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Abstract

Given a global field K and a positive integer n, we present a diophantine criterion
for a polynomial in one variable of degree n over K not to have a root in K. This
strengthens a result by Colliot-Thélène and Van Geel [Compositio Math. 151 (2015),
1965–1980] stating that the set of non-nth powers in a number field K is diophantine.
We also deduce a diophantine criterion for a polynomial over K of given degree in a
given number of variables to be irreducible. Our approach is based on a generalisation
of the quaternion method used by Poonen and Koenigsmann for first-order definitions
of Z in Q.

1. Statement of results

We generalise methods of Poonen [Poo09] and Koenigsmann [Koe16] to prove the following
theorem.

Theorem. Let K be a global field, i.e. a number field or a function field in one variable over a
finite field, and n > 0 a positive integer. Then the set

{(a0, . . . , an−1) ∈ Kn : Xn + an−1X
n−1 + · · ·+ a0 ∈ K[X] has no zero in K}

is diophantine.

As usual, a subset A ⊆ Kn is called diophantine if there exist m > 0 and a polynomial
F ∈ K[X1, . . . , Xn, Y1, . . . , Ym] such that

A = {(x1, . . . , xn) ∈ Kn : ∃y1, . . . , ym ∈ K(F (x1, . . . , xn, y1, . . . , ym) = 0)}.

Equivalently, diophantine subsets of Kn are exactly those that are definable by an existential
first-order formula (with parameters) in the language of rings (equivalently, a positive existential
first-order formula), and we will frequently adopt this viewpoint, in particular when seeking
uniformity between different fields.

In the theorem, the construction of the polynomial F , or equivalently the defining first-order
formula, is explicit in principle, although we have not taken care to optimise the number of
variables (quantifiers) necessary.
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P. Dittmann

As an immediate corollary to the theorem we obtain the following.

Corollary. For every global field K and n > 0, the set of non-nth powers in K is diophantine.

This was previously proven in [CVG15] in the case of a number field. We can also translate
the theorem into the terminology of mathematical logic.

Corollary. Let K be a global field and K∗∗ ⊇ K∗ any two fields which are both elementary
extensions of K. Then K∗ is relatively algebraically closed in K∗∗.

This answers [Koe16, Question 25]. A simple model-theoretic argument yields the following
statement on irreducibility.

Corollary. Let K be a global field. There exists a diophantine criterion for a polynomial over
K in an arbitrary number of variables to be irreducible. More formally, fix r, d > 0. Then the set{

(ai1,...,ir)06i1,...,ir6d ∈ K(d+1)r :
∑

06i1,...,ir6d

ai1,...,irX
i1
1 · · ·X

ir
r ∈ K[X1, . . . , Xr] is irreducible

}
is diophantine.

2. Preliminaries on central simple algebras

In this section, we extend the methods pioneered in [Poo09] from quaternion algebras over Q to
general central simple algebras of prime degree over global fields. We assume the reader to be
familiar with the theory of central simple algebras; see for instance [GS06] for an introduction.

Let F be a field and A a (finite-dimensional) central simple algebra over F . Define

S(A/F ) = {Trd(x) : x ∈ A,Nrd(x) = 1},

where Trd and Nrd are the reduced trace and norm, respectively.

Proposition 2.1. Let L be a global field and A a central simple algebra over L of prime degree l.
Then

S(A/L) =
⋂

v a place of L

S(A⊗ Lv/Lv) ∩ L.

This proposition is well known for charL 6= 2 and l = 2 (the proof in this case can rely on the
Hasse principle for quadratic forms), and this case has been exploited for first-order definitions
of Z in Q (and more generally for rings of integers in number fields, see [Par13], since adapted
to global fields of odd characteristic, see [EM16]). For the proof in the general case we quote two
lemmas from the theory of central simple algebras.

Lemma 2.2 [Jac09, Theorem 4.12]. Let D be a central division algebra of degree n over a field
F , and let F ′ be a field of degree n over F . Then F ′ splits D if and only if F ′ can be embedded
into D over F (i.e. there is a subalgebra of D isomorphic to F ′ over F ).

Lemma 2.3 [GS06, Proposition 2.6.3]. Let A/F be a central simple algebra of degree n and
x ∈ A. If F ′ ⊆ A is commutative subalgebra which contains x and is a degree n field extension
of F , then Nrd(x) = NF ′/F (x) and Trd(x) = TrF ′/F (x). In particular, if n is prime and A is a
division algebra, then Nrd(x) = xn and Trd(x) = nx if x ∈ F and otherwise Nrd(x) = NF (x)/F (x)
and Trd(x) = TrF (x)/F (x).
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We write F (x) for the smallest subalgebra of A containing F and x; under the assumption
that A is a division algebra of prime degree n, F (x) is necessarily a commutative division algebra,
i.e. a field. Then the degree [F (x) : F ] is either 1 or n, since A is a (left) F (x)-vector space and
n2 = dimF A = dimF (x)A · [F (x) : F ] (cf. the usual tower law for field extensions).

