in their
isotopy classes relative to A.

For a multicurve �, the unweighted Thurston transformation f#,� : R� Ñ R� is
defined by

f#,�(γ ) =
ÿ

γ 1Ăf ´1(γ )

[γ 1]� ,

where γ 1 is a connected component of f ´1(γ ) and [γ 1]� is an element of � isotopic to
γ 1 if it exists. If there is no such element, then the sum is defined to be zero. For every
(i, j), (1) 0 ď (f�)ij ď (f#,�)ij and (2) (f�)ij = 0 if and only if (f#,�)ij = 0. So f#,� is
irreducible if and only if f� is irreducible.

Proof of Theorem 7.6. Let Edge(G) = te1, e2, . . . , enu. For any simple closed curve γ Ă
S2zA, define
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(γ )G =

⎛
⎜⎜⎜⎝

#tγ X e1u
#tγ X e2u

...
#tγ X enu

⎞
⎟⎟⎟⎠ , [γ ]G =

⎛
⎜⎜⎜⎝

γ ¨ e1

γ ¨ e2
...

γ ¨ en

⎞
⎟⎟⎟⎠ ,

where γ ¨ ei means the geometric intersection number of γ and ei relative to A. The
( )G and [ ]G are linearly extended to weighted multicurves. Let TG be the incidence
matrix of f |G. Let � = tγ1, γ2, . . . , γmu be an irreducible Thurston obstruction. From
#tf ´k(γi) X ej u ě f ´k(γi) ¨ ej , for every k ě 1, we have

TG
k ¨ (γi)G = (f ´k(γi))G ě [f ´k(γi)]G ě

mÿ
j=1

(f#,�
k)ij [γj ]G. (2)

The third term counts the intersection of G with all connected components of f ´k(γi), but
the last term counts the intersection of G with connected components of f ´k(γi) isotopic
relative to A to some connected components of �.

It follows from Proposition 3.9 that entries of TG
k grow at most polynomially fast, so

(f k
#,�)ij grows at most polynomially fast too. Since f#,� is an irreducible non-negative

integer matrix, f#,� is a permutation by Lemma 3.8. Recall that: (1) 0 ď (f�)ij ď (f#,�)ij

and (2) (f�)ij ą 0 if and only if (f#,�)ij ą 0. Hence, the only way to have λ(f�) ě 1 is
f#,� = f� . Then � is a Levy cycle.

7.2. Application in the mating of polynomials

7.2.1. Formal mating. Let f and g be post-critically finite polynomials of degree d.
Consider f and g as maps from the complex plane C to itself. Let C be the compactification
of C by the circle S1 each point of which corresponds to a linear direction to infinity.
Then, f and g extend to the boundary S1 as the angle d-times map. We can parameterize
S1 by θ P [0, 1]{t0 „ 1u, where θ indicates the angle of an external ray. Let us use
subscriptions ´f and ´g to distinguish two compactified complex planes on which f and
g act, respectively, such as Df := Cf Y S1

f , Dg := Cg Y S1
g , f : Df ý and g : Dg ý.

Define a sphere S2
f Zg by gluing two compactified planes Cf and Cg by the equivalence

relation θf „ ´θg for any θf P S1
f and θg P S1

g with θf = θg as numbers in [0, 1). The
dynamics of f and g also glue together to induce a dynamic f Z g : S2

f Zg ý, which is
also a post-critically finite branched self-covering of the sphere. We call f Z g : S2

f Zg ý
the formal mating of f and g.

7.2.2. Ray-equivalence class. Let f Z g : S2
f Zg ý be the formal mating of post-critically

finite polynomials f and g. External rays of f and g form a foliation on S2
f Zgz(Kf Y Kg),

where Kf Ă Cf and Kf Ă Cg are filled Julia sets. Every leaf of the foliation is called a
ray-equivalence class of the formal mating f Z g. Each ray-equivalence class consists of
external rays of f and g of the same period and preperiod.
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7.2.3. Degenerate mating. If f or g (or both) is non-hyperbolic, there could be an
obvious Levy cycle of f Z g which could be removed by collapsing some ray equivalence
classes.

