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Abstract

Some oscillation criteria for solutions of a general second order ordinary superlinear differential
equation

(a(t)x'(t))' +p(t)x\t) + g(t)f(x(t)) = 0,
with alternating coefficients are given. The results generalize and complement some existing
results in the literature.

1991 Mathematics subject classification (Amer. Math. Soc): 34 C 10.

1. Introduction

This paper deals with the question of oscillation of all solutions of second
order ordinary differential equations with alternating coefficients of the form
(1) (a(t)x'(t))' +p(t)x'(t) + q{t)f{x{t)) = 0,
where a, p, q: [t0, oo) -> R — (-oo, oo), / : R —> R are continuous and
a(t) > 0 for t > t0 > 0.

We assume that
(2) xf(x) > 0 and f{x) > 0 for x # 0.
Also, we suppose that equation (1) is strongly superlinear in the sense that

» /"&<» -d f s < »
© 1992 Australian Mathematical Society 0263-6115/92 $A2.00 + 0.00

156

https://doi.org/10.1017/S144678870003576X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003576X


[2] Superlinear differential equations 157

In the absence of damping, there is a large body of literature concerning
the equations

(*) x"(t) + q(t)f(x(t)) = 0

and

(**) {a(t)x\t))' + q{t)f(x(t)) = O

Althouogh (1) can be easily transformed to the forms (*) and (•*), there
are advantages in obtaining direct oscillation theorems for (1); besides the
obvious practical advantages of eliminating the need for finding an integrating
factor, there is an incentive, as remarked by Yan [ 12], in developing methods
which will generalize to more general equations.

Throughout this paper we restrict our attention only to the solutions of
equation (1) which exist on some ray [t0, oo), t0 > 0 . Such a solution is
said to be oscillatory if it has arbitrarily large zeros, and otherwise it is said
to be nonoscillatory. Equation (1) is called oscillatory if all of its solutions
are oscillatory.

It is of interest to discuss conditions on the alternating coefficients p and
q which are sufficient for (1) to be oscillatory. The use of average functions
in the study of oscillation has been made extensively, most recently, by Butler
[1], Grace and Lalli [2, 4], Kwong and Wong [6], Philos [8], Wong [11] and
Yan [12]. In this study we deal with the possibility of averaging techniques
for studying the oscillatory behavior of the superlinear differential equation

(1).
J. S. W. Wong [11] proved the following oscillation theorem for the Emden-

Fowler equation

(4) x " ( t ) + q ( t ) \ x ( t ) \ X s g n x ( t ) = O, X > 0 ,

where q is a continuous function on [t0, oo).

THEOREM W. If

(5) liminf / q(s)ds > 0

and

(6) lim s u p — r (t-s)"~iq(s)ds = oo for some integer n > 2,
'-"» t"~l Jt0

then equation (4) is oscillatory for all k > 0.

Recently, Philos [9] extended Theorem W to more general second order
differential equations of the type

(7) x"(t) + q(t)f(x(t)) = 0,
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where the functions q and / are denned as in equation (1), and obtained
the following oscillation results.

THEOREM P. Let conditions (2) and (3) hold, and suppose

(8) / -du < oo

and

(9) min<infV/<«)/ ^ - d z . M ^ u ) ^ ^ d z ) > 0.

Moreover, suppose that there exists a continuously differentiable function

p: [*0,oo)-(0,oo)

such that p is nonnegative and decreasing on [t0, oo). Then equation (7) is
oscillatory if

(10) lim inf / p(s)q(s) dx > -oo,
/-oo J^

(11) limsup^o'^)(£^)^<oo

and

(12) lim sup-—j- / (t — s)n~ p(s)q(s)ds = oo for some integer n > 2.
/—oo f" l Jt

Of particular interest, therefore, is the problem of finding oscillation cri-
teria when condition (6), (11) or (12) is not satisfied. The answer to this
problem for equation (1) with f(x) = x was given by Yan [12], while for
equation (4) with 0 < A < 1 and equation (7) with f+0(l/f(u))/du < oo
was given by Kwong and Wong [6] and Philos [8] respectively.