Lastly, we need the following easy consequence of Krasner’s lemma.

Lemma 2.4. Let l be a prime number, L a global field, a ∈ L, and v1, . . . , vr places of L. For each
i, let fi ∈ Lvi [X] be a monic irreducible polynomial of degree l with constant coefficient (−1)l

and X l−1-coefficient −a. Then there exists a monic irreducible polynomial f ∈ L[X] of degree
l with constant coefficient (−1)l and X l−1-coefficient −a such that Lvi [X]/(f) ∼= Lvi [X]/(fi),
i.e. the completion above vi of the global field L[X]/(f) is unique and given by Lvi [X]/(fi).

Proof. Each fi must automatically be separable, otherwise we would have to have l = charL,
fi = X l + (−1)l, but then fi would be reducible.

If the coefficients of f are v1-adically sufficiently close to those of f1, then f is irreducible
in Lv1 [X] and therefore in L[X], and additionally Lv1 [X]/(f) ∼= Lv1 [X]/(f1): this is a standard
consequence of Krasner’s lemma, see e.g. [Jac09, Exercise 9.8.7]; see also [NSW08, Lemma 8.1.6
and proof of Proposition 8.1.5]. (For archimedean places vi, the statement is easily checked
separately.)

By weak approximation, we can choose the coefficients of f to vi-adically approximate the
coefficients of fi arbitrarily well simultaneously for all i. 2

Proof of Proposition 2.1. This is a local–global principle. Note that there is nothing to show if
A is isomorphic to the algebra of l× l-matrices over L since the set on both sides is just L in this
case. So let us assume that A is non-split over L; hence, since A has prime degree over L, A is a
division algebra by Wedderburn’s theorem (see e.g. [GS06, Theorem 2.1.3]). The inclusion ⊆ is
clear. For the other inclusion, consider an element a ∈ L of the right-hand side. We want to show
that a ∈ S(A/L), i.e. that there exists x ∈ A with Nrd(x) = 1 and Trd(x) = a. Let v1, . . . , vr
be the ramified places of A. (The local condition is trivial at all other places.) For each vi there
exists an element xi ∈ A⊗Lvi of reduced norm 1 and reduced trace a. We can disregard the case
where xi is in the centre Lvi , as the norm condition then forces xli = 1, and if l 6= charL, then
the trace condition forces xi = a/l ∈ L, or if l = charL, then xi = 1 ∈ L; in either case we are
done globally.

Assume therefore that xi 6∈ Lvi , so Lvi(xi)/Lvi is a field extension of degree l which splits
A⊗Lvi (by Lemma 2.2), with NLvi (x)/Lvi

(x) = 1 and TrLvi (x)/Lvi
(x) = a (by Lemma 2.3). Write

fi ∈ Lvi [X] for the minimal polynomial of xi; it is a monic irreducible polynomial of degree l
with constant coefficient (−1)l and X l−1-coefficient −a for reasons of norm and trace.

Let f ∈ L[X] be a polynomial as in Lemma 2.4, so L′ = L[X]/(f) is a degree l field extension
of L with completions Lvi [X]/(fi) ∼= Lvi(xi) above each vi. The element X ∈ L′ has minimal
polynomial f , hence NL′/L(X) = 1 and TrL′/L(X) = a. The field L′ splits A by the Hasse–Brauer–
Noether theorem since it splits A everywhere locally, so L′ embeds into A by Lemma 2.2, and the
image of X under this embedding has reduced norm 1 and reduced trace a by Lemma 2.3. 2

The idea behind this proof is already present in [Eis05, Theorem 3.1].
Next we investigate the local conditions S(A/Lv). For a finite field F, define

Ul(F) = {TrF(l)/F(x) : x ∈ F(l)\F,NF(l)/F(x) = 1} ⊆ F,

where we write F(l) for the extension field of F of degree l (unique up to isomorphism).
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The following is essentially [Poo09, Lemma 2.1].

Lemma 2.5. Let A/F be a central simple algebra of prime degree l over a local field.

(i) If A is split, then S(A/F ) = F .

(ii) If A is a division algebra, then for all irreducible monic polynomials X l+al−1X
l−1 + · · ·+a0

with constant coefficient a0 = (−1)l we have −al−1 ∈ S(A/F ).