Let F := f Z g. Suppose that f is not hyperbolic. Then the post-critical set Pf is in
the Julia set Jf so that each post-critical point of f is contained in a ray-equivalence class.
Suppose that there is a periodic ray-equivalence class ξ that contains two points of PF such
that ξ is topologically a tree. Then the boundary of a small neighborhood of ξ generates a
Levy cycle. Hence, we will collapse ξ to a point. To obtain a topological branched covering
on the quotient sphere, we need a little more careful construction as follows, see [Shi00]
for details.

Let Y 1 be the set of ray-equivalence classes containing at least to points in �F Y PF .
Define Y to be the set of ray-equivalence class ξ 1 containing at least one point of �F Y PF

such that Fm(ξ 1) = Fn(ξ) for some m, n ě 0 and ξ P Y . If Y ‰ H and every element of
Y is topologically a tree, then we define S12 as the quotient of S2

f Zg by collapsing every
ray-equivalence class in Y to a point. The map F induces a degree d self-map on S12 which
is not a branched covering near F ´1(ξ) for ξ P Y . However, we can take a homotopy near
F ´1(ξ) for ξ P Y to obtain a branched covering F 1 : (S12, PF 1) ý, which is called the
degenerate mating of f and g. We also denote the degenerate mating by f Z1 g : S2

f Z1g ý.
When both f and g are hyperbolic, the degenerate mating is equal to the formal mating.

Example 7.8. (f1{2 Z1 f1{4) For θ P Q X [0, 1), let fθ denote the post-critically finite
polynomial at the landing point of the external ray of angle θ in the parameter plane of
the quadratic polynomials z2 + c. Let f = f1{2 and g = f1{4. Let us denote by Rf (θ) and
Rg(θ) the external rays of f and g of angle θ .

The set Y 1 defined above consists of three ray-equivalence classes: ξ0 := Rf (0) Y
Rg(0), ξ1 := Rf (1{2) Y Rg(1{2), and ξ2 := Rf (1{4) Y Rf (3{4) Y Rg(1{4) Y Rg(3{4).
The set Y has one more ray-equivalence class ξ3 := Rf (3{8) Y Rf (7{8) Y Rg(1{8) Y
Rg(5{8) than Y 1.

Let F = f Z g be the formal mating. The boundary of a small disk neighborhood of ξ0

is a Levy cycle of period one. Let us also use ξi to indicate the collapsed points in S2
f Z1g .

The degenerate mating F 1 maps ξi to ξi´1 for i = 1, 2, 3, where ξ2 and ξ3 are critical
points of degree two.

Definition 7.9. For post-critically finite polynomials f and g of the same degree, we
say that f and g are mateable if the degenerate mating F 1 := f Z1 g : (S2

F 1 , PF 1) ý is
combinatorially equivalent to a post-critically finite rational map.

COROLLARY 7.10. Let f and g be post-critically finite hyperbolic (respectively possibly
non-hyperbolic) polynomials such that at least one of f and g has core entropy zero. Then f
and g are mateable if and only if the formal mating (respectively degenerate mating) does
not have a Levy cycle.

Proof. Assume f and g are hyperbolic and the core entropy of f is zero. Suppose the
formal mating of f and g does not have a Levy cycle but has a Thurston obstruction �. We
may assume that � is irreducible. We can think of Hubbard trees Hf and Hg of f and g as
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invariant trees in the glued sphere S2
f Zg . By Theorem 7.6, � is disjoint from Hf . Then �

yields a Thurston obstruction of the polynomial g, which is a contradiction.
Suppose that f and g may not be hyperbolic and f has core entropy zero. Let π : S2

f Zg Ñ
S2

f Z1g denote the projection from the sphere of the formal mating to the sphere of the

degenerate mating. Let Hf and Hg denote the Hubbard tress embedded in S2
f Zg , and let

