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Cloaking waveguide defects at low frequencies
using local wall deformations
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We present a novel technique to render objects invisible to incident waves in a water
waveguide system with parallel walls at low frequencies. The invisibility of a waveguide
defect, specifically a vertical surface-piercing circular cylinder, is achieved through local
deformations of the waveguide walls in the immediate vicinity of the defect. Our method
results in a reflection coefficient that is at least 20 times lower than in the case of a parallel
waveguide. The effect is observed over a broad frequency range. Experimental results
confirm the high efficiency of our approach, showing that backscattered energy is reduced
by a factor of 100–5000 compared with the reference case within the considered frequency
range.
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1. Introduction
Controlling water waves through interaction with specially designed structures is
important in energy conversion and protection of off-shore constructions (Zhu et al. 2024).
Efficient control of wave propagation can be achieved using materials structured at the
subwavelength scale which exhibit unusual properties, known as metamaterials (Walser
2000). These materials have enabled the realization of the cloaking phenomenon, where
the object becomes invisible to the incident wave regardless of the wave direction or
frequency (Leonhardt 2006; Pendry, Schurig & Smith 2006). To effectively render an
object invisible, a cloaking device must be both omnidirectional and broadband (Choi &
Howell 2015).
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Figure 1. Water wave system. Parallel waveguide of width L and cylinder of diameter D in the plane of
symmetry (Aeikx denotes incident wave, ARe−ikx denotes reflected wave with reflection coefficient R and
AT eikx is transmitted wave with transmission coefficient T ).

The invisibility effect was initially confirmed experimentally for electromagnetic waves
(Schurig et al. 2006). Thanks to the similarity of the equations governing the propagation
of different types of waves, the cloaking phenomenon was achieved in the case of acoustic
(Zigoneanu, Popa & Cummer 2014; Zaremanesh & Bahrami 2022), seismic (Brûlé et al.
2014) and water waves (Porter & Newman 2014). In the case of surface water waves,
the invisibility effect can be obtained using different approaches. The first possibility is
to design bathymetry around an object to be hidden (Porter & Newman 2014; Zareei &
Alam 2015; Bobinski et al. 2018; Zou et al. 2019; Cen et al. 2024). The second method is
based on the wave interaction with an array of structured objects piercing the free surface
(Newman 2014; Dupont et al. 2016; Kucher et al. 2023). The third method involves altering
free-surface boundary conditions by surrounding an object with an elastic composite plate
that floats on the surface (Iida, Zareei & Alam 2023).

In this work, we focus on cloaking a defect within a water waveguide system, where
strong scattering is typically observed. The defect is a vertical, surface-piercing cylinder
located on the centreline (figure 1). Systems with a symmetrical defect about the centreline
of the waveguide with parallel walls have been extensively analysed in the context of the
existence of trapped modes (Callan, Linton & Evans 1991; Evans, Levitin & Vassiliev
1994; Evans & Porter 1997; Linton & McIver 2007; Cobelli et al. 2011). Trapped modes
are localized solutions of the homogeneous wave equation with a real resonance frequency.
They are characterized by finite energy rapidly decaying with the distance from the defect
(Pagneux 2013). The eigenvalue associated with a trapped mode is embedded in the
real continuous spectrum. Our work focuses on the background scattering produced by
a symmetrical obstacle within this spectrum.

Here, we present a new approach to cloak an object at a low-frequency range. We show
that by manipulating the local shape of the waveguide walls, one can significantly reduce
the backscattering produced by a defect inside a waveguide. We design the shape of
the wall perturbation through an optimization process and quantitatively confirm its
broadband cloaking properties in the experiments. Section 2 presents the modelling and
optimization problem with numerical results. The experimental results are presented
in § 3.
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2. Modelling and numerical results
We consider a system with linear surface water waves propagating within a parallel
waveguide of width L characterized by a flat bottom and a surface-piercing cylinder
of diameter D positioned at the plane of symmetry. The system is illustrated in
figure 1. We assume a harmonic regime with deformation of the free surface expressed
as ζ(x, y, t) = Re{η(x, y) · e−iωt }, where η denotes the complex wavefield, ω is the
frequency and Re denotes the real part of complex field.