In this paper we establish a new oscillation criterion for the superlinear
equation (1) when condition (12) is not satisfied. This work complements
the works of Kwong and Wong [6], Philos [8] and Yan [12]. Some of the
earlier results of the authors are also extended.

Main results

THEOREM 1. Let conditions (2), (3), (8) and (9) hold, and suppose that
there exists a differentiable function p: [t0, oo) —> (0, oo) such that condition
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(10) is satisfied and that,

(13) a(t)p'(t)-p(t)p(t) = y(t)>0 and y'(t)<0 fort>t0,

and

(14) J°°Z(s)ds = cx>, where

If there exists an integer /? > 1 and a continuous function y/: [t0, oo] —> R
such that for any constant c* > 0

(15) timinf-^ / \ t -u f ~2

and

(16) Um / V(s)yl(s) ds - oo,
~> 0 0"' 'o

where F(r) = f (<)/ / / <̂ (̂ ) rfj and y/+{t) = max{^(f), 0} , then equation (1)
is oscillatory.

PROOF. Let x{t) be a nonoscillatory solution of equation (1). Without
loss of generality we assume that x(t) ^ 0 for t > t0 > 0 . Furthermore, we
suppose that x(t) > 0 for t > t0, since the substitution y = -x transforms
equation (1) into an equation of the same form subject to the assumptions
of the theorem.

Let W be denned by

Then for t > t0, we have

(17) W\t) = -P(t)a(t)

and consequently
(18)

= W(t0)- f p(s)q(s)ds+
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By the Bonnet theorem, for a fixed t > t0 and for some i\ e [t0, t]

x'(s)

= y(t0)
*(<o)

00 du

Therefore, by taking into account (19), we conclude that

f' t'
(20) W(t) <L- p(s)q(s)ds- <

Jto J'o

where L = K + W(tQ).

We consider the following two cases.
CASE 1. The integral

t>t0,

/ :
is finite. There exists a positive constant K{ so that

(21)

Furthermore, by using the Schwarz inequality, for t > t0, we get

ds

So, in view of (21) we have

(22)

From (9), we obtain

(23) for t>t0,

where M is a positive constant. Next, we put

M, =
*«„) /(«)
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f(x(t)) > M2 r
Jx(t)

M'~L

du

ff{u)

- 2

- 2

- 2

1/2-, - 2
Thus, by (23), we get

There exists a positive constant c (depending on the constants M, M, and
Kx) and a T > tQ so that

(24) / ( "" ~ C

t>T,

Using (24) in equation (17) we obtain

^ ( 0 < -P{t)q{t)

or
(25) w'{t)<-p{t)q{t) + y{t)Z{tW{t)-cV{t)w\t) for t > T
and consequently, for t > s >T

I {t-ufw\u)du< - I (t - ufp(u)q{u) du
Js Js

- u)"[cV(u)W2(u) - y(u)i(u)W{u)]du.

Since

I (t-uf~xW{u)du,
Js

we obtain that

(26)

(t - ufp{u)q(u) du<{t- sf W{s)

- f[(t - ufcV(u)W2(u) -(t- uf-l[y(u)$(u)(t - u) - fi]W(u)]du
Js
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and hence

J 1
(27)

<

Dividing (27)

which implies

S. R. Grace and ]

/ , \P / \ / \ * (* — ^
(i u) p\u)q\u) . .

(t-s)fiW(s)- f \yfcV(jl

1 . .fi/2, , . ,

2y/cV{u){ U' [yW

{t-s)filV(s) for s>T.

by tfi and taking the lowei

V(s)<W(s),

that

B. S. Lalli

if'2

)(t-u)f/2W(u)

-i 2

;(M)(/ - M) - fi]\

• l imit as / —• oo ,

s>T,

- u) - pf\ du

du

we obtain

[7]

(28) V
2

+{s) < W\s).

In view of (12) and (24) we have

lim / cV{s)y/2As)ds< lim / cV{s)W2{s)ds

< lim / Z(s)W2(s)f(x(s))ds < oo.
t->ooJT

This contradicts condition (16).
CASE 2. The integral

['$(s)W2(s)f(x(s))ds

is infinite. By (10), it follows from (20) that for some constant a

(29) -W(t) > a + / Z(s)W2(s)f(x(s))ds for t > t0.

