UNIVERSITY OF MIAMI RADIOCARBON DATES VIII

D PIEPGRAS and J J STIPP

Department of Geology, University of Miami, Coral Gables, Florida 33124

The following radiocarbon measurements are a partial list of projects and samples dated since January 1975. The technique used is described in R, v 16, pp 402-408 and R, v 18, pp 210-220. Dates are calculated using ¹⁴C half-life of 5568 yr and errors are reported as one-standard deviation.

ACKNOWLEDGMENTS

We are grateful to D Evans, Dept Biology, for the continued supplemental use of his Packard Tri-Carb 2003 liquid scintillation spectrometer. K Valenziano assisted in some of the chemical preparations.

SAMPLE DESCRIPTIONS

I. ARCHAEOLOGIC SAMPLES

Garfield series

Freshwater shell and corn samples from the Garfield site, 9-Br-99 Bartow Co, Georgia (34° 11′ 48″ N, 84° 58′ 04″ W). Coll 1970 by J Chapman and 1972 by J T Milanich: subm 1975 by J T Milanich, Univ Florida and T Clark, Univ Miami. *Comment* (JTM): the site is a single component village occupied by the Kellog culture, known to have existed from ca 500 BC to AD 1.

UM-445. Garfield Sq 23, Level C Freshwater shell from midden.	4690 ± 140 2740 вс
	4950 ± 80
UM-446. Garfield Sq 23, Level D	3000 вс
Freshwater shell from midden.	
	5270 ± 80
UM-447. Garfield Sq 500N, 565E, Feature 5	3320 вс
Freshwater shell from large bell-shaped storage pit.	
	890 ± 75
UM-448. Garfield corn	ad 1060
C	1 6 1

Corn from same provenience as UM-447. Corn kernels from here were previously dated at Univ Georgia at AD 700 and AD 1000.

UM-449. Garfield charred nuts $\begin{array}{c} 2070 \pm 240 \\ 120 \, \text{BC} \end{array}$

Charred nuts and wood from same provenience as UM-447, -448.

Red Willow Creek series

Charcoal and freshwater shell samples from 2 levels of occupation on North bank of Red Willow Creek. Samples come from a Woodland period house in Red Willow Co, Nebraska (40° 20′ 41″ N, 100° 38′ 42″ W) and from the Upper Republican site in Frontier Co, Nebraska (40° 22′ 50″ N, 100° 43′ 52″ W). Coll 1962 and subm 1975 R T Grange Jr, Univ South Florida, Tampa.

 1370 ± 100

UM-466. Red Willow 25RW28

AD 580

Charcoal from refuse pit, 76 to 91cm above house floor from Woodland period.

 4950 ± 120

UM-469. Red Willow 25RW28

3000 вс

Freshwater mussel shell from refuse pit 46 to 61cm above house floor.

 1940 ± 80

UM-470. Red Willow 25RW28

AD 20

Charcoal from refuse pit, 61 to 76cm above house floor.

 1920 ± 70

UM-549. Red Willow 25RW28

AD 30

Duplicate run of UM-470.

General Comment (RTG): dates should give a better understanding of Woodland period culture in Plains archaeology and show possible relationships to the Massacre Canyon site and/or Kieth focus sites in the region. Charcoal from this site was previously dated 1430 ± 45 (SE-68) R, v 7, p 246.

 1380 ± 180

UM-467. Upper Republican 25Ft80

AD 570

Charcoal from several locations in the same general occupation zone, 0 to 46cm below surface.

 3395 ± 295

UM-468. Upper Republican 25Ft80

1445 вс

Freshwater mussel shell from several locations in same occupation zone, 0 to 46cm below surface.

General Comment (RTG): the Upper Republican site is on upper level of terrace in Red Willow Creek Valley. Dated to provide a better basis for comparative studies of cultures in the region. Charcoal from this site was previously dated 440 ± 40 (SI-72) R, v 7, pp 247.

St Simons Island series

Seven shell samples from middens of various locations on St Simons I. Glynn Co, Georgia. Coll 1974 and subm 1975 by J T Milanich, Univ Florida and A Machover, Univ Miami.

General Comment (JTM): dates correspond to Deptford and Wilmington cultures and are to check, and, if necessary, revise ceramic and cultural sequence for central coast of Georgia.