(iii) If A is a division algebra and F is non-archimedean, then O ⊇ S(A/F ) ⊇ res−1(Ul(F)),
where O is the valuation ring, F is the residue field, and res : O→ F is the residue map.

Proof. In the split case, reduced norm and trace coincide with the usual matrix determinant and
trace, and all monic polynomials of degree l do occur as characteristic polynomials.

For the second point, every monic irreducible polynomial f generates a field extension
F [x]/(f), and every such field extension splits A by the theory of central simple algebras over
local fields (see e.g. [NSW08, Corollary 7.1.4]). Hence, by Lemma 2.2, F [x]/(f) embeds into A,
and then −al−1 ∈ S(A/F ) by Lemma 2.3, where al−1 is the coefficient of X l−1 in f .

For the case of a division algebra over a non-archimedean local field, let x ∈ A with
Nrd(x) = 1. Then by Lemma 2.3 NF (x)/F (x)l = 1, so x is contained in the valuation ring
of the local field F (x), therefore integral over O and hence has integral trace. This proves
S(A/F )⊆O. For the other inclusion, if a ∈ Ul(F) then there exists a monic irreducible polynomial
f = Xn + al−1X

l−1 + · · · + a0 ∈ F[X] with al−1 = −a and a0 = (−1)l. Any lift of f to F [X]
is irreducible over F (because it generates an unramified extension of degree l), hence any lift
a ∈ O of a is in S(A/F ) by the second point. 2

We can now give a satisfactory statement on S(A/F ) in the non-split local case.

Proposition 2.6. Let A/F be a central division algebra of prime degree l over a non-
archimedean local field.

(i) If l > 2, then S(A/F ) is equal to the valuation ring O of F .

(ii) If l = 2, write V (A/F ) for the topological interior of S(A/F ). We then have V (A/F ) −
V (A/F ) = O, where V (A/F )−V (A/F ) is the set of differences of two elements of V (A/F ).

For the proof of the first point, it suffices to prove the following lemma.

Lemma 2.7. For l > 2 and an arbitrary finite field F, we have Ul(F) = F.

Proof. This result is equivalent to showing that for any given a ∈ F, there exists a monic
irreducible polynomial f ∈ F[X] of degree l with X l−1-coefficient −a and constant coefficient
−1. Let us write q for the cardinality of F. If l > 5, or l = 5 and q > 9, the result follows from
Theorem 2.8 below. The remaining cases for l = 5 we check by hand.

It remains to consider the case l = 3. If a polynomial fb = X3−aX2+bX−1 is not irreducible,
it must be divisible by X − c for some c ∈ F×. However, for each c there exists exactly one fb
divisible by X − c. By counting, there exists an fb which is not divisible by any X − c and
therefore irreducible. 2

Theorem 2.8. Let F be a finite field of cardinality q and n > 0.

(i) If n > 5 and q >
(
(n+ 1)/2

)2
, there exists a monic irreducible polynomial of degree n over

F with any given non-zero constant coefficient and given Xn−1-coefficient.

(ii) If n > 6, the same is true without assumption on q.
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Proof. These are [Coh05, Corollaries 2.2 and 2.3]. 2

Proof of Proposition 2.6. For l > 2, the claim follows from the third part of Lemmas 2.5 and 2.7,

so let us consider l = 2. Write F for the residue field of F and pick a uniformiser π.

For a ∈ 2 + π + π2O, the polynomial f = X2 − aX + 1 is irreducible, since f(X + 1) =

X2 − (a − 2)X + (2 − a) is irreducible by Eisenstein’s criterion. Hence, by the second point of

Lemma 2.5, we have 2 +π+π2O ⊆ S(A/F ), so V (A/F ) contains the element b = 2 +π; likewise

−b ∈ V (A/F ) by passing from f to f(−X). Furthermore, we also have V (A/F ) ⊇ res−1(U2(F))

by Lemma 2.5 since the right-hand side is open.
If F has cardinality greater than 11, then U2(F)−U2(F) = F by [Poo09, Lemma 2.3]. We can

check exhaustively that for the remaining finite fields we have (U2(F) ∪ {2,−2}) − U2(F) = F.
Hence

V (A/F )− V (A/F ) ⊇ (res−1(U2(F)) ∪ {b,−b})− res−1(U2(F)) = O. 2

This proof is adapted from the proof of Proposition 2.3 in [Par13]. A modification is necessary

because the set Vv constructed there fails to be contained in the interior of S(A/F ), interfering

with the application of approximation theorems later on.

For a central simple algebra A of prime degree l over a global field L, we define T (A/L) =

S(A/L) if l > 2 and T (A/L) = S(A/L)−S(A/L) (the set of pairwise differences of elements of S)

if l = 2.