We choose a T* > t0 so that
T*T

6 = a + f £(s) W2(s)f(x(s)) ds > 0.

Then (29) ensures that W is negative on [T*, oo). Now, (39) gives

£{t)W2{t)f{x{t)) > x\t)f{x{t)) t > r

! 2 f f(()) ' '
and consequently for all t > T*

log ̂  [a + jU(sW2(S)/(x(s)) ds] > log f^t)y
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Hence

o + ft{s)W2{s)f{x{s))ds > e n ^ ] for t > T\

So, (29) yields

x\t) < -&f(x(T*))${t) < 0 for t > T*.

Thus, we get

x(t) < x(T*) - 6f(x(T*)) f £(s) ds for t > T*
JT'

which, in view of (14), leads to the contradiction

lim x(t) = -oo.
t->oo

This completes the proof.
The following theorem extends and improves [9, Theorem 2] and [11,

Theorem 1].

THEOREM 2. Let conditions (2), (3), (8) and (9) hold and suppose that
there exists a differentiable function p: [t0, oo) —> (0, oo) such that conditions
(9), (13) and (14) are satisfied. If there exists an integer fi > 1 such that
for any constant c* > 0
(30)

where £ and V are defined as in Theorem 1, then equation (1) is oscillatory.

PROOF. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0
for t > t0 > 0. As in the proof of Theorem 1 (Case 1), we obtain (27). Divid-
ing (27) by r and taking the upper limit as t —> oo, we get a contradiction
to condition (30). The rest of the proof is similar to the proof of Theorem 1
(Case 2) and hence is omitted.

REMARKS. 1. The results of this paper are new even when specialized to
equations (4) with X > 1 and (7).

2. If f(x) = \x\xsgnx, X > 1, then conditions (2), (3), (8) and (9) are
disregarded.

3. Theorem 1 is a complement of the results obtained by Kwong and Wong
[6] for equation (4) with 0 < X < 1, by Philos for equation (7) (where /
satisfies the condition J±0(l/f(u))du < oo), and by Yan [12] for equation
(l)with f(x) = x.
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4. Theorem 2 extends and improves some of the results in [1], [9, Theorem
2] and [11, Theorem 1]. It complements the work of Grace [2], Grace and
Lalli [4], Kamenev [5], Yan [12] and Yeh [13] for equation (1) and/or related
equations with f{x) = x or where / satisfies the condition: f{x) > K > 0
for JC ̂  0; and Grace and Lalli [3] for equation (1) with a(t) = 1 and
f{x) = \x\x sgnx, 0 < A < 1.

5. One can easily deduce many corollaries from Theorems 1 and 2. We
omit the details.

For illustration we consider the following example.
EXAMPLE 1. Consider the second order equation

(31) x"(t)+(cost)\x(t)\x[d*+sinlog(l + \x(t)\)]s&ix(t) = 0 for t > t0 > 0,

where X > 1 and d* > 1 + (I/A). It is easy to check that conditions (2), (3),
(8) and (9) are satisfied (see [7]).

Taking p(t) = 1 and /? = 2 , we get

lim inf /
<-oo J^

: f _ t ' t > IQ > v,

cossds > - oo ,

lim sup ~2 / (t — u) cos u du — — sin t0 < oo,

1 w r * n
lim inf-j / ( /-«) COSM rfu > - s in^ - A\

where c* and Â  are positive constants and K is small. Set

i//(s) — -sins - K.

Next, we consider an integer N such that (2N +l)n + (TT/4) > <0. Then for
all integers n > N and

(2n + 1)TI + -T <s < 2{n + \)n- - , ^(5) = - s i n s - K > Ss,

where ^ is a small constant. Thus,

Urn I V(s)vl(s)ds>

All the conditions of Theorem 1 are satisfied and hence equation (31) is
oscillatory.

We note that Theorems P and W are not applicable to equation (31).
Moreover, none of the known oscillation criteria can cover this result.
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