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AN ELEMENTARY PROBABILISTIC COMPUTATION OF
THE POISSON KERNEL FOR THE n=2 AND 3
EUCLIDEAN BALL

BY
JACQUES VAUTHIER

ABSTRACT. Direct and elementary derivation of the classical
Poisson kernel for the ball in n =2 or n =3 dimensions starting with
the usual expression f(x)=Ex(f(bw(T))) involving the brownian
motion b, the stopping time T on the boundary, and E, the
conditional expectation on paths starting at x.

It came out as a surprise when Peter Greiner told me that no probabilist he
knew was able to give him a reference, and neither could I, of where to find the
derivation of the classical Poisson kernel in n =2 or n =3 dimension starting
with the usual compact formula

fx) = E(f (b, (T))).

Here f is given on the boundary of the ball, b, is the usual brownian motion in
n=2 or n=3 dimension; T stands for the stopping time of b, on the
boundary, E, is the conditional expectation for the paths starting at x.

I want, in this note, to give a direct procedure to find the Poisson kernel.
Besides the fun, I hope to emphasize the use of the so called MacKean
martingale which has been so accurate in the study of the Pauli’s equation [1].

In order to be complete, I shall divide the paper in two: one concerning
n =2 and the other for n =3.

I. The Poisson kernel in n =2. D is the unit disc, b, the brownian motion in
R? starting at x, in D. T, is the stopping time on the boundary D of D:

T, =inf{t | b,(t) € 8D}.
We shall use polar coordinates which means for the brownian that instead of

using the Laplacian
l A _l <._ai+_£i+i>
27 2\9x? 9y* 0az?
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We shall split it into radial and tangential parts:

1 1a2+1a 1 9%

— =
27 29r* 2ror 2r*96?
———— N——

radial tangential.

This gives the polar decomposition of b,,:

bw = (ran 0&))
where r, and 6; are given by the following stochastic equations:
dr,=dB, + ds
r(‘)
de&) = dB(B/rm
dp,, dB; are usual brownians on the line R, dB, and df; being independent.
So:
‘o d
= ro+ B0+ [ 2
0 rw(s)
05(1) = 00+J 485 )
0 rw(s)

if xo={(ry, 6,).

We are now in a position to get the Poisson kernel for D. As we know [3],
the so called harmonic measure is the law of the hittings of b, on dD and the
solution to the Dirichlet problem is given by

f(xo) = E,(f(b,(T,)))

f is the data on aD, f the harmonic extension in D, E,, the expectation on the
paths starting at x, in D.

Expand f in Fourier series and use the polar coordinates described before for
b,, (observe that T, is a stopping time for r, and not for 6,):

+oo
f(x))=E, Eq, Y. a,(fexp in 6,(T,,)

+oo T, .
= Z a,(f)E, E,, exp{in(00+ J dﬁ")}
—o0 0

T

N T. dB,
=Y a,(flexpin OOE,“EGU{exp<in J __w>}
‘w o Te

Here we use the main tool in this subject: the MacKean martingale which

ives
: E (e ; J'T‘“dB;,) n2J'des
Xp in —2)=exp —— =,
0 \XP o T P b 12

w
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because r,, is independent from B and appears here as a sure function of &([3]
p. 22).
Then

2 T
n° ('-ds
Y(r)= E,( - —)
(r) eXp 2 L ri
is the solution to the following differential equation:

1., 1 n?_
5‘1"+Z‘I’—2r2\1’—0
v(0)=0, W¥(1)=1.

It is very easy to solve it and find

Y(r)=r"l.
So
fxo) = 2 an(le™ o b
but
O .
) =5= | 1) b
aT
therefore
” 1 (& .
o =5= | T e oo do
_1 i 1-r3
27 L 1—2rgcos(6y— )+ 13 f($) dé

and here is the Poisson kernel.