2.1. Governing equations
In the analysed case, the propagation of waves can be described by the Helmholtz equation
along with the Neumann boundary condition at the rigid walls of the waveguide, at y =
±L/2, and the cylinder, at x2 + y2 = D2/4

�η(x, y) + k2η(x, y) = 0, (2.1)

∂η

∂n

∣∣∣∣
walls

= 0, (2.2)

with k being a wavenumber following the linear dispersion relation

ω2 = gk tanh(kh), (2.3)

where g represents the gravity constant, ω denotes frequency and h is the water depth.
We restrict our considerations to the low-frequency range kL/π < 1, i.e. there is only one
mode propagating. The solution in the far-field region of the cylinder can be expressed as

η(x) =
{

Aeikx + ARe−ikx , in the region I,
AT eikx , in the region II,

(2.4)

where A denotes the amplitude of the incident wave and R and T denote the reflection
and transmission coefficients, respectively. Region I corresponds to the far-field region in
front of the cylinder (x < 0), and region II corresponds to the far-field region behind the
cylinder (x > 0).

2.2. Making defect invisible – framework
We perform numerical simulations with a cylinder diameter of D = 0.6L in a domain
x ∈ (−5, 5)L . We solve the Helmholtz equation (2.1) using the finite element method
implemented in MATLAB PDE Toolbox. We impose the Dirichlet boundary condition
η = 1 at x = −5L and radiation condition ∂xη = ikη at x = 5L . The maximum edge length
of the mesh element is hmax/L = 0.01. It is worth noting that this problem can be solved
using other methods, such as the method proposed by Kirby (2008) combining a wave-
based modal solution with the finite element solution. The scattering of a cylinder within
a parallel waveguide can be analysed using the multipole method proposed by Linton &
Evans (1992). We verify the results obtained using the finite element method with the
multipole method for this geometry. We also consider different domain sizes and confirm
that the considered domain size x ∈ (−5, 5)L is sufficient to provide accurate results.

The presence of the cylinder in the analysed scenario leads to a significant reflection
of incident wave energy. In the case of a perfectly hidden object, there is no reflection
(R = 0), resulting in perfect transmission (T = 1). We aim to make the cylinder invisible
to incident waves by creating narrow indentations F in the waveguide walls near the
obstacle. The walls are given by y = ±(L/2 + F). To determine the specific shape of the
wall perturbation providing broadband reduction of the reflection coefficient, we minimize
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Figure 2. Examples of wall modifications considered in the optimization problem with the parameters defining
the shape: (a) hg/L = 0.16, γ /L = 1.6, δ/L = 1.06, N = 2 and (b) hg/L = 0.2, γ /L = 1.6, δ/L = 0.29,

N = 60.

the cloaking factor χ in the frequency range k ∈ (k1, k2) with k1 = 0.01π/L and k2 = π/L .
The cloaking factor is defined as

χ =
∫ k2

k1
|R|2dk∫ k2

k1
|R0|2dk

, (2.5)

where R0 denotes the reflection coefficient for the reference case with straight parallel
walls. One has to notice that, due to energy conservation, minimizing the reflection
coefficient results in the absolute value of the transmission coefficient being close to
unity but does not guarantee that the phase shift in the transmitted wave is zero. As an
alternative objective function, we consider minimization of the cloaking factor based on
total scattered energy, which physically represents radiated power, defined in the following
way:

χsc =
∫ k2

k1
(|R|2 + |T − 1|2)dk∫ k2

k1
(|R0|2 + |T0 − 1|2)dk

. (2.6)

To minimize χ and χsc, we consider wall deformations that are symmetrical with respect
to the cylinder. The variability of the walls near the obstacle is achieved through the
utilization of a cosine Fourier series

F(hg, ζ, n, x) =
N∑

n=1

2hg

π(2n − 1)