Proposition 2.9. If A/L splits at all real places of L (which is always the case if l 6= 2 or L is

a global function field), then

T (A/L) =
⋂

q∈∆A/L

Oq ∩ L,

where ∆A/L is the finite set of places of L at which A/L does not split.

Proof. For l > 2, this is immediate from Propositions 2.1 and 2.6, so consider the case l = 2.

The inclusion ⊆ is clear from Proposition 2.1 and Lemma 2.5, so let x ∈
⋂

q∈∆A/L
Oq ∩ L. For

each q ∈ ∆A/L we have x ∈ Oq = V (A/Lq) − V (A/Lq) according to Proposition 2.6, so pick

aq ∈ V (A/Lq) such that x + aq ∈ V (A/Lq). Since ∆A/L is finite and the V (A/Lq) are open,

we can use weak approximation to find a ∈ L such that a, x + a ∈ V (A/Lq) ⊆ S(A/Lq) for all

q ∈ ∆(A/L), hence a, x+ a ∈ S(A/L) by Proposition 2.1 and therefore x ∈ T (A/L). 2

For later use, we also record the following fact.

Proposition 2.10. Assume K is global field of characteristic p > 0 and L/K is a finite

inseparable extension. Then any central simple algebra A/K of degree p is split by L.

Proof. By replacing K with the maximal separable subextension of L/K, we may assume that

L/K is a purely inseparable proper extension. Since [K1/p : K] = p, we now necessarily have

L ⊃ K1/p. Hence, the result follows from Lemma 2.11 below. 2

Lemma 2.11 [Jac96, Theorem 4.1.8]. Let F be a field of characteristic p > 0 and A/F be a

central simple algebra of degree p. Then A is split by the field F 1/p.

765

https://doi.org/10.1112/S0010437X17007977 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007977


P. Dittmann

2.1 First-order definability

For what is to follow we will need that S(A/F ) is existentially first-order definable (in the

language of rings) in terms of structure constants of A, i.e. S(A/F ) needs to be diophantine

uniformly over central simple algebras of some prime degree l and uniformly over base fields.

(Recall that structure constants with respect to a basis (Xi)16i6l2 of A/F are the constants

(aijk)16i,j,k6l2 in F such that Xi ·Xj =
∑

k aijkXk.) It suffices to prove the following lemma.

Lemma 2.12. The functions Trd and Nrd are uniformly quantifier-freely definable, i.e. for fixed

l there exists a quantifier-free first-order formula τ in l6 + l2 + 1 variables such that if F is a

field, (aijk)16i,j,k6l2 are structure constants of a central simple algebra A/F , (bi)16i6l2 is the

basis expansion of an element x ∈ A, and c ∈ F is arbitrary, then F |= τ(a, b, c) if and only if

c = Trd(x), and there is likewise such a formula for Nrd in place of Trd.

Proof. If (aijk) are the structure constants of Ml×l in the standard basis (i.e. the basis given

by matrices with a single entry equal to 1 and all other entries 0), then the elements (bi) are

precisely the entries of the matrix x ∈ Ml×l, and hence reduced norm and trace, which agree

with matrix determinant and trace, are given by polynomial functions of the bi.

If F is algebraically closed, then any central simple algebra of degree l is isomorphic to Ml×l,

i.e. there exists a base change matrix that transforms the situation to the previous one. Hence

we can find an existential formula τ that works over algebraically closed fields: it asserts the

existence of a base change transforming the aijk into the structure constants with respect to

the standard basis, and c being the right polynomial function of the (transformed) bi. By

quantifier elimination, we can replace τ by a quantifier-free formula which is equivalent over

algebraically closed fields.

This formula τ in fact works for all fields. For this it suffices to note that TrdA/F (x) =

TrdA⊗F/F (x⊗1) and likewise for the reduced norm, and F |= τ(a, b, c) if and only if F |= τ(a, b, c)

since τ is quantifier-free. 2

Consequently, the set T (A/L) is existentially first-order definable, uniformly over A of some

fixed prime degree l and global fields L. We can even require the defining formula to be positive

and existential, since an inequality x 6= 0 may always be replaced by the equivalent ∃y(x ·y = 1).

Corollary 2.13. For any finite place p of a global field K, the ring Op∩K is diophantine in K.

Proof. Take a prime number l, e.g. l = 2, and pick two central simple algebras A,A′/K of degree

l splitting at all real places of K and such that ∆A/K ∩ ∆A′/K = {p}. This is always possible

by the characterisation of the Brauer group of global fields by Hasse invariants, see [NSW08,

Theorem 8.1.17]. Then T (A/K)+T (A′/K) =Op∩K, and this is positively existentially definable

in K with parameters. 2

Of course, this result is far from new: see, for instance, [Shl94, Theorem 4.4]. The proof is

essentially the same as [Poo09, Remark 2.6].

