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ELNES observed using STEM is a promising technique for analyzing atomic and electronic structures 

with atomic resolution, thus it has been widely used for analyzing battery, catalysis and other functional 

materials. To extract materials information from the ELNES, namely, to interpret its spectral features, use 

of theoretical simulation is indispensable. 

Theoretical simulation of ELNES is very powerful because it can be applied to unknown materials, 

however, in order to determine an atomic structure which reproduces the experimental ELNES, we have 

to perform a lot of calculations of candidate structures. Moreover, extracting materials information from 

their spectral features is not generally straightforward due to a complexity of relations between the spectral 

features and the atomic and electronic structures. 

Here, to overcome those problems, we developed machine learning-based approaches for the ELNES 

characterization. Specifically, we used an artificial neural network to predict ELNES spectra [3] and 

quantify structural properties directly from ELNES [4-6]. We prepared O-K edge database of silicon 

oxides by a first principles calculation, CASTEP code, totally 1,189 spectra, and constructed the artificial 

neural network model. The crystal data of silicon oxides were obtained from Materials Project database 

[7]. Also, we prepared amorphous data for estimating our prediction model. 

For construction of an ELNES prediction model, inexpensive information is suitable for input information. 

Therefore, we used partial density of states at a ground state as shown in Fig. 1 because they require much 

smaller computations than the ELNES calculation in which a core-hole introduction with a sufficiently 

large supercell is indispensable. Mean squared errors (MSE) of the crystalline silicon oxides data and one 

of the spectra are shown in Fig. 2(a,b). The predicted spectrum agrees well with its correct spectrum in 

Fig. 2(a). This implies that the artificial neural network has successfully trained the core-hole effect and 

it can predict the ELNES features only by its ground state electronic structure. 

Then, the prediction model constructed by the crystalline silicon oxides was applied to predict the ELNES 

of the amorphous silicon oxides. Different from the crystalline materials, the amorphous data has much 

large errors as can be seen in Fig. 2(a,c). Detailed analysis revealed that the large errors are caused by a 

“underestimation” of the core-hole effects with comparison to the crystals. To improve the 

underestimation, we added bandgap information as input, resulting in excellent improvement in Fig. 

2(a,d). 

The details of the results and quantification of structural properties will be shown in our presentation [8]. 
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Figure 1. Neural network architecture for predicting ELNES. 

 
Figure 2. Prediction of crystal and amorphous test data. (a) Mean squared errors (MSEs) are plotted. Grey 

dots are crystals, and green and orange squares are amorphous with and without bandgap, respectively. 

(b,c) Predicted and correct spectrum of one of the crystal and amorphous, respectively. (d) Predicted and 

correct spectrum of the same amorphous data considering bandgap. 
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