H 1
f and H 1

g denote their π -image in S2
f Z1g . Some points of Hf and Hg are identified by

π , but H 1
f still has entropy zero. By the argument in the previous paragraph, if there is an

irreducible Thurston � obstruction of the degenerate mating that is not a Levy cycle, the �

is disjoint from H 1
f . For x P S2

f Z1g , if π´1(x) is not a singleton, then x P H 1
f X H 1

g . Hence,
the multicurve � can be lifted to a Thurston obstruction of the formal mating f Z g with
still being disjoint from Hf . Then � again yields a Thurston obstruction of the polynomial
g, which is a contradiction.

8. Finite subdivision rules with polynomial growth of edge subdivisions
Definition 8.1. (Polynomial growth of edge subdivisions) Let R be a finite subdivision
rule and e be a level-0 edge. The edge e has sub-exponential growth of subdivisions if

lim
nÑ8 #tlevel-n subedges of eu1{n = 1.

We say that R has sub-exponential growth of edge subdivisions if every level-0 edge has
sub-exponential growth of subdivisions. By Proposition 8.2, we can substitute the term
‘sub-exponential’ for ‘polynomial’.

Recall that we defined the directed graph of edge subdivisions E in §4.6. Also recall
that a level-0 edge e is called periodic (or also called recurrent) if the corresponding vertex
[e] in E is contained in a cycle.

PROPOSITION 8.2. A finite subdivision rule R has sub-exponential growth of edge
subdivisions if and only if the cycles in E are disjoint. In this case, for each level-0 edge e,
#tlevel-n subedges of eu grows polynomially fast as n Ñ 8.

Proof. It is straightforward from Theorem 3.6 and Proposition 4.5.

Let f (1) : R(1) Ñ R(1) be the restriction of f to the 1-skeleton R(1). Then f (1) is a
Markov map. The adjacency matrix of the directed graph of edge subdivision E coincides
with the incidence matrix of the Markov map f (1). The following proposition is immediate
from Proposition 3.9.

PROPOSITION 8.3. A finite subdivision rule R has polynomial growth of edge subdivisions
if and only if htop(f

(1)) = 0.

Let e be a level-0 periodic edge. For every n ą 0, e has at least one level-n child
(subedge) that is recurrent, see §4.7. If e has polynomial growth of subdivisions, then the
recurrent subedges are unique at each level. The same statement also works for periodic
bands.
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PROPOSITION 8.4. (Unique recurrent children) Let R be a finite subdivision rule and e
be a level-0 periodic edge with polynomial growth of subdivisions. For any n P 1, e has a
unique level-n subedge that is recurrent. For a level-0 periodic band (t ; e1, e2), if e1 and e2

have polynomial growth of subdivisions, then for any n ą 0, there exists a unique level-n
subband of (t ; e1, e2) that is recurrent.

Proof. By Proposition 8.2, there exists a unique cycle in E passing through [e]. Hence,
for any n ą 0, there is only one path of length n from [e] and supported within the cycle,
which determines a unique level-n recurrent subedge by Proposition 4.5. The uniqueness
of a recurrent subedge can also follow from Proposition 8.4.

If (t ; e1, e2) is periodic, then it has at least one level-n unique subband (tn; en
1 , en

2).
By Lemma 4.9, the level-n edges en

1 and en
2 are recurrent subedges of e1 and e2, which

are unique by the previous paragraph. Hence, the recurrent subbands are unique at each
level.

PROPOSITION 8.5. Suppose a finite subdivision rule R has polynomial growth of edge
subdivisions. Then every train-track map φn+1

n : Nn+1 Ñ Nn in the nested sequence of
non-expanding spines, defined in Definition 6.18,

N0 φ1
0ÐÝ N1 φ2

1ÐÝ N2 φ3
2ÐÝ ¨ ¨ ¨,

is a homeomorphism.

