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ABSTRACT. We use the 7 km retreat of Kangerdlugssuaq Glacier (KG), East Greenland, to examine the
mechanisms, interactions and relative significance of atmospheric forcing and ice/ocean interactions.
Hydrographic data from 1991, 1993 and 2004 show that subtropical waters are common in
Kangerdlugssuaq Fjord (KF), and that surface waters were warm in 2004 relative to 1991 and 1993.
The main water column was nonetheless warmest in 1991. We contend that while flow of subtropical
waters into fjords provides a setting in which rapid glacier retreat can occur, the triggering of retreat
depends on additional environmental factors. The climatic variables standing out in our study of KG and
KF are air temperature and katabatic winds. Both had strong positive anomalies during winter 2004/05,
when KG retreated. We show that proglacial ice melange was absent and that fjord freeze-up did not
occur until 11 April 2005, due to warm and windy conditions. We demonstrate that this setting is
unusual and hypothesize that exposure to open water in winter months caused the retreat. Calculation
of ice-front melt rates shows that discharge of basal meltwater, first from runoff and subsequently from
frictional basal heating, should intensify the interaction between glacier and fjord.

INTRODUCTION
The Greenland ice sheet is losing mass at rates of 150–
250Gt a–1 (Rignot and others, 2008; Van den Broeke and
others, 2009) and there is growing concern that this rate will
increase because of climate change (Solomon and others,
2007). Fuelling these concerns are mass budget estimates
showing a decreasing trend of the surface mass balance
(–13Gt a–2) due to a steady increase in surface runoff, as
well as increasing discharge of ice to the ocean (9.0Gt a–2)
by ocean-terminating outlet glaciers (Rignot and others,
2011). Increased runoff is directly related to atmospheric
forcing (Ettema and others, 2010), and there is good overall
consistency between estimates of runoff from different types
of models (Bougamont and others, 2007). The quantity of ice
discharged to the ocean through fjord-terminating outlet
glaciers, i.e. tidewater glaciers, varies less than runoff, but is
problematic because glacier dynamics affect the mass
budget of ice sheets on timescales ranging from years to
many decades (Price and others, 2011).

Kangerdlugssuaq Glacier (KG), East Greenland, is one of
the largest tidewater glacier systems in the world. During its
well-documented retreat of 7 km between July 2004 and
April 2005 (Joughin and others, 2008a; Seale and others,
2011), the glacier doubled its speed from 20md–1 to 40md–1

(Luckman and others, 2006; Howat and others, 2007). This
speed change resulted in a loss of 80Gt of ice between
September 2004 and January 2008 (Howat and others, 2011).
This is �350% higher than the loss would have been if it had
occurred at the pre-retreat rate (�6.5Gt a–1). Although net
annual losses returned to lower rates after 2008 (�10Gt a–1),
the immediate loss is only the beginning of the ice sheet’s
dynamical contribution to higher sea levels. Price and others
(2011) show that by 2100 the long-term mass loss from slow
diffusive thinning could be three times that of the glacier’s
immediate response.

The abrupt retreat of KG and other Greenlandic tidewater
glaciers during the last decade was first thought to be due to
increased runoff caused by atmospheric warming (Rignot
and Kanagaratnam, 2006). But whereas air temperature and
ice-sheet runoff continued to increase in the 2000s, the
glaciers have been more stably positioned since 2005
(Howat and others, 2007; Murray and others, 2010). The
dynamic change is now thought to be due to subtropical
waters, flowing into fjords via coastal currents. Straneo and
others (2010) show that circulation in Sermilik Fjord is
strongly influenced by high wind speed during intermittent
storms. Christoffersen and others (2011) show that winds are
also important on a synoptic scale and that the position of
the Icelandic low, a semi-permanent atmospheric low-
pressure system in the North Atlantic, has a strong effect
on the transport of subtropical water towards Greenland.

Although the transport of subtropical waters into Green-
land fjords is far from simple, a characteristic behaviour is
seen in the recent widespread change of Greenlandic
tidewater glaciers. Seale and others (2011) show that
glaciers flowing into East Greenland fjords south of 698N
experienced widespread retreat in 2000–05, whereas
glaciers in fjords north of this latitude experienced little or
no retreat during the same period. This relatively sharp
boundary of glaciological behaviour is not related to atmos-
pheric conditions, but to the presence (south) and absence
(north) of warm subtropical water from the Irminger Sea.