 990 ± 80

UM-667. St Simons I. Test B-C

ad 960

Busycon from shell midden (31° 17′ 8″ N, 81° 19′ 42″ W) 35cm below surface.

 1130 ± 70

UM-668. St Simons I. Test D

AD 820

Busycon from shell midden (31° 16′ 30″ N, 81° 19′ 47″ W) 18cm below surface.

 1240 ± 90

UM-669. St Simons I. Test F

AD 710

Busycon from shell midden (31° 16′ 4″ N, 81° 20′ 22″ W) 10cm below surface.

 710 ± 70

UM-670. St Simons I. Test G

AD 1240

Oyster shell from midden (31° 17″ 4″ N, 81° 19′ 42″ W) ca 30cm from surface.

 510 ± 75

UM-701. St Simons I. Test G

AD 1440

Duplicate of UM-670.

 1240 ± 70

UM-671. St Simons I. Test A

AD 710

Oyster shell from shell heap (31° 17′ 8″ N, 81° 19′ 40″ W). Level III, 34 to 49cm below surface.

 1190 ± 70

UM-672. St Simons I. Test A

AD 760

Oyster shell from Level IV, 49 to 64cm, of same shell heap as UM-671.

 1015 ± 70

UM-673. St Simons I. Test E

AD 935

Oyster shell from midden (31° 16′ 20″ N, 81° 19′ 50″ W) 15 to 30cm below surface.

St John's II series

Duplicate runs on *Donax variabilis* shell coll from a midden 8km S of Jacksonville Beach, Florida (30° 16′ 47″ N, 81° 23′ 09″ W). Coll and subm 1975 by J Miller, Tallahassee, Florida.

General Comment (JM): helps date occupation, as ceramic markers are vague.

UM-702. St John's II

 1000 ± 70 AD 950

2. St John S II

 1175 ± 70

UM-703. St. John's II

AD 775

II. GEOLOGIC SAMPLES

A. United States

Everglades Marsh series

Periphyton samples coll alive as cylindrical encrustations on *Eleocharis* stems (a sedge), from various locations in the Everglades marsh, Florida. Coll and subm 1975 by P Gleason and P Stone, Central and S Florida Flood Control Dist.

General Comment (PG): dated to determine hard water effect, and to develop a correction factor for dates on calcitic mud derived from Periphyton from similar environments.

UM-656. Everglades Marsh BC6 $134.9 \pm 0.9\%$ modern

Carbonate fraction of *Periphyton* (25° 50′ N, 80° 50′ W) 2.4m above MSL. *Comment* (PG): hard water in contact with surface limestones and marls.

UM-657. Everglades Marsh BC7 $135.2 \pm 1.1\%$ modern Same as UM-656.

UM-658. Everglades Marsh 2-17CP $129.2 \pm 1.0\%$ modern

Carbonate fraction of *Periphyton* (26° 16′ 50″ N, 80° 25′ 10″ W) 3.4m above MSL. *Comment* (PG): hard water due primarily to agricultural runoff and hard ground water from canals.

UM-663. Everglades Marsh 2-17AP $127.8 \pm 1.0\%$ modern Same as UM-658.

UM-659. Everglades Marsh 3-28AP $137.3 \pm 1.1\%$ modern Carbonate fraction of *Periphyton* (25° 48′ 55″ N, 80° 43′ 15″ W) 2.3m above MSL.

UM-660. Everglades Marsh BC2,3,4,8 $132.9 \pm 0.9\%$ modern Carbonate fraction of *Periphyton* (25° 50′ N, 80° 50′ W) 2.4m above MSL. Similar to UM-656 and UM-657.

UM-661. Everglades Marsh BC2,3,4,8 $130.4 \pm 1.2\%$ modern Organic fraction of UM-660.

UM-662. Everglades Marsh BC2,3,4,8 $126.1 \pm 1.1\%$ modern Duplicate run of UM-661.

Everglades Tree Island series

Peat samples from 3 piston cores in Everglades tree-islands, small *Persea* type, in Conservation Area I, the Everglades, Florida. Continuation of a study on tree-island formation (R, v 18). Coll and subm 1975 by P Gleason and P Stone and D Piepgras.