{
cos

(
ζπ

γ
(2n − 1)x

)
− cos (ζπ(2n − 1))

}
(−1)5n−1,

(2.7)

ζ =
{ �2γ

δ
�, mod (�2γ

δ
�, 2) �= 0,

1, otherwise.
(2.8)

In the above relation, hg denotes the depth of the groove in the channel wall, γ

represents half of the width of the variable geometry part, δ denotes the width of a single
groove and �2γ /δ� denotes the floor function. We impose constraints on the parameters
defining wall deformation: (i) 1 ≤ N ≤ 60, (ii) 0.09 ≤ hg/L ≤ 1, (iii) 0.2 ≤ δ/L ≤ 4 and
(iv) 0.1 ≤ γ /L ≤ 2. The constraint δ < 2γ is introduced to eliminate incorrect geometries.
Figure 2 depicts examples of geometries considered in the optimization problem with
a graphical representation of different parameters defining the geometry of waveguide
indentations. The shape of indentations given by (2.7) is initially chosen due to the lack of
knowledge about the expected optimal shape. Its definition is developed to ensure that a
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Figure 3. (a) Geometries providing cloaking phenomenon: Fourier series geometry (blue solid line,
hg/L = 0.258, δ/L = 1.93, γ /L = 0.97, N = 40), trapezium (green solid line, a/L = 0.485, b/L = 0.465,

ht/L = 0.26) and rectangular geometry (red dashed line, hr /L = 0.26, wr /L = 0.481). (b) Reflection
coefficient in the considered frequency range. The inset presents the reflection coefficient for three considered
geometries in a logarithmic scale to show the difference in the results.

few parameters – such as the length of the region with variable geometry, depth, number of
grooves and the shape of individual grooves – could unambiguously define the geometry
of the grooved region. Additionally, continuity between the variable geometry region and
the section with parallel waveguide walls is maintained.

The optimization process requires (i) mesh generation for a given set of parameters
defining the wall shape perturbation, (ii) solving of the Helmholtz equation for the
considered frequency range kL/π ∈ (0.01, 1) and (iii) calculation of the cloaking factor
χ . Given the lack of precise knowledge regarding the function χ(F) and the absence
of analytical or derivative information, we employ a black box approach (Audet & Hare
2018). Considering the high computational cost of objective function evaluation, we use a
surrogate-based method with a radial basis function approximation (Gutmann & Gutmann
2001; Vu et al. 2016). The initial guess is evaluated at 63 random points in the parametric
space within the constrained values.

2.3. Numerical results
Minimizing the cloaking factor χ results in the geometry depicted in figure 3(a)
by solid blue line (denoted as Fourier) with χ = 5.44 × 10−5. The optimized shape
resembles a trapezium, so we verify if we can simplify the indentation geometry and
keep a similar objective function value. Geometry simplification is beneficial considering
the manufacturing aspects of the experimental counterpart. Therefore, we repeat the
optimization process, but this time, we vary the geometry by changing the height ht
and half of the lengths of both bases of an indentation a and b. As a result we obtain
χ = 1.96 · 10−4 for a/L = 0.485, b/L = 0.465 and ht/L = 0.26 (figure 3a green solid
line). The optimized trapezium has almost the same length of bases, so we go one
step further with simplification, i.e. we perform optimization for a rectangular wall
modification. We vary the height hr and the half of the width wr of the indentation. The
best result is obtained for hr/L = 0.26 and wr/L = 0.481 with χ = 1.77 · 10−4 (figure 3a,
red dashed line). The efficiency of the rectangular geometry is shown in figure 4, where we
present wave fields for kL/π = 0.8253 obtained for the reference case (parallel waveguide)
and the waveguide with rectangular indentations. The comparison of the reflection
coefficient in the considered frequency range for three considered wall modifications and
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Figure 4. Numerical simulation. Real part of the wave fields for kL/π = 0.8253: (a) for a waveguide with
parallel walls (reference case) and (b) with rectangular indentations. Wave fields are normalized by the incident
wave amplitude.

the reference case is presented in figure 3(b), where a significant backscattering reduction
is visible. The local minima of the reflection coefficient correspond to the resonant
frequencies of a given system. In the case of rectangular indentations, they are observed
for kL/π ≈ 0.5 and kL/π ≈ 0.9.