For later use, we also spell out a definability result for cyclic algebras. Recall that for a field

F and a cyclic extension M/F of degree l with a generator σ of Gal(M/F ) and an element a ∈ F
the cyclic algebra (M,σ, a) is the F -algebra generated by M and an element y subject to the

relations yl = a and xy = yσ(x) for all x ∈M . It is central simple of degree l.
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Lemma 2.14. Let K be a global field and M/K a cyclic extension of prime degree l with a
generator σ of Gal(M/K). Then there is a positive existential formula ϕM,σ(a, x) in the language
of rings, with parameters from K, such that in any finite extension L/K and for any a ∈ K the
formula ϕM,σ(a, ·) defines the set T ((M,σ, a)⊗K L/L).

Proof. Fixing an irreducible polynomial over K with splitting field M , we can write structure
constants for (M,σ, a) as polynomial expressions in a with parameters from K. These are then
also structure constants for (M,σ, a)⊗K L/L. Now we can use the positive existential definition
of T . 2

3. An interlude in class field theory

Fix a global field K and n > 1. Also fix a prime l | n for this section.
The entirety of this section is rather technical; we set up the necessary machinery from class

field theory, notably describing certain ideal groups Im and H as well as field extensions Mi/K,
which is needed for our main proofs in the next section, in particular the central Proposition 4.5.

Let us fix some notation. Write Σ for the set of places of K. If K is a number field, write
Σ∞ ⊂ Σ for the set of archimedean places. If K is a global function field, arbitrarily fix Σ∞ to
be any finite non-empty subset of Σ. In either case, we call Σ∞ the set of places at infinity.

Let OK be the ring of elements of K integral at each place in Σ\Σ∞; this is a Dedekind
domain, and the prime ideals of OK are in bijection to places in Σ\Σ∞. This ring is the usual
ring of integers in the number field case. In the case of function fields, OK depends on the choice
of Σ∞.

Write IOK
for the group of fractional ideals of OK , POK

for the subgroup of principal
fractional ideals, and Cl(OK) = IOK

/POK
. In the number field case, this is the usual ideal class

group and well known to be finite. In the function field case, this is not the usual divisor
class group, since we are ignoring the places at infinity, but rather the Σ∞-class group in the
sense of [Ros02, ch. 14], essentially the divisor class group modulo the classes of prime divisors
at infinity. It is finite by [Ros02, Corollary 2 to Proposition 14.1].

We now fix some field extensions of K for later use. Choose k such that lk > |Cl(OK)| · n!.
Find an abelian extension M/K with Galois group Gal(M/K) ∼= (Z/lZ)k and such that M/K
is completely split at all infinite places.

Lemma 3.1. For any choice of k we can find such M .

Proof. This follows from existence theorems in class field theory, e.g. the general version of the
Grunwald–Wang theorem [NSW08, Theorem 9.2.8]. (Note that we are never in what is called
the ‘special case’ there, since we are looking for an abelian extension whose Galois group has
prime exponent.)

It is not hard to give an explicit argument in the present situation, using (the totally real part
of) cyclotomic extensions in the number field case, and the analogous Carlitz module construction
(see [Ros02, ch. 12]) over a suitable subfield Fp(T ) ⊆ K in the function field case. 2

Remark 3.2. This choice of a distinguished abelian extension of K is already present in previous
papers, in the special case l = k = 2; most notably in [Par13, § 3.3], a field extension
K(
√
a,
√
b)/K is chosen. Likewise, the modulus 8 which appears throughout [Koe16] can be

retrospectively explained by an implicit choice of field extension Q(
√

2,
√
−1)/Q. The paper

[EM16] independently from us transfers some of the ideas of [Par13] to the setting of global
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function fields. Note however that in our situation the analogy between function fields and
number fields is more direct: we do not have to impose the condition that M be linearly disjoint
from the Hilbert class field of K as in (the proof of) [Par13, Lemma 3.19], a condition that
[EM16] changes in the function field situation.

Let us write Im 6 IOK
for the set of fractional ideals of OK in which none of the prime ideals

ramified in M/K occur in numerator or denominator. Then we obtain the well-known Artin map

Im → Gal(M/K)

as the unique homomorphism sending an unramified prime ideal to its Frobenius element.
(In the function field case, note that since all infinite places are completely split in M/K, this
map is induced by the Artin map on divisors.) Write H < Im for the kernel of this map.