General Comment (DP): results of core 20 suggest tree-islands may form in situ, contrary to hypothesis that they break loose during flooding and settle over a younger area.

	930 ± 90
UM-681. Core 20(3): 146 to 156cm	ad 1020
(26° 26′ 55″ N, 80° 17′ 10″ W) 5.0m above MSL.	
	910 ± 70
UM-687. Core 20(3): 156 to 166cm	ad 1040
	1290 ± 70
UM-682. Core 20(3): 166 to 175cm	AD 660
	1460 ± 70
UM-683. Core 20(3): 179 to 188cm	AD 490
, ,	2070 ± 80
UM-684. Core 20(4): 198 to 206cm	2070 ± 60 120 BC
2000m	
UM-685. Core 20(4): 217 to 226cm	2690 ± 90 $740 \mathrm{BC}$
Chi-003. Core 20(4): 217 to 220cm	
TIM 005 C 90(4) 915 99(2110 ± 70
UM-825. Core 20(4): 217 to 226cm	160 вс
Duplicate run of UM-685.	4640 + 120
UM-686. Core 20(4): 307 to 315cm	4640 ± 130 2690 вс
Comment (DP): basal peat to determine onset of	
(22). Sasar pear to determine onset of	- ·
UM-557. Core 20: 91cm	780 ± 70
	AD 1170
Comment (PG): wood dates appearance of trees on isl	anas.
	4590 ± 100

UM-651. Core 17(3): 300 to 305cm $4590 \pm 2640 \, \text{BC}$

Basal peat to determine onset of peat deposition (26° 26′ 55″ N, 80° 17′ 10″ W). Collected at 5.0m above MSL.

UM-665. Core 15(3): 170cm 1280 ± 70 AD 670

Basal hammock peat dates onset of hammock peat deposition (26° 31′ 10″ N, 80° 19′ 40″ W). Collected at 5.3m above MSL.

Everglades marl series

Peat and marl samples from 2 cores in the Everglades, Florida (25° 48′ 55″ N, 80° 43′ 15″ W). Coll and subm 1975 by P Gleason and P Stone, CSFFCD and M Kirschbaum, Univ Miami.

General Comment (PG): marl deposition correlates to a dry period in the history of the Everglades. Peat samples bracket marls to serve as a cross-check to marl dates. Collected at 2.3m above MSL.

UM-695. Core 26-2: 47 to 53cm $\begin{array}{c} 3180 \pm 80 \\ 1230 \, \mathrm{BC} \end{array}$

Peat sample serves as a lower bracket to marl (UM-697).

UM-696. Core 26-7: 27 to 33cm	2040 ± 80 $90 \mathrm{BC}$
Peat sample serves as upper bracket to marl (UM-697).	-110 . 00
UM-697. Core 26-4,5: 37 to 44cm	2440 ± 90 $490 \mathrm{BC}$
Periphyton marl with mullosk and gastropod shells.	
UM-698. Core 27-3,4: 36 to 43cm	2430 ± 100 $480 \mathrm{BC}$
Periphyton marl with mullosk and gastropod shells.	
UM-699. Core 27-1: 45 to 52cm	3210 ± 80 $1260 \mathrm{BC}$
Peat sample serves as lower bracket to marl (UM-698).	
UM-700. Core 27-6: 27 to 34cm Peat sample serves as upper bracket to marl (UM-698).	2080 ± 70 $130 \mathrm{BC}$
M-664. Everglades peat	4520 ± 160 $2570 \mathrm{BC}$

UM

Basal peat from Everglades marsh dates onset of peat deposition. The Everglades, Florida (25° 48′ 55″ N, 80° 43′ 15″ W), 100 to 105cm. Coll and subm 1975 by P Gleason and P Stone.

UM-556. The Everglades

>37,550

Shells (Chione cancellata) from a peat core, 196 to 210cm, in Conservation Area 2A, The Everglades, Florida (26° 20' N, 80° 24' W). Dates last marine influence in area. Coll 1974 by P Gleason and P Stone; subm 1975 by P Gleason.