We perform the same analysis in the case of cloaking factor χsc (2.6) for three different
geometries of the indentations, i.e. Fourier, trapezium and rectangular. The minimum
value of χsc is obtained for the geometry defined through the Fourier series (2.7) with
χsc = 0.239. In the trapezium case, we obtain χsc = 0.24 and for the rectangle χsc = 0.319.
Optimization of the cloaking factor based on total scattered energy provides slightly better
results compared with optimization of χ in terms of the phase difference (�ϕ = arg T ),
where the phase shift is below 0.15π . The optimization of χ results in a phase shift below
�ϕ ≈ 0.25π in the considered frequency range. Unfortunately, in the case of minimizing
χsc, the backscattered energy is much higher (see Appendix A for details), so we decided
to perform experiments with the geometry provided by the minimization of χ .

The presented results are based on the initial choice of the function F , given by (2.7),
which defines the shape of the indentations. It is worth noting that other choices of F
might yield even better results with respect to the cloaking factors χ and χsc.

2.3.1. Wave drift force
For surface water waves, a cloaking device modifies not only scattered field but also the
forces acting on an object. Cloaking an object should significantly reduce the force incident
waves exert on the body. The force acting on a fixed body can be determined by integrating
the pressure on the body’s surface

F(t) =
∫

S
ρ

(
∂Φ

∂t
+ gz + 1

2
(∇Φ)2

)
nSdS, (2.9)

with Φ being the velocity potential. We can decompose F(t) into a sum of first-order and
second-order components. The second-order term has a fluctuating part at frequency 2ω

and a time-independent wave drift force F(2), which can be expressed as

F(2) = 1
T

∫ T

0

(
−1

2
ρg

∫
z=0

(
η(1)

)2 · nsd� + 1
2
ρ

∫
S

(∇Φ(1)
)2 · nsdS

)
dt, (2.10)

where S is the wetted body’s surface, ns denotes the unit normal vector and d� represents
an infinitesimal segment along the water contour at z = 0 (Dupont et al. 2016). The
first-order surface elevation is denoted as η(1)(x, y, t) = Re{η(x, y) · e−iωt } and Φ(1) =
Φ(1)(x, y, z, t) denotes the first-order velocity potential expressed as

Φ(1)(x, y, z, t) = Re
(

g

i · ω · η(x, y) · cosh(k(z + h))

cosh(kh)
· e−iωt

)
. (2.11)
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Figure 5. The mean drift force as a function of frequency kL/π : (a) the distribution of the mean horizontal
force acting on the cylinder for the reference case and the cloaked case, respectively; (b) the ratio of the mean
horizontal forces FC

x /F R
x , where FC

x represents force for the cloaked case and F R
x refers to the reference case

with parallel walls.

We evaluate the mean drift force acting on the cylinder in the presence of waveguide wall
indentations providing invisibility and compare the results with the reference geometry.
We analyse the influence of rectangular indentations provided by the minimization of the
cloaking factor χ . The results concerning the horizontal component of the drift force are
presented for the two cases in figure 5(a). The black and red solid lines correspond to the
force acting on a cylinder in a parallel waveguide (F R

X ) and with rectangular indentations

in the waveguide walls (FC
X ), respectively. Implementing our cloaking device significantly

reduces the horizontal force acting on the surface-piercing cylinder in the entire considered
frequency range, with the maximum force being less than 2% of the force in the reference
case (see figure 5b).