By the Chebotarev density theorem, the set of prime ideals (excluding those at infinity and
ramified ones) mapping to a given element of Gal(M/K), i.e. in a given coset in Im/H, has
density 1/|Gal(M/K)| = 1/|Im/H| = l−k. (Throughout, it does not matter whether we choose
natural or Dirichlet density.)

By class field theory (see e.g. [Lan70, X, § 2] for number fields and [Ros02, Theorem 9.23]
for function fields), there exists a modulus or cycle m =

∑
p npp, a formal sum of places of K

ramified in M with np > 0, such that H contains the subgroup Pm = {(a) : a ∈ Um}, where

Um = {a ∈ K× : vp(a− 1) > np for all ramified p}.

The quotient group Im/Pm, a generalised ideal class group, is finite.
Now choose subextensions M1, . . . ,Mk with Gal(Mi/K)∼= Z/lZ such that M is the composite

of the Mi. Furthermore, fix a generator σi of Gal(Mi/K) for each i.
The rest of this section consists of two lemmas needed in the proof of Proposition 4.5.

Lemma 3.3. Let a ∈ K× such that (a) ∈ Im and (a) 6∈ H. Then there exist a place p 6∈ Σ∞ and
an Mi such that the algebra (Mi, σi, a) is not split at p, and a 6∈ O×p .

Proof. The fractional ideal (a) of OK factors as a product of prime ideals of K unramified in M
and not in Σ∞. The group Im/H ∼= Gal(M/K) ∼= (Z/lZ)k has exponent l, hence there exists a
prime ideal p 6∈ H that occurs in (a) with multiplicity not divisible by l since (a) 6∈ H.

The prime p is not completely split in M since p 6∈ H, so there exists some Mi in which p
is inert, i.e. the local extension MiKp/Kp is unramified of degree l. Therefore the group of local
norms NMiKp/Kp

((MiKp)
×) ⊆ K×p consists of the elements of l-divisible valuation; thus a is not

a local norm and therefore (Mi, σi, a) is not split at p. 2

Lemma 3.4. Let P ⊂ Σ\Σ∞ be a set of places of density at least 1/n!. Then there exists a ∈K×
such that (a) ∈ Im, (a) 6∈ H and all places p ∈ Σ\Σ∞ with a 6∈ O×p are in P .

Proof. We may remove the finitely many places ramified in M/K from P without affecting the
hypotheses.

The set P has density at least 1/n! > |Cl(OK)|/|Im/H|. Since the set of prime ideals in
each coset in Im/H has density 1/|Im/H| as noted above, P contains prime ideals from at least
|Cl(OK)|+ 1 different cosets; thus we may pick p, p′ ∈ P in different classes in Im/H and in the
same class in Cl(OK).

Now pp′−1 is a principal fractional ideal of OK ; pick a generator a. By construction, this
generator satisfies all of the requirements. 2
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4. A diophantine criterion for proper extensions of global fields

In this section we find an existential sentence that distinguishes the fixed global field K from its
finite extensions of degree n, see Theorem 4.8.

Definition 4.1. Let L/K be an extension of degree n and l | n a prime number. A prime ideal
p of K is l-good (for L) if it is unramified in L and for all prime ideals q of L above p the inertia
degree [OL/q : OK/p] is divisible by l.

The prime number l | n is admissible (for L) if either:

(i) L/K is separable and the set of l-good prime ideals of K has density at least 1/n!; or

(ii) L/K is inseparable and l = charK.

Lemma 4.2. For every L/K of degree n there exists an admissible l | n.

Proof. If L/K is inseparable, then by basic field theory charK | n, so l = charK is admissible.
Let us now assume that L/K is separable.

Let L′/K be the Galois hull of L/K, G = Gal(L′/K), H = Gal(L′/L) � G. Then |G| 6 n!.
Let g ∈ G of prime power order lr with l | n such that no conjugate of g is in H. Existence of
such g is assured by Theorem 4.3 below: an element g has no conjugate in H if and only if g
has no fixed point in the left-multiplication action of G on Ω = G/H. If q is a prime ideal of L′

above an unramified ideal p of K such that Frob(q/p) is conjugate to g, then the inertia degree
f(q/p) is equal to ord(g) = lr, so for q′ = q ∩ L we have f(q′/p) 6= 1 since Frob(q/p) 6∈ H,
and f(q′/p) | lr, hence l | f(q′/p). The set of such prime ideals p has density at least 1/n! by the
Chebotarev density theorem. 2

Theorem 4.3 (Fein–Kantor–Schacher). Let G be a finite group acting transitively on a set Ω
with |Ω| > 1. Then there exists an element g ∈ G of prime power order lr, with l | |Ω|, acting
without fixed points on Ω.

