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ABSTRACT. Direct and elementary derivation of the classical 
Poisson kernel for the ball in n = 2 or n = 3 dimensions starting with 
the usual expression f(x) = Ex(f(b(i)(T))) involving the brownian 
motion bM, the stopping time T on the boundary, and Ex the 
conditional expectation on paths starting at x. 

It came out as a surprise when Peter Greiner told me that no probabilist he 
knew was able to give him a reference, and neither could I, of where to find the 
derivation of the classical Poisson kernel in n — 2 or n = 3 dimension starting 
with the usual compact formula 

f(x) = Ex(f(b„(T))). 

Here / is given on the boundary of the ball, b^ is the usual brownian motion in 
n = 2 or n = 3 dimension; T stands for the stopping time of b^ on the 
boundary, Ex is the conditional expectation for the paths starting at x. 

I want, in this note, to give a direct procedure to find the Poisson kernel. 
Besides the fun, I hope to emphasize the use of the so called MacKean 
martingale which has been so accurate in the study of the Pauli's equation [1]. 

In order to be complete, I shall divide the paper in two: one concerning 
n = 2 and the other for n = 3. 

I. The Poisson kernel in n = 2. D is the unit disc, b^ the brownian motion in 
U2 starting at x0 in D. T^ is the stopping time on the boundary 3D of D : 

T„=inf{t |6„(t)€dD}. 

We shall use polar coordinates which means for the brownian that instead of 
using the Laplacian 

1 l / _ ^ _#_ ^ \ 
2 2 W 2 + dy2 + dz2 / 
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We shall split it into radial and tangential parts: 

IA - i— —— — — 
2 ~2dr2 2rdr 2r2 d62 

radial tangential. 

This gives the polar decomposition of b^ : 

where r^ and 0^ are given by the following stochastic equations: 

&„ = <!&„+ — 

ddà = dpjrœ 

djS ,̂ dfià are usual brownians on the line R, dPM and d^ being independent. 
So: 

„ / x fX ds 

Jo r< (s) 

Jo ^ ( s ) 

if x0 = (r0, 0O). 
We are now in a position to get the Poisson kernel for D. As we know [3], 

the so called harmonic measure is the law of the hittings of bœ on 3D and the 
solution to the Dirichlet problem is given by 

/(x0) = EXo(/(6„(Tft>))) 

/ is the data on 3D, f the harmonic extension in D, EXo the expectation on the 
paths starting at x0 in D. 

Expand / in Fourier series and use the polar coordinates described before for 
bM (observe that T^ is a stopping time for r^ and not for 6^): 

f(x0) = EroEdo £ On(/)exp in 0&(TJ 

- Z a n ( / ) E r o E e o e x p [ i n ( 0 o + J " ^ * ) } 

= Z On(/)expin S0ErEeJexp^in J - ^ j J. 

Here we use the main tool in this subject: the MacKean martingale which 

MexpmJ0 vr e x p -TJo * 
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because r^ is independent from (3^ and appears here as a sure function of ci ([3] 
p. 22). 

Then 
, , , rl n2[T-ds\ 

is the solution to the following differential equation: 

^jr"+ ^jr'_ ^ = 0 
2 2r 2r2 

1^(0) = 0, *(1) = 1. 

It is very easy to solve it and find 

^(r ) = r|n|. 
So 

/(xo) = Za n ( / )c i n eo rW 

but 

an(f) = ̂ ^ me-^d* 
therefore 

Z7T J 0 -oo 

= J_ f2- 1-rg 
27rJ0 l-2r0cos(fl0--<M + r§ * 

and here is the Poisson kernel. 