2.3.2. Limitations of the cloaking device
Any passive cloaking device designed to achieve invisibility within a specific frequency
range does so at the cost of increased scattering outside this range (Monticone &
Alù 2016). Our study focuses on optimizing waveguide wall indentations to reduce
backscattering within the frequency range kL/π ∈ (0.01, 1). To evaluate the performance
of this system, we analyse its scattering behaviour outside the optimized frequency band,
specifically in the range kL/π ∈ (1, 2). Figure 6 compares the reflection coefficients of a
cylinder in a waveguide with straight parallel walls (reference case, black solid line) and
a cloaking geometry featuring rectangular wall indentations (red line). In the reference
case, the reflection coefficient decreases initially, reaching resonance at kL/π = 1.63,
before increasing with frequency. For the cloaking geometry, the reflection coefficient is
significantly reduced up to kL/π = 1.57. Beyond this frequency, however, the reflection
coefficient rises sharply, exceeding that of the reference case.

Extending the frequency range over which a cloaking device effectively minimizes
scattering is a possibility that requires further investigation. Achieving a broader cloaking
bandwidth would likely come at the cost of an increased cloaking factor χ (Monticone &
Alù 2016).

Our cloaking device, consisting of indentations in the waveguide walls, is obtained
through an optimization procedure based on the model of linear water waves. It is,
therefore, important to consider the potential response of this system to nonlinear waves.
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Figure 6. Reflection coefficient as a function of frequency for a cylinder in the waveguide with straight parallel
walls (reference case) and cloaked case (with rectangular indentations).

In the weakly nonlinear regime, neglecting the forcing by the fundamental frequency (ω),
the harmonics satisfy the Helmholtz equations (Belibassakis & Athanassoulis 2011)(

� + k2
n

)
η̂n(x, y) = 0, (2.12)

where kn is associated with nω, i.e. D(nω, kn) = 0, where D(ω, k) = ω2 − gk tanh(kh)

denotes the water wave dispersion relation. A harmonic that satisfies (2.12) is called a free
wave, whereas a non-dispersive term, with a wavenumber nk1, being slaved to fundamental
frequency is called a bound wave (Monsalve et al. 2022). For a cloaking geometry and
waves with a fundamental frequency ω such that associated k is in the range kL/π ∈
(0, 1), the first-order reflection coefficient is very low. Based on the results presented in
figure 6, we expect that backscattering of the free wave component k2 (associated with 2ω)
will also be low for k2L/π < 1.57 with the cloaking geometry, but for k2L/π > 1.57 the
reflection of this component would significantly increase. Given that the energy content
of the fundamental frequency typically dominates the total energy, our cloaking device is
expected to perform very well even for nonlinear waves within the considered frequency
band. Nevertheless, the increased scattering of harmonic components outside this band
highlights a limitation that could be addressed in future designs.

3. Experimental realization
Figure 7 illustrates a scheme of the employed measurement set-up, which consists of (i)
a channel guiding surface water waves of total length 2.81 m, (ii) a wavemaker with a
digitally controlled LinMot linear motor, (iii) a cylindrical obstacle, (iv) an absorbing
beach minimizing spurious reflection from the end of the channel, (v) a light source
and (vi) two cameras (BASLER ACA 2040-120um and BASLER ACA 1920-40um)
allowing registration of a dot pattern placed in front and behind the cylinder. The average
signal-to-noise ratio values, calculated based on (Gonzalez & Woods 2008) for these
cameras, are 37.49 and 41.21 dB, respectively. The still water level h is 0.02 ± 5 × 10−4 m,
the waveguide width is L = 0.16 m and the obstacle diameter D = 0.6L = 0.096 m. We
analyse two waveguide geometries. The first one is a reference case with straight parallel
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Wavemaker Cameras

Absorbing beach

Cylinder

Figure 7. Experimental set-up consists of (i) a channel of length 2.81 m, (ii) a wavemaker – a cylindrical
surface mounted to a linear motor, (iii) a cylindrical obstacle, (iv) an absorbing beach reducing reflection from
the end of the channel, (v) a light source and (vi) two cameras (BASLER ACA 2040-120um and BASLER
ACA 1920-40um).

walls. The second waveguide contains rectangular wall indentations (hr = 0.042 m,
wr = 0.077 m). We generate surface waves employing a LinMot linear motor in the
frequency range of 0.65 Hz to 1.36 Hz corresponding to kL/π ∈ (0.53, 0.97). We conduct
measurements for a duration corresponding to 20 time periods of oscillation.