Proof. Let (t ; e1, e2) be a level-0 periodic band. It follows from Proposition 8.4 and
Lemma 4.9 that for any n, there exists a unique level-n recurrent band of (t ; e1, e2) such
that its sides are unique level-n recurrent subedges of e1 and e2. If two level-0 periodic
bands share a side e, then the level-n recurrent bands also share a side which is the level-n
recurrent subedge of e. Hence, Nn and N0 are made up of the same number of bones of
bands which are glued in the same way.

THEOREM 8.6. Let R be a finite subdivision rule with polynomial growth of edge
subdivisions and f be its subdivision map which is not doubly covered by a torus
endomorphism. Let A Ă Vert(SR) be a set of marked points, that is, f (A) Y Pf Ă A.
Then the following are equivalent.
(1) f : (S2, A) ý does not have a Levy cycle.
(2) The level-0 non-expanding spine N0 does not carry a closed curve that is neither

homotopic relative to A to a point nor to some iterate of a peripheral loop of a Julia
point in A.

(3) f : (S2, A) ý is combinatorially equivalent to a unique rational map up to conju-
gation by Möbius transformations, that is, f does not have a Thurston obstruction.

Proof. (1) ô (2) follows from Theorem 6.21 and Proposition 8.5. The equivalence with
(3) follows from Theorem 7.6 and Proposition 8.3.

Example 8.7. (Example 6.17 continued) Removing the edge type C from Figure 9, we
have a finite subdivision rule with bounded edge subdivisions. Since the subdivision map
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is unchanged, there is no Levy cycle by the discussion in Example 6.17. It follows from
Theorem 8.6 that there is also no Thurston obstruction.

9. Examples
9.1. Critically fixed rational maps. A rational map is critically fixed if every critical
point is a fixed point. It was recently shown that there is a one-to-one correspondence
between critically fixed rational functions and planar graphs. The idea started from [PT98]
and was completed in [Hlu19].

THEOREM 9.1. (Hlushchanka, Pilgrim et al) There is a one-to-one correspondence
between the holomorphic conjugacy classes of critically fixed rational functions and the
planar isotopy classes of connected planar graphs without loops.

Let G be a planar graph without loops and f be the corresponding critically fixed rational
map in Theorem 9.1. At the end of this subsection, we construct a finite rule RG such that:
(1) its subdivision map is f and (2) every edge never subdivides.

Let f be a critically fixed rational map. The Tischler graph of f is a graph embedded in
Ĉ whose edge set is the collection of fixed internal rays in the immediate attracting basins
of all critical points. It follows from [Hlu19] that the Tischler graph of any critically fixed
rational map is connected.

To construct a critically fixed rational function from a planar graph without loops, we
use the blowing-up an arc construction, which was first introduced in [PT98].

9.1.1. Blowing-up an arc. Let f : (S2, A) ý be a post-critically finite branched cov-
ering and γ be an arc fixed by f. Let D Ă S2 be an open 2-disc contained in a small
neighborhood of γ with γ Ă BD. Let γ 1 = BD ´ int(γ ). Define an orientation-preserving
continuous map g : S2zD Ñ S2 in such a way that g maps γ and γ 1 to γ , with endpoints
fixed. Define another orientation-preserving continuous map h : D Ñ S2 in a similar
way so that h maps γ and γ 1 to γ , with endpoints fixed, and maps the D to S2zγ
homeomorphically. A new branched covering fγ : (S2, A) ý is defined by fγ |S2zD =
f ˝ g and fγ |D = f ˝ h. We call fγ the f blown-up along an arc γ . Note that deg(fγ ) =
deg(f ) + 1.