Here we use the well-documented retreat of KG in 2004/
05 and observations from within and near KF to partition
effects from the glacier’s interactions with atmosphere and
ocean. Although the retreat occurred when the fjord
contained relatively warm water, we document warmer
properties in a previous year when the glacier remained
relatively unchanged. While flow of subtropical waters into
fjords provides a setting in which rapid glacier retreat can
occur, the triggering of retreat seems to depend on
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temporal resolution of Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery (Seale and others,
2011). Subsets of MODIS scenes illustrating sea-ice condi-
tions in KF are shown in Figure 4. The image sequence
shows that sea-ice conditions in February–April 2005 were
unusual relative to other years in the MODIS record. The
fjord is typically covered by shore-fast sea ice in February,
when solar illumination returns after a blackout period. In
2005, however, there was an absence of sea ice and even
sikussak between 4 February and 4 April. The calving front
of KG was in contact with open fjord water throughout the
winter months, and there was no support from sikussak or
rigid ice melange until the fjord froze up around 11 April.
Open water in KF during February–April coincides with the
retreat of KG and is, as far as we know, a rare occurrence.

The two principal factors governing the formation of
polynya in regions of shore-fast sea ice are air temperature
and wind speed. We have already shown that the mean

winter air temperature anomaly in 2004/05 was positive and
high (+3.18C). This seasonal anomaly is primarily a result of
very warm atmospheric conditions in February and March
2005, when the anomaly exceeded +58C. (December 2004
was cold relative to the December mean.) Because February
and March is the main period of sea-ice formation and
because the monthly anomaly was high relative to the
monthly means (–8 to –98C), we expect that a decreased rate
of sea-ice formation from high air temperature contributed
to the formation of the proglacial polynya.

The second factor responsible for polynya formation is
wind speed, and our data show that winds may also have
influenced the polynya in front of KG. Figure 5 shows 10m
winds from RACMO2.1/GR averaged from December to
March. The seasonally averaged wind speeds in 2004/05 are
�4ms–1 in KF and up to �8m s–1 over the upper part of KG.
The directional constancy is close to 1, which indicates that
winds are governed almost exclusively by the katabatic

Fig. 4. Subsets of MODIS scenes illustrating sea-ice conditions in KF. The image sequence shows that freeze-up in the fjord typically takes
place prior to the return of solar illumination in February. The exception is winter 2004/05, when freeze-up did not occur until 11 April
2005. Solid white lines outline coastal polynya in front of KG. ‘S’ denotes effect of shadow. An animation of the MODIS subset is available in
the auxiliary material of Seale and others (2011).
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become) more sensitive to warming of fjords after periods of
weak NAO because atmospheric warming is intensifying
and prolonging their interactions with fjord waters. A
potentially important aspect not included in this study is
the long-term effect of mass imbalance. Thomas and others
(2000) report thinning of KG by �50m in 1995–98, and
Howat and others (2011) show that the glacier was losing
mass at a rate of �6.5Gt a–1 in 2000. It is possible that
thinning in the 1990s and early 2000s caused the ice front to
become less stable and more susceptible to retreat.
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Motyka RJ (2010) Ice mélange dynamics and implications for
terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys.
Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)

Andrews JT, Milliman JD, Jennings AE, Rynes N and Dwyer JL
(1994) Sediment thicknesses and Holocene glacial marine
sedimentation rates in three East Greenland fjords (ca. 688N).
J. Geol., 102(6), 669–683

Azetsu-Scott K and Syvitski JPM (1999) Influence of melting
icebergs on distribution, characteristics and transport of marine
particles in an East Greenland fjord. J. Geophys. Res., 104(C3),
5321–5328 (doi: 10.1029/1998JC900083)

Bougamont M and 7 others (2007) Impact of model physics on
estimating the surface mass balance of the Greenland ice sheet.
Geophys. Res. Lett., 34(17), L17501 (doi: 10.1029/
2007GL030700)

Christoffersen P and Tulaczyk S (2003) Response of subglacial
sediments to basal freeze-on: I. Theory and comparison to
observations from beneath the West Antarctic ice sheet.
J. Geophys. Res., 108(B4), 222 (doi: 10.1029/2002JB001935)

Christoffersen P and 7 others (2011) Warming of waters in an East
Greenland fjord prior to glacier retreat: mechanisms and
connection to large-scale atmospheric conditions. Cryosphere,
5(3), 701–714 (doi: 10.5194/tc-5-701-2011)

Dowdeswell JA, Evans J and Ó Cofaigh C (2010) Submarine
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