Remark 4.4. The paper [FKS81], in which this theorem was first proved, used it for a similar
purpose as we do: classifying relative Brauer groups Br(L/K) of global fields. There appears to
be no known proof of this theorem that does not use the classification of finite simple groups.

Proposition 4.5. For a global field L/K consider the following statement, which we call (†)lL/K .

There exists an element a ∈ K× such that (a) ∈ Im, (a) 6∈ H and for all i both a
and 1/a are in T ((Mi, σi, a)⊗K L/L).

Then this statement is false for L = K, and it is true if L/K is an extension of degree n with
l admissible.

Proof. Let us first consider the case L = K, and assume there were a as in the statement. By
Lemma 3.3 there exist an Mi and a place p 6∈ Σ∞ such that the algebra (Mi, σi, a) is not split at
p and a 6∈ O×p . Hence a 6∈ T ((Mi, σi, a))× by Proposition 2.9 in contradiction to our assumption
on a.

Now consider the case of a proper extension L/K of degree n with l admissible. If L/K is
inseparable and l = charK, then Proposition 2.10 implies that all algebras (Mi, σi, a) are split
over L, so any choice of a will do as long as (a) ∈ Im, (a) 6∈ H. Such a is afforded by Lemma 3.4.
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If L/K is separable, let P ⊆ Σ\Σ∞ be the set of l-good primes; it has density at least 1/n!.
Therefore Lemma 3.4 is applicable, so we obtain a ∈ K× such that (a) ∈ Im, (a) 6∈ H and all
places p ∈ Σ\Σ∞ such that a 6∈ O×p are in P . We claim that a is as desired, so we must show
that

a,
1

a
∈ T ((Mi, σi, a)⊗K L/L)

for all i. The algebras (Mi, σi, a) ⊗K L split at all infinite places of L by construction of the
Mi, so by Proposition 2.9 it suffices to show that they split at all primes q of L above primes
p ∈ Σ\Σ∞ with a 6∈ O×p . But all those p are l-good, so l | [Lq : Kp] and hence Lq does split all
(Mi, σi, a) by the theory of central simple algebras over local fields. 2

Remark 4.6. The element a in the statement (†)lL/K can be multiplied by an arbitrary element

of O×K , i.e. the statement is really one about the principal ideal (a). To see this, observe that T is
invariant under multiplication by O×K , and the local splitting behaviour of (Mi, σi, a) at a prime
p unramified in M/K only depends on the valuation vp(a), since the local norm group contains
the local unit group for unramified extensions.

For each class of ideals in the set (Im/Pm)\(H/Pm) that contains a principal (fractional)
ideal, fix a representative principal ideal (aj) and a generator aj ∈ K× thereof. This is a finite
list since Im/Pm is finite. Thus every principal ideal in Im\H has the form (ajb) for some b ∈ Um

and one of the aj . Therefore, by Remark 4.6, we may rephrase the statement (†)lL/K as follows.

For some aj , there exists a b ∈ Um such that for all i we have

ajb,
1

ajb
∈ T ((Mi, σi, ajb)⊗K L/L).

This statement is of a very specific form; in fact, we will show that is equivalent to a certain
system of polynomial equations Gr(x1, . . . , xs, y1, . . . , yt) = 0 having a solution in Ks × Lt.
We again adopt the viewpoint of first-order logic in phrasing and proving this expressibility
result.

Lemma 4.7. Consider the first-order language of pairs of rings, i.e. with signature (+, ·, 0, 1, U),
where U is a unary predicate for a distinguished subring. There exists a positive existential
sentence ψK,n,l in this language, with parameters from K, such that the condition (†)lL/K from

Proposition 4.5 is expressed precisely by (L,K) |= ψK,n,l.

Proof. We use the equivalent form of (†)lL/K introduced above. This statement is straightforwardly
written as

ψK,n,l =
∨
j

∃b
(
b ∈ Um ∧

∧
i

ajb,
1

ajb
∈ T ((Mi, σi, ajb))

)
,

where b ∈ Um can be phrased as a positive existential statement since Um is a diophantine subset
of K by Corollary 2.13, and ajb ∈ T ((Mi, σi, ajb)) can likewise be expressed by Lemma 2.14. 2

Theorem 4.8. There exists a positive existential sentence ψK,n in the language of pairs of rings,
with parameters from K, such that (K,K) |= ¬ψK,n, but (L,K) |= ψK,n for all extensions L/K
of degree n.