II. The Poisson kernel in n = 3. In n = 3 the method though not very 
different is slightly more complicated, the system {ein0} being replaced by 
spherical harmonics. Namely, any L 2 function on the sphere 2 is the L 2 limit of 

Z T - C J Pn 
0 •*£ 

when T -» 1~. Pn is the usual Legendre polynomial, cn is a constant depending 
only on n. If / is continuous, the convergence is uniform and one can write 

+00 çrr Ç+TT 

fix) = Z cn\ Pn(cos y)f(a, |3)sin a da dp; 

a is the colatitude, j3 the longitude and cos y is computed according to the rule 
with x = (6, <f>), 

cos 7 = cos 6 cos a + sin 6 sin a cos(|8 - <£>). 
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The Legendre's polynomial has a remarkable addition property if one 
introduces the Anj(t), associated Legendre functions, which are up to a 
coefficient 

Namely, one has: 

1 n 

cnPn(cos 7) = — X AnJ(cos a)An5j(cos 0)cos /(|3 - <£>). 
Z7T 0 

I shall proceed now to the probabilistic frame: We introduce radial (r), 
colatitude (0) and longitude (<f>) coordinates for x in the unit ball B. T^ is the 
hitting time for the brownian traveller starting at x 0 ^(r 0 , 0O, <f>0) on the sphere 
2 . The splitting of the Laplacian in spherical coordinates 

I A - I " ! — ——l [— — c ° t a n ° d 1 r i a21 
2 L2 ar2 + 2r ar J+I_2r 2a0 2 + 2r2 a0_l + l_2r2sin2 0 a^2J 

gives the following 

r sin 0 

^ ^Pco2 , œtan 0 ^ 
d0W2 =

 s + — z - ^ d s 
r 2r 

with 0 ^ , jS^, 0 ^ three independent browian motions on the line. 
For the sake of better clarity, I shall divide the subsequent computations into 

three lemmas which consist in the computation of E^, Ee, Er respectively in the 
following formula 

f(x0) = /(r0, 0o, <f>o) = EroE9oEJJ(b» (TJ ) ] 

expressing the solution of the Dirichlet kernel given / on the boundary 2 . 

LEMMA 1. 

E 

Proof 

cJcos/OS-c^Tj^expf-— ——. 2 )cos/(j3-<^o). 
\ ^ Jo ^ 3 s i n v^j 

cos /(j3 - ^ ( T J ) = |[exp(i]*P)exp(-i7^CUi) 

4- exp(-i/|3)exp(+i/^a)i)]. 
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By MacKean's martingale, one has 

E<Jexp ± i / ^ C O - cxpy - - J r 2 s i n 2 ^ J x exp(±i/^0) 

and this gives Lemma 1. 

LEMMA 2. 

H e o f A ^ c o s ^ e x p - ^ ^ ^ ^ ] 

= {In + l)Anij(cos 0o)exp(^ J ^ J . 

Proof. Recall that Tw depends only on r ,̂ so in the preceding equality TM is 
fixed. 

The fundamental solution for 

c h / / _ J _ a V cotan2fldifr /2 

at ~ 2rl d62 2rl 86 2r2 sin2 0 

is given by Paul Levy in his famous book on brownian motion [2]: 

*(«,«) = f (2p + l )exp(-p(p + l) f ^ ) A P , , . ( C O S 6). 

So the left hand side to the above equality is given by 

AnJ(cos0o) X (2p + l)exp -p (p + l) —^ x • • • 
Jo P = o ^ •'o ^ r û j / 

x ApJ(cos a)Anj(cos a)sin a da. 

But the A p j are orthogonal so Jj AviAnA sin a da is null unless n = p for which 
it equals 1. This gives Lemma 2. 

LEMMA 3. 

/ n(n + l) f T ds \ „ 

Proof. Same as in dimension 2, now with the equation 

1 1 , n(n + l) 
~y +-y — T p r " 
2 r 2r 
y(0) = 0, y(l) = l. 

Summing up Lemmas 1 to 3: 

PROPOSITION: 

/cos 0<U2(T<u))cos /(/3 - 4>ai(TJ) 

= (2n + l)rSAnj(cos 0o)cos j(|3 - 4>0) 
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But now this gives 

f(r0, 0O; 4>o) = I (2n + l)r" f f Pn(cos Y)/(o, 0)sin a da d/3 
n>0 Jo J-TT 

with cos 7 = cos 6 cos a 4- sin 0 sin a cos (|3 - c£). The Poisson's kernel is 

Z o (2n + l ) r ^ ( c o s T ) = ( 1 _ 2 r c
1

o - s ; 2
+ r 2 ) 3 / 2 - cqfd. 

QUESTION. IS it possible to do the same thing for the Heisenberg group? This 
will answer a question raised in [4]. 
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