3.1. Measurement method
We perform the measurements using a combination of the optical flow (OF) technique
(Farnebäck 2003) and the synthetic schlieren (SS) technique (Moisy, Rabaud & Salsac
2009). The OF method enables the extraction of displacements from a reference image
(e.g., dots), whereas the SS method transforms these displacements into deformations
of the free water surface (Bheeroo & Mandel 2023). The SS method assumes certain
geometrical approximations and, as a result, has a few limitations (Metzmacher et al.
2022): (i) weak amplitudes, (ii) weak slopes and (iii) weak paraxial angles. The distance
between our cameras and the dot pattern placed on the bottom of the channel is 2.39 m,
resulting in a maximum parallax angle of βmax = 0.22. In the considered frequency range,
the amplitude of the generated waves is in the range of A ∈ (0.39, 0.94) mm with the
corresponding wave steepness in the range of k A ∈ (4.76 × 10−3, 13.85 × 10−3). The
error in free-surface deformation reconstructions can be estimated as (Moisy et al. 2009)

�η

ηrms
= (5.0 ± 0.2)

L

λ

ε

Np
, (3.1)

with ε being relative Gaussian noise, λ being wavelength and ηrms = A/
√

2 for a
sinusoidal wave, where rms is the root-mean-square. In our system, the error for the first
camera is in the range 0.07 × 10−3 to 0.23 × 10−3, while for the second camera, the error
ranges from 0.08 × 10−3 to 0.26 × 10−3.

3.2. Experimental results
Based on the obtained temporal evolution of the free-surface deformations, we extract
wave fields using the Fourier transform in the time domain

η̂n(x, y, ω) = 2
Tp

∫
Tp

η(x, y, t)einωt dt, (3.2)
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Figure 8. Real part of the experimental fields η̂1(x, y) for parallel waveguide (a for kL/π ≈ 0.79 and c for
kL/π ≈ 0.94) and rectangular cloaking geometry (b for kL/π ≈ 0.79 and d for kL/π ≈ 0.94). Wave fields are
normalized by the incident wave amplitude.
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Figure 9. Comparison of numerical and experimental results. Reflection |R| and transmission |T | coefficients
as a function of frequency kL/π . Black markers (experiment) and solid magenta lines (numerical simulation)
correspond to the reference waveguide with straight walls. Blue markers (experiment) and red solid lines
(numerical simulation) correspond to the waveguide with modified walls.

with ω being the fundamental frequency with Tp = 2π/ω. An example of a wave field
Re(η̂1(x, y)) is shown in figure 8 where, for the reference case (figure 8a,c), strong
reflection is observed in front of the cylinder and a decrease in the wave amplitude
behind the obstacle. The corresponding wave fields obtained in the case of the rectangular
cloaking geometry are presented in figure 8(b,d). Based on wave field η̂n(x, y), we extract
transverse modes by projecting it onto φn(y) = √

(2 − δ0n)/L cos(nπy/L)

ηn(x) =
∫ L

0
η̂n(x, y)

√
(2 − δ0n)/L cos(nπy/L)dy. (3.3)

In the considered frequency range, only the plane mode propagates. This fact allows
us to extract reflection R and transmission T coefficients using (2.4) (taking into account
reflection from the end of the channel). In figure 9, we present a comparison of both
coefficients as a function of kL/π for numerical simulations and experimental values. The
error bars for the coefficients were estimated based on four realizations of the experiment
at a 95 % confidence level and expressed as |R| ± t(n−1,1−α/2)s/

√
n (similarly |T |) with n,

|R|, s being the number of realizations, sample mean and sample standard deviation of the
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results, respectively (Martin 2012). The t(n−1,1−α/2) parameter is the critical value of the
Student’s t distribution for significance level α = 0.05. We observe a significant reduction
of the reflection coefficient in the entire frequency range. In the inset of figure 9, we
present the same reflection coefficient in logarithmic scale to demonstrate the extremely
high efficiency of the proposed cloaking device. Although the experimental values are
not as good as in numerical simulations, one can notice that the reflection coefficient
decreases by at least ten times the reference value corresponding to the straight parallel
waveguide, meaning that, in the investigated frequency range, the energy of the reflected
wave, proportional to |R|2, is at least a hundred times lower than initially. The best
experimental result is obtained for kL/π ≈ 0.64, where backscattered energy is around
5000 times lower than in the reference case.