Let G be a planar graph without loops and A = Vert(G). Define a post-critically
finite branched covering fG : (S2, A) ý by blowing up the identity map idS2 : (S2, A) ý
along all edges of G. The combinatorial equivalence class is independent of the order of
blowing-up. Each vertex v of G is a critical point of fG such that degv(fG) = deg(v) + 1.
If follows from [PT98, Corollary 3] that fG is combinatorially equivalent to a rational
map. Because fγ fixes γ , the branched covering fG is the identity on G. Define a finite
subdivision rule RG such that:
(1) SRG

is the CW-complex whose 1-skeleton is G;
(2) RG(SRG

) is the CW-complex whose 1-skeleton is f ´1(G); and
(3) fG : RG(SRG

) Ñ SRG
is the subdivision map of RG.
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(a) (b) (c)

FIGURE 10. Blowing-up arcs of graphs.

Remark 9.2. When an edge is blown-up, there are two choices for D, depending on which
side of γ is the disk D. However, the combinatorial equivalence class of the resulting
branched covering is independent.

Example 9.3. See Figure 10. The graph G is a triangle with one more edge attached.
Figure 10(a) indicates the disk that we use in blowing-up the edge γ . Figures 10(b) and
10(c) indicate the CW-complex structures at level-0 and 1. The shaded triangles in Figure
10(c) are mapped to the shaded triangle in Figure 10(b) under the subdivision map fG.

9.2. Face-inversion constructions and critically fixed anti-rational maps. The construc-
tion in this section was also investigated in [Gey22, LLM22] in the study of critically fixed
anti-rational maps.

Let G be a finite graph in the 2-sphere S2. The graph G defines the CW-complex
structure T with T (1) = G. A graph is k-vertex-connected or k-edge-connected if it is
not disconnected by the removal of fewer than k vertices or (open) edges, respectively. For
the characteristic map φt : t Ñ t of a closed 2-cell t, we say that the boundary vertices
or edges of t are identified if more than one vertex or edge are identified under φt . The
following are characterizations of 2- or 3-connectivity of graphs embedded in S2.
• G is 2-vertex-connected if and only if boundary vertices of every 2-cell are not

identified, that is, the boundary of every 2-cell is a Jordan curve.
• G is 2-edge-connected if and only if the boundary edges of every 2-cell are not

identified. The 2-vertex connectedness implies the 2-edge connectedness.
• G is 3-edge-connected if and only if it is 2-edge-connected and any two 2-cells do not

share more than one edge. It is also equivalent to the dual graph having no cycle of
length ď 2.

Assume G is 2-vertex-connected and deg(v) ě 3 for every v P Vert(G). Let t be
a 2-cell of T and σt be the reflection of S2 in Bt . This is possible because the
2-vertex-connectedness implies that Bt is a simple closed curve. Then σt (G) is a graph
isomorphic to G such that σt (G) X G = Bt . Define a graph H by

H =
ď

t is a 2-cell of T
σt (G).

Let T 1 be the CW-complex structure on S2 with T 1(1) = H . We define a finite subdivision
rule as follows: let SR = T and R(SR) = T 1. Define an orientation reversing branched
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self-covering f : S2 ý defined by f |t = σt |t for every 2-cell t of SR. Then f becomes a
subdivision map f : R(SR) Ñ SR. Note that every edge does not subdivide. The degree
of f is equal to the number of 2-cells of T minus one. We call R the finite subdivision
rule of face-inversion of G. Every vertex v P Vert(G) is a fixed critical point of degv(f ) =
deg(v) ´ 1.

A natural way to obtain an orientation preserving finite subdivision rule is to take the
square of the subdivision R2 and the subdivision map f 2 : R2(T ) Ñ T . We denote by
Rsq this squared orientation preserving subdivision rule. Another way is to post-compose
with an orientation-reversing automorphism of G. An automorphism τ P Aut(G) is called
orientation reversing if it extends to an orientation-reversing homeomorphism of S2. For
any orientation-reversing automorphism τ P Aut(G), we have an orientation preserving
subdivision map fτ := τ ˝ f : R(SR) Ñ SR defined on the same subdivision complexes
as R. Denote this finite subdivision rule by Rτ .