II. The Poisson kernel in n=3. In n=3 the method though not very
different is slightly more complicated, the system {e? being replaced by
spherical harmonics. Namely, any L? function on the sphere 3, is the L? limit of

Y e, | PE R do
0 b

when 7 — 17. P, is the usual Legendre polynomial, ¢, is a constant depending
only on n. If f is continuous, the convergence is uniform and one can write

+o0

fx)=Y c. Lﬁ fﬂ P, (cos v)f(a, B)sin a da dB;

0

a is the colatitude, B the longitude and cos y is computed according to the rule
with x=(0, ¢),

cos v = cos 6 cos a +sin 6 sin a cos(B — ¢).
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The Legendre’s polynomial has a remarkable addition property if one
introduces the A, (t), associated Legendre functions, which are up to a

coefficient
(n=p)! T+ \] . o d
N( n! F(n+j+3)c">]'(1 )2 5 P (@),

Namely, one has:

¢ P,(cos y)= % Zn: A, {cos a)A, j(cos B)cos j(B— o).
0

I shall proceed now to the probabilistic frame: We introduce radial (r),
colatitude (@) and longitude (¢) coordinates for x in the unit ball B. T, is the
hitting time for the brownian traveller starting at x,=(ry, 6y, ¢o) on the sphere
3. The splitting of the Laplacian in spherical coordinates

2 29r* 2rord 12r706% 2r* 9601 |2r%sin® 609>

gives the following

ag
do, =—=
o rsin
dp,, cotan@,
— _—2+—2
de,,, - 27 ds
ds
dr, =dB, +—
rw; Bw_; 2r

@3

with B, B.,, B, three independent browian motions on the line.

For the sake of better clarity, I shall divide the subsequent computations into
three lemmas which consist in the computation of E,, E,, E, respectively in the
following formula

f(xo) = f(ro, 0o, d’o) = ErOEe“E%l—f(bm (Tm))]
expressing the solution of the Dirichlet kernel given f on the boundary 2.

LEmMmA 1.

®

22 T d
E 4 [cos j(B—¢.,,(T,)]=exp (—]— L %{)cos i(B— o).

2 r,.sin

3 w2

Proof.
cos j(B— ., (T.,)) = slexp(ijB)exp(—ijé.,)
+exp(—ijB)exp(+ijo,,,)]-
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By MacKean’s martingale, one has

2 T,
Eolexpiis, T)=ew(-L | )xexpido
0

2 r?sin® 0

and this gives Lemma 1.

LEMMmA 2.
2 T
j w ds
E,, [An“(cos 0,,,)exp 5 i 0]
+1) (Td
=(2n+1A, (cos t!)o)exp(—M j —;)
! 2 0 re
Proof. Recall that T,, depends only on r,, so in the preceding equality T, is

fixed.
The fundamental solution for
3 _ 1 3¢ cotan® 63y i

P A _
at 2r2960%>  2r> 00 2risin’6
is given by Paul Levy in his famous book on brownian motion [2]:
+-oc0 t d
v(t, 0)= Z Qp+ 1)exp(—p(p +1) j —i> A, ;(cos 0).
0

2
p=0 zrm

So the left hand side to the above equality is given by

A, i(cos ;) ‘r +§ 2p+ 1)exp(—p(p +1) J;)Tw idriz) Xo o

0 p=0 )

X A, (cos a)A,(cos a)sin a da.

But the A, are orthogonal so [§ A,;A,;sin a da is null unless n = p for which
it equals 1. This gives Lemma 2.

+1) ("d
E,O(exp—n—(nz—) L r—zs-) =rg, n=0.

Proof. Same as in dimension 2, now with the equation
1 ,,+l ,_n(n+1)
2V Y 2r?

y@=0, yM)=1

Summing up Lemmas 1 to 3:

LeMmma 3.

y=0

PROPOSITION:
ErnEﬂqub(,A n,j(COS sz(Tw))COS ](B - ¢w,(Tm))
=(2n+1rgA, {(cos 6p)cos j(B — ¢o)
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But now this gives

f(ro, 005 do) = Y, @n+1)r" L J P, (cos v)f(a, B)sin a da dB
n=0 —ar
with cos y = cos 6 cos « +sin 6 sin a cos (8 — ¢). The Poisson’s kernel is

1-r?
2n+1)r"P -
,,Z;‘O( n+ Driby(cos v) (1-2rcosy+r

27 - cqfd.

QUuEsTION. Is it possible to do the same thing for the Heisenberg group? This
will answer a question raised in [4].
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