Proof. Let ψK,n =
∨
l|n ψK,n,l. Now the statement is an immediate consequence of Proposition 4.5,

Lemmas 4.7 and 4.2. 2
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5. Proof of the main results

Lemma 5.1. Let f ∈K[X] be monic of degree n > 1, so K[X]/(f) is a ring into which K embeds
canonically. Then f has no root in K if and only if either (K[X]/(f),K) |= ψK,n or f factors as
f = g · h with g, h ∈ K[X] of degree < n− 1 with both g and h not having a root in K.

Proof. Assume that f has a root x ∈ K. Then K[X]/(X − x) ∼= K is a homomorphic image of
K[X]/(f) preserving K. Since (K,K) |= ¬ψK,n by Theorem 4.8, we obtain (K[X]/(f),K) 6|=
ψK,n, since truth of positive existential sentences is preserved under taking homomorphic images.
Furthermore f cannot factor as a product of two polynomials in K[X] without roots in K.

For the converse direction, assume that f has no root in K. Then either f can be written as
a product of two polynomials in K[X] without roots (and therefore each of degree > 1), or f is
irreducible. In the latter case K[X]/(f) is a field of degree n over K, so (K[X]/(f),K) |= ψK,n
by Theorem 4.8. 2

Now we can prove our main theorem.

Theorem 5.2. There exists an existential first-order formula ϕK,n(a0, . . . , an−1) in the language
of rings, with parameters in K, such that K |= ϕK,n(a0, . . . , an−1) if and only if the polynomial
f = Xn + an−1X

n−1 + · · ·+ a0 has no root in K.

Proof. We translate the equivalent statement from Lemma 5.1. Note that (K[X]/(f),K), as a
structure in the language of pairs of rings, is quantifier-freely definable in K, since elements of
K[X]/(f) correspond in a straightforward way to n-tuples of elements of K, and the definitions
of addition, multiplication, and the distinguished subset K are immediate.

Hence we obtain ϕK,2(a0, a1) by rewriting
(
K[X]/(X2 +a1X+a0),K

)
|= ψK,2 as a statement

about K and similarly ϕK,3(a0, a1, a2), since polynomials of degree at most 3 cannot factor as
polynomials of smaller degrees without roots. For ϕK,4, we have to allow for the possibility of a
reducible polynomial of degree 4 without roots, so we rewrite the statement

((K[X]/(X4 + a3X
3 +X2a2 +Xa1 + x0),K) |= ψK,4)∨

∃b0, b1, c0, c1

(
X4 + a3X

3 + a2X
2 + a1X + a0

= (X2 + b1X + b0)(X2 + c1X + c0) ∧ ϕK,2(b0, b1) ∧ ϕK,2(c0, c1)
)

as a first-order statement about K to obtain ϕK,4; this is again correct by Lemma 5.1. Inductively,
we can construct ϕK,n in this manner for all n. 2

Corollary 5.3. Let K∗∗ ⊇ K∗ be any two fields which are both elementary extensions of K.
Then K∗ is relatively algebraically closed in K∗∗.

Proof. Theorem 5.2 is also true in K∗ and K∗∗, with the same formulae ϕK,n, by first-order
transfer. Let f = Xn + an−1X

n−1 + · · · a0 ∈ K∗[X] be a polynomial without a root in K∗. Then
K∗ |= ϕK,n(a), therefore K∗∗ |= ϕK,n(a) (since ϕK,n is an existential formula), whence f does
not have a root in K∗∗ either. 2

Corollary 5.4. There exists a diophantine criterion for a polynomial over K in an arbitrary
number of variables to be irreducible.

Proof. Irreducibility is expressible by a universal first-order formula, since f being irreducible
means that for all pairs of polynomials of smaller total degree, f is not equal to their product.
By the  Loś–Tarski preservation theorem of model theory [Hod97, Corollary 5.4.5], this property is
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expressible by an existential first-order formula with parameters if and only if for every K∗∗ ⊇K∗
with K∗∗,K∗ � K every irreducible polynomial over K∗ remains irreducible over K∗∗.

We shall now show that this condition follows from relative algebraic closedness. Consider
an irreducible polynomial f ∈ K∗[X], and assume without loss of generality (after affine change
of coordinates and rescaling) that f has constant coefficient 1. Then f factors into irreducible
factors f1, . . . , fn ∈ K∗[X], each with constant coefficient 1, and these factors remain irreducible
in K∗∗[X]. If f factors non-trivially as g · h in K∗∗[X], we may assume after rescaling that both
g and h have constant coefficient 1, so g, h can be factored into products of the fi in K∗∗[X]
since this is a unique factorisation domain. But then the coefficients of g and h are both in K∗

and in K∗∗, so they are in K∗, contradicting f being irreducible. 2
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