THEOREM 9.4. Let G be a 2-vertex-connected graph in S2 such that deg(v) ě 3 for
every v P Vert(G). Let R be the finite subdivision rule of the face-inversion of G and f :
R(SR) Ñ SR be its subdivision map. Let τ be any orientation-reversing automorphism of
G. Then the following are equivalent:
(1) G is 3-edge-connected;
(2) f 2 : (S2, Vert(G)) ý does not have a Levy cycle;

(2’) f 2 : (S2, Vert(G)) ý does not have a Thurston obstruction;
(3) fτ : (S2, Vert(G)) ý does not have a Levy cycle;

(3’) fτ : (S2, Vert(G)) ý does not have a Thurston obstruction.

Proof. A level-0 band b = (t ; e1, e2) is non-separating if and only if there is another
level-0 band b1 = (t 1; e1

1, e1
2) such that e1 = e1

1, e2 = e1
2, and t ‰ t 1. If such bands b and

b1 exist, the removal of two edges of G intersecting the bones of these bands disconnects
G, that is, G is not 3-edge-connected. Conversely, if G is not 3-edge-connected, then such
level-0 bands b and b1 exist. Hence, G is 3-edge-connected if and only if every level-0
band is non-separating. In the case, the level-0 non-expanding spine for Rsq is an empty
set. Then (1) ñ (2) ô (21) follows from Theorem 8.6.

Assume G is not 3-edge-connected so that there are bands b and b1 described as in
the previous paragraph. The union of bones of b and b1 is a homotopically infinite circle
contained in the level-0 non-expanding spine N0 of Rsq . Hence, (2) ñ (1) follows from
Theorem 8.6.

The equivalence (2) ô (3) follows from the fact that the subdivisions Rn(SR) and
Rn

τ (SRτ
) have the same CW-complex structure. The level-2n non-expanding spine of Rτ

is equal to the level-n non-expanding spine of Rsq for n ě 0.

Remark 9.5. The equivalence (1) ô (2) ô (21) is also shown in [Gey22, Theorem 5.8]
and [LLM22, Proposition 4.10].

Remark 9.6. For an orientation reversing branched covering f, f 2 is combinatorially
equivalent to a rational map if and only if f is combinatorially equivalent to a anti-rational
map. See [Gey22, Theorem 3.9] and [LLMM23, Proposition 6.1].
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FIGURE 11. Finite subdivision rules defined from the face-inversion of a planar graph.

Remark 9.7. Even if there exists a vertex v with deg(v) = 2, the construction is still well
defined, but v is not a critical point. Note that such a vertex v can be removed from the
vertex set without any change in the face-inversion construction.

Example 9.8. See Figure 11. Let G be the graph on the bottom and τ the reflection
along the middle horizontal line. Then the left and right subdivisions represent Rτ and
R, respectively.

To obtain an explicit formula of fτ (z) = p(z){q(z), we normalize three vertices on the
axis of τ in Figure 11 from left to right to 0, 1, and 8. Note that degz(fτ ) is 2 at z = 0 or
1, and degz(fτ ) is 3 at z = 8. Since 0 and 8 are fixed points, p(z) is a quartic polynomial
divided by z2, and q(z) is a linear polynomial. We may assume that q(z) is monic. The
conditions are that: (1) z = 1 is a critical fixed point and (2) the other two critical points
are exchanged by f (z) give rise to a system of equation about coefficients of p(z) and
q(z). Solving this numerically, we have

fτ (z) = ´1.50351z2(z2 ´ 1.15757z ´ 0.596204)

z + 0.133305
.

See Figure 12 for the Julia set.
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FIGURE 12. Julia set of z ÞÑ ´1.50351z2(z2 ´ 1.15757z ´ 0.596204){z + 0.133305.

9.3. Finite subdivision rules with essential non-expanding spines at higher levels. In
this subsection, we prove Proposition 9.9 by constructing an example.