 2500 ± 80 550 вс UM-666. Lake Okeechobee Core 11(3)

Mucky peat from a core at depth 175cm from Kreamer I., Lake Okeechobee, Florida (26° 46′ 00" N, 80° 43′ 30" W). Dates end of peat deposition or erosional surface. Coll and subm 1975 by P Gleason and P Stone. Comment (PG): Sample collected at 4.9m above MSL.

 4720 ± 90 Corkscrew Swamp CS-1: 173 to 183cm 2770 BC UM-635.

Basal peat sample from Corkscrew Swamp Sanctuary, W of Immokalee, Florida. Dates onset of peat deposition in swamp. Coll 1975 by P Gleason and P Stone; subm 1975 by M Deuver, Natl Audobon Soc.

 970 ± 80 **AD 980** Adams Beach salt marsh UM-653.

Sandy peat from a core in a salt marsh at Adams Beach, Taylor Co, Florida (29° 52′ 30″ N, 83° 38′ 18″ W). Date may correlate to sea level rise. Coll and subm 1975 by C Wayne and R S Murali, Florida State Univ. Tallahassee, Florida.

Baker's Haulover and Cape Florida series

Marine carbonate sediments coll by hand scooping of surface sediments at Baker's Haulover Beach (25° 54′ N, 80° 07′ W) and Cape Florida (25° 40′ N, 80° 10′ W). Coll and subm 1975 by R Goldstein, Univ Miami. General Comment (RG): dated to compare sediment transports and to correlate sediment size with age.

UM-674.	Cape Florida, A: 250 to 5000μ	3660 ± 100 1710 вс
UM-675.	Baker's Haulover, B: 250 to 500μ	5090 ± 110 $3140\mathrm{BC}$
UM-676.	Cape Florida, A: 125 to 250 μ	2700 ± 80 $750\mathrm{BC}$
UM-677.	Baker's Haulover, B: 2000 to 4000μ	5550 ± 100 $3600 \mathrm{BC}$
UM-678.	Baker's Haulover, B: 125 to 250μ	5180 ± 160 $3230 \mathrm{BC}$
UM-679.	Cape Florida, A: 2000 to 4000μ	6320 ± 130 $4370\mathrm{BC}$
UM-680.	Baker's Haulover, B: 2000 to $4000\mu/B$	12,515 ± 360 10,565 вс

Central Delaware shelf series

Shells from 2 cores off Delaware coast. Dates sedimentation rate during Holocene transgression. Coll 1973 by R E Sheridan; subm 1974 by M S Lipp and W L Stubblefield, NOAA.

+ 985 10,710 -1125 15(MG:G-NOAA) 8760 BC

340 to 346cm from top of core (34° 55′ 00″ N, 75° 57′ 00″ W).

UM-339. 16(MG:G-NOAA) $11,000 \pm 240$ 9050 BC

575 to 585cm from top of core (34° 56′ 30″ N, 75° 53′ 42″ W). *Comment* (WLS): previously dated by Teledyne Isotopes, Inc (unpub) at 12,400 BP.

Desoto Canyon series

UM-338.

Core of calcareous mud from continental slope, Desoto Canyon, Gulf of Mexico (29° 00′ N, 87° 36′ W). Continuation of a study on paleoclimatology of Quaternary sediments from NE Gulf of Mexico (R, v 17, p 241-242; Emiliani *et al*, 1975). Coll 1974 by S Gartner; subm 1975 by C Emiliani and L Ling, Univ Miami.

UM-688. GS7102-7, 3 to 8cm 4910 ± 140 $2690 \, \text{BC}$

		8965 ± 180
UM-689.	GS7102-7, 72 to 77cm	7015 вс
		$16,660 \pm 500$
UM-690.	GS7102-7, 161 to 163cm	14,710 вс
		+470
		$^{19,020}_{-510}$
UM-691.	GS7102-7, 211 to 219cm	—310 17,070 вс
0112 07 20	33.2.2.	+590
		21,850
		-640
UM-692.	GS7102-7, 221 to 228cm	19,900 вс
		$15,560 \pm 420$
UM-693.	GS7102-7, 341 to 349cm	13,610 вс
		+1320
		22,570
		-1590
UM-694.	GS7102-7, 351 to 358cm	20,620 вс
	$B. \ Italy$	
	·	$20,290 \pm 710$
UM-548. Ty	rrenian Sea, T71-3 16	18,340 вс

Siderite (FeCO₃) from top of core from the Tyrrenian abyssal plain (39° 45′ N, 14° 30′ E). Dated to determine origin of siderite. Coll 1974 by R Sartori, CNR Bologna, Italy; subm 1975 by E Bonatti, RSMAS, Miami, Florida.