4. Conclusions
In this work, we present a novel technique for achieving an invisibility effect in a water
wave system with a circular cylinder placed at the plane of symmetry of a parallel
waveguide. Confinement of the considered system and the low-frequency range allow us to
treat the problem as one-dimensional in the far field. We obtain the cloaking phenomenon
by considering local deformations of the waveguide walls. The effect is visible in a broad
range of frequencies. Wall deformation needs to be localized in the neighbourhood of
the defect and adjusted for a given shape of an obstacle, suggesting our cloak belongs
to a class of devices based on scattering cancellation (Fleury & Alu 2014). In numerical
simulations, the reflection coefficient for the waveguide with the rectangular indentations
is at least 20 times lower than that of the reference case with parallel waveguide walls
in the entire frequency range. We confirm the high efficiency of the proposed technique
experimentally, where the energy of the reflected wave is at least 100 times lower than in
the reference case in the investigated frequency range.
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Appendix A.
In this section, we present results concerning the minimization of the total scattered
energy. The optimization of the cloaking factor χsc leads to the geometries presented in
figure 10(a). The reflection coefficients corresponding to the geometries defined through
Fourier series, trapezium and rectangle are presented in figure 10(b) by blue, green and
red solid lines, respectively. In figure 10(c), we present the phase shift �ϕ for the two
optimizations, where the top and the bottom figures correspond to the optimization of χ

and χsc, respectively. The phase shift is non-zero in both optimization cases and is lower
for χsc. However, the reflection coefficient is significantly higher than that obtained in the
minimization process of χ . Geometry providing the lowest value of χ results in χsc = 0.4.
To sum up, we can obtain a significant difference in the reflection coefficient at the cost of
an increase in phase shift.
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Figure 10. Optimization of the cloaking factor χsc: (a) comparison of the resulting geometries, (b) reflection
coefficient as a function of frequency kL/π and (c) phase shift �ϕ for two optimizations (top: optimization of
χ and bottom: optimization of χsc). The geometries of indentations providing the minimum value of χsc have
the following dimensions: (i) Fourier (hg/L = 0.2024, δ/L = 1.4405, γ /L = 0.7281, N = 2), (ii) trapezium
(a/L = 0.606, b/L = 0.1458, ht/L = 0.2391), (iii) rectangle (hr /L = 0.1694, wr /L = 0.4286).

(a) (b)

ꭓ ꭓsc

5.0

8.0 6.0 4.0 2.0

4.0

0.4

0.3

0.2

0.1

0

3.0

2.0

1.0

0
0 8.0 6.0 4.0 2.0 0

hmax /L hmax /L×10−2

×10−3

×10−2

Trapezium RectangleFourier Trapezium RectangleFourier

Figure 11. The influence of mesh element size on the cloaking factor (a) χ and (b) χsc value for three
considered geometries. The vertical dashed line corresponds to the mesh size employed in the optimization,
i.e. hmax/L = 0.01.
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To verify the numerical results, we perform a mesh grid independence study by changing
the maximum size of a single finite element. The largest size of finite element hmax/L is
selected to ensure a minimum of 20 elements per wavelength. We successively decrease
the element size and determine the corresponding cloaking factor χ and χsc. The results
are presented in figure 11. The objective function χ values for hmax/L = 0.01 do not
significantly differ from those obtained for lower values of hmax/L . We conclude that
sufficient convergence is achieved for hmax/L = 0.01 in both optimization processes.
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