PROPOSITION 9.9. For every N ą 0, there exists a finite subdivision rule RN with the
subdivision map fRN

: RN(SRN
) Ñ SRN

of degree 6 such that: (1) Vert(SRN
) = PfRN

;
(2) the level-k non-expanding spine Nk is essential relative to Vert(SRN

) for k ă N; and
(3) Nk is not essential relative to Vert(SRN

) for k ě N .

Let us see the finite subdivision rule R in Figure 13. The 1-skeleton at level-0 is drawn
by bold curves. The non-expanding spines N0 and N1 are drawn by dotted curves. The
N0 is essential but N1 is homotopically trivial. Let f be the subdivision map described in
Figure 13. We modify the finite subdivision rule R into R1 as follows.
(1) Change the labels A and B into A1 and B1.
(2) For 2 ď i ď n, we draw n ´ 1 copies of annuli consisting of Ai and Bi in a row on

the left of the annulus consisting of A1 and B1 at level-0. Denote by SR1 the modified
level-0 CW-complex. Define R1(SR1) = f ´1(SR1).

(3) Let σ be an orientation-preserving homeomorphism of the 2-sphere such that
σ(SR1) = SR1 , and σ(Ai) = Ai+1 and σ(Bi) = Bi+1 for any 1 ď i ď n, where
indices are considered modulo n. That is, σ is a 1{n-rotation. Define the subdivision
map f 1 : R1(SR1) Ñ SR1 by f 1 = σ ˝ f .

Let N 1i be the level-i non-expanding spine of R1. The N 10 is n-copies of circles. The
N 11 is the union of n ´ 1-copies of circles with three non-closed curves. Similarly, for
k ă n, the level-k non-expanding spine N 1k has n ´ k circles and some non-closed curves.
Therefore, N 1i is essential if i ă n and non-essential if i ě n.
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FIGURE 13. A degree 6 finite subdivision rule with six tile types.

9.4. Edge–edge expansion versus edge subdivisions. Let us further investigate the
equivalence between the existence of Levy cycles and of Thurston obstructions. Recall
that the coefficients of Thurston linear transformation are defined by

f�(γ ) =
ÿ

γ 1Ăf ´1(γ )

1
deg(f |γ 1 : γ 1 Ñ γ )

[γ 1]� .

In the setting of finite subdivision rules, the summands 1{deg are related to the expansion
between edges and the number of summands is related to the growth rate of edge
subdivisions. Hence, we can expect there is no Thurston obstruction if the edge–edge
expansion dominates the edge subdivisions. See [CPT16, Theorem 8.4] for a similar
comparison.

Let R be a finite subdivision rule.
Edge–edge expansion. We say that R is edge–edge λ-expanding for λ ě 1 if there exists

C ą 0 such that for any n ě 0 and any bone γ of level-0 band, the level-n subdivision
complex Rn(SR) subdivides γ into at least C ¨ λn segments.

Edge subdivision rate. For any level-0 edge e, the exponential growth rate of subdi-
visions of e is the number νe ě 1 with limnÑ8(#tlevel-n subedges of eu)1{n = νe. The
maximum ν := max νe over level-0 edges e is called the maximal exponential growth rate
of edge subdivisions.

PROPOSITION 9.10. Let R be a finite subdivision rule. Let ν be the maximal exponential
growth rate of edge subdivisions. If R is edge–edge λ-expanding for some λ ą 1, then the
non-expanding spine of R is empty so that the subdivision map f : (S2, A) ý does not
have a Levy cycle for any set of marked points A. Moreover, if λ ą ν, then the subdivision
map f : (S2, A) ý does not have a Thurston obstruction for any set of marked points A.