C. St Croix

UM-420. Westend Saltpond 2155 ± 170 $205 \, \mathrm{BC}$

Peat from core taken at Westend Saltpond, St Croix, Virgin Islands (17° 41′ 13″ N, 64° 53′ 21″ W). Date for Holocene sea level records. Coll 1974 by L C Gerhard, West Indies Lab, St Croix; subm 1975 by L C Gerhard and E Swietelsky, Univ Miami.

D. Bahamas

Tongue of the Ocean series

Coral, sclerosponge, and sediment samples blasted from reef wall at various locations along the Tongue of the Ocean, Bahamas. Coll and subm 1976 by W Schlager, RSMAS, Miami.

 $\begin{array}{ccc} & & & 125 \pm 80 \\ \text{UM-708.} & 76\text{-}5\text{-}4 & & & \text{Ad } 1825 \end{array}$

Sclerosponge in 82.3m water (24° 02′ 00″ N, 77° 10′ 45″ W). Date for stratigraphy of reef wall.

 $\begin{array}{ccc} 4460 \pm 90 \\ \text{UM-709.} & 76\text{-}5\text{-}7 & 2510\,\text{BC} \end{array}$

Coral (*Porites*) from same location as UM-708.

UM-710. 76-6-1

 8310 ± 80

6360 BC

Coral (Montastrea annularis) from same location as UM-708, at depth 137m.

UM-713. 76-14-1

 10.000 ± 85 8050 BC

Coral (Montastrea annularis) from depth 95.1m (23° 29' 42" N, 76° 34' 06" W). Comment (WS): UM-709, -710, and -713 are shallow water corals that probably grew during a lower stand of sea level.

UM-711. 76-9-2A

 770 ± 60

AD 1180

Oolites from depth 82.9m (24° 02′ 24″ N, 77° 11′ 12″ W).

 3490 ± 85

UM-712. 76-9-2B

1540 BC

Lithified skeletal and ooid sand from same location as UM-711. Comment (WS): UM-711 and -712 date sediment accretion rate on reef wall.

Fresh Creek series

Carbonates from Andros I. adjacent to runway at Fresh Creek (24° 41' 53" N, 77° 48' 37" W). Dated to determine if marine sediments are a source of CaCO₃ in freshwater sediments deposited by Fresh Creek. Coll 1974 and subm 1975 by P Gleason and P Stone.

UM-631. Fresh Creek 1

 $14,560 \pm 230$

12.610 вс

Oolitic limestone bedrock coll at surface.

Brackish marine carbonate, surface sediment.

 2900 ± 120 950 вс

UM-632. Fresh Creek 2

 1040 ± 120

UM-633. Fresh Creek 3

AD 910

Silt size freshwater calcitic mud coll in a living algal mat.

REFERENCES

Eldridge, K L, Stipp, J J and Cohen, S J, 1975, University of Miami radiocarbon dates III: Radiocarbon, v 17, p 239-246.

Emiliani, C, Gartner, S, Lidz, B, Eldridge, K, Elvey, D K, Huang, T C, Stipp, J J, and Swanson, M, 1975, Paleoclimatological analysis of late Quaternary cores from the Northeastern Gulf of Mexico: Science, v 189, p 1083-1088.

Long, Austin, 1965, Smithsonian Institution radiocarbon measurements II: Radiocarbon, v 7, p 245-256.

Stipp, J J, Eldridge, K L, and Cadwell, R, 1976, University of Miami radiocarbon dates VI: Radiocarbon, v 18, p 210-220.

Stipp, J J, Elridge, K L, Cohen, S J, and Webber, K, 1974, University of Miami radiocarbon dates I: Radiocarbon, v 16, p 402-408.

Stipp, J J, Eldridge, K L, and Valenziano, K, 1976, University of Miami radiocarbon dates VII: Radiocarbon, v 18, p 371-375.