Proof. The first part about the emptiness of non-expanding spines immediately follows
from the definition of a non-expanding spine. Let us assume λ ą ν and show the second
part. Let � = tγ1, γ2, . . . , γku be a multicurve of (S2, A). For a closed curve γ transverse
to Rn(SR), we denote by ln(γ ) the cardinality of the intersection (Rn(SR))(1) X γ . Let
C0 := mini‰j l0(γi){l0(γj ). Since R is edge–edge λ-expanding, there exists C1 ą 0 such
that for any γi P � and for any connected component γ 1

i of f ´n(γi), we have

ln(γ
1
i ) ě C1λ̇

n ¨ l0(γj )

ě C0C1λ̇
n ¨ l0(γi)

https://doi.org/10.1017/etds.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.115


Levy and Thurston obstructions of finite subdivision rules 2697

for any n ě 0, where γj P � is isotopic to γ 1
i . Then deg(f : γ 1

i Ñ γi) ě C0C1λ
n.

Let C2 be the minimal number satisfying |e X �| ď C2 for any level-0 edge e. It follows
that (a) for any level-n edge en, |en X f ´n(�)| ď C2. By the definition of ν, there exists
C3 ą 0 such that for any level-0 edge e and any n ě 0, the number of level-n subedges of e
is at most C3 ¨ ν1n for some ν1 with λ ą ν1 ą ν. Consider a concatenation α of level-0
edges connecting two points a1, a2 P A with a1 and a2 being in the different Jordan
domains of γi . Note that (b) every simple closed curve isotopic to γi has at least one
intersection point with α. We have

#tcomponents of f ´n(�) homotopic to γiu ď the cardinality of f ´n(�) X α

ď C2 ¨ #tlevel-n subedges of αu
ď C2C3 ¨ |Edge(SR)| ¨ ν1n.

The first inequality follows from item (b), the second follows from item (a) and the third
follows from the fact that α is a concatenation of at most |Edge(SR)| edges at level-0.

Hence, every entry in the Thurston linear transformation is bounded from above by

C2C3 ¨ |Edge(SR)| ¨ ν1n

C0C1λn
,

which tends to 0 as n Ñ 8. Then the map f does not allow any Thurston obstruction.

There are many ways to improve Proposition 9.10. Here are two possible directions.
Suggestion 1. Proposition 9.10 can be compared with [FPP18b, Proposition 5.1], which

states that if R is edge separating and vertex separating, then the subdivision map does not
have a Levy cycle. One difference is that the subdivision map in Proposition 9.10 has to be
of hyperbolic type, that is, every critical point is a Fatou point, but [FPP18b, Proposition
5.1] works for any subdivision map. The definition of edge separation in [FPP18b] is the
edge–edge expansion, defined in this article, only for pairs of edges that do not share end
points. The vertex separation might be necessary only for Julia vertices. One might be able
to obtain a stronger result by combining these two propositions.

Suggestion 2. It would be possible to combine Theorem 7.6 and Proposition 9.10 to
obtain a stronger sufficient condition for the equivalence between the existence of Levy
and Thurston obstructions. We might be able to: (1) have the equivalence on the part
where edges subdivide polynomially fast and (2) exclude Thurston obstructions where
edges subdivide exponentially fast by assuming the condition in Proposition 9.10.

Example 9.11. See Figure 14. We think of the doubles of the left triangle and get the
level-0 subdivision complex SR with two tiles. Similarly, take the double of the right large
triangle, which is subdivided into 12 small triangles, and define it as the level-1 complex
R(SR). Then Figure 14 defines a finite subdivision rule R with the subdivision map f :
R(SR) Ñ SR which is defined by a map sending each small triangle on the right to a
triangle on the left or its copy with the types of edges being preserved. Then deg(f ) = 12
and f has three critical values u, v, and w, which are vertices of the level-0 triangles.
Moreover, f (u) = f (v) = f (w) = w.
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FIGURE 14. A finite subdivision rule with λ ą ν.

It is immediate that the non-expanding spine is an empty set. By Theorem 6.21, f does
not have a Levy cycle. Since R has exponential growth rate of edge subdivisions, we
cannot apply Theorem 8.6 to claim that f does not have a Thurston obstruction. However,
it is easy to show that λ = 4 and ν = 2, and then f does not have a Thurston obstruction
by Proposition 9.10.
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