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ABSTRACT. The detection of small changes in concentration or thickness in the Arctic
or Antarctic ice cover is an important topic in the current global-climate-change debate.
Change detection using satellite data alone requires rigorous error analysis for their de-
rived ice products, including inter-satellite validation for long time series. All models of
physical processes are only approximations, and the best models of complicated physical
processes have errors and uncertainties. A promising approach is data assimilation, com-
bining model, in situ data and satellite remote-sensing data. Sea-ice monitoring from satel-
lite, ice-model estimates, and the potential benefit of combining the two are discussed in
some detail. In a case-study we demonstrate how the sea-ice backscatter for the Beaufort
Sea region was derived using a backscattering model in combination with an ice model. We
conclude that, for data assimilation, the first steps include the use of simple models, mov-
ing, with success at this level, to progressively more complex models. We also recommend
reconfiguring the current remote-sensing data to include precise time tags with each pixel.
For example, the current Special Sensor Microwave Imager data might be reissued in a
time-tagged orbital (or gridded) format as opposed to the currently available daily aver-
aged gridded data. Finally, error statistics and quality-control information also need to be
readily available in a form useful for assimilation. The effectiveness of data-assimilation
techniques 1s directly linked to the availability of data error statistics.

INTRODUCTION of information derived from observations of the actual
physical processes. However, in situ data on sea-ice pro-
cesses are rather scarce, and satellite data are probably the

Global climate models are unanimous in projecting en- L . . . .
next best information available for remote polar regions.

hanced climate warming in the polar regions. This warming

. . . . . . Data-assimilation techniques, coupled with satellite
1s associated with projected changes in sea-ice cover. Detec- ques, p

. X . . remote-sensing and other observations, have a high poten-
tion of such changes in polar ice requires both an accurate 8 ’ st p
assessment of the present state of the ice cover and reliable

information on historical variability (in order to determine

tial to improve our understanding of the sea-ice state, in-
cluding the variables needed for improved climate models.
In the following, we will discuss the current status of data

the significance of observed changes). These data are also

. . . . assimilation in sea-ice monitoring in view of present and
useful in evaluating the sea-ice component of climate, fore-

future satellite sensors, with special focus on sea-ice par-
cast and process models.

A major challenge to the sea-ice research community is
how to address the need for a uniform, consistent, gridded

dataset describing the state of the polar sea ice and its varia-

ameters such as ice concentration, ice thickness, ice motion
and deformation.
This paper does not provide a review of the latest data-

e . . . assimilation techniques, but rather a road-map, outlinin
bility in time and space. This is especially troublesome since ques, Ps 8

most remotely sensed information provides only indirect
measurements of the key elements of sea-ice dynamics, ice
concentration, ice movement, ice thickness and turbulent

the important first steps toward integration of data-assimi-
lation techniques with remote-satellite sensing data. We
hope that this approach will take sea-ice monitoring beyond

energy fluxes through the ocean—ice—atmosphere interfaces.
Remote sensing of ice motion is possible, but at space- and
time-scales that are insufficient to capture the full range of
important surface processes. Compounding this problem, in
situ measurements of ice properties are from temporally and
spatially limited case-studies.

All models of physical processes are only approxima-
tions to the “truth” and even the best models of complicated
physical processes have built-in errors and uncertainties.
There is need to bring the models closer to reality by means

https://doi.org/10.3189/172756400781820039 Published online by Cambridge University Press

the empirical and physically simple algorithms in use today.

SEA-ICE REMOTE SENSING AND PHYSICAL MODELS

For sea-ice monitoring, we currently have a variety of data-
sets of varying quality, spatial and temporal coverage. Great
effort has been devoted to extracting sea-ice information
from satellite data, principally the passive-microwave in-
struments such as the Scanning Multichannel Microwave

Radiometer (SMMR) and the Special Sensor Microwave/
327
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Table 1. Scientific observation requirements

Product Parameter Precision Accuracy  Spatial reso- Refresh
ideal (min.,) ideal (min.,) lution ideal
(min.)
km h
Ice thickness Histogram n/a (nfa) nfa (10%) nfa(200) 168
thickness
Histogram n/a (nfa) nfa(3%) nfa(200) 168
area
Surface type Total n/a (5%) 3% (10%) 025 (25) 24
(% cover)
Multiyearice  nfa (5%) 3% (10%) 025 (25) 24
(% cover)
First-yearice  nfa (5%) 3% (10%) 025 (25) 24
(% cover)
Surface Temperature 01K (n/a) 05K (LOK) 1 (100) 168
properties  Wetness n/a (nfa) 1% (nfa) nfa (nfa) 24
Melt-pond n/a (nfa) 3% (nfa) n/a (nfa) 24
coverage
Snow-cover nfa (nfa) mnfa(5cm) nfa(nfa) 24
depth
Surface albedo n/a (nfa)  nfa (0.05)  nfa (100) 12
Ice motion  Gridded n/a (nfa) lems ' 5(25) 12
vectors 2cms ')
Deformation n/a (nfa) (0.5%) nfa (25) 12

Imager (SSM/I), and several radars from European, Japa-
nese and Canadian satellites. A 17 year time series of ice con-
centration and extent has been compiled from the SMMR
and SSM/I instruments (Cavalieri and others, 1997). This
time series is derived using statistical/empirical-based algo-
rithms and provides estimates with 5-8% error envelope in
winter and 15% or so in summer (Steffen and Schweiger,
1991). Radar data provide high-resolution snapshots of the
ice state. Systems such as the RADARSAT geophysical pro-
cessor system (RGPS) provide estimates of ice growth, ice
type and ice movement during the winter months on ap-
proximately a 3day time-step (Kwok and Baltzer, 1995).
However, the RGPS does not currently function through
the summer melt season.

A selection of one- and two-dimensional physically
based sea-ice models is available. These models are used in
stand-alone mode or as components in climate-system
models. The trend in model development is toward more
complexity and higher resolution, for example incorporat-
ing the ice-thickness distribution instead of a one- or two-
level approximation (e.g. Flato and Hibler, 1995), finer grid
spacing and time resolutions, anisotropic rheologies and
more detailed thermodynamics. Alternative approaches
such as the Kalman filter and model/data hybrids such as
the RGPS and Lagrangian Parcel models are being pursued
(Rothrock and Thomas, 1992). But we have yet to closely
link the data and models to provide a comprehensive view
of the sea ice. Some studies have been completed which link
data and models (Kwok and others, 1995; Thomas and
others, 1996). So far the community is only beginning direct
data assimilation into dynamical models.

In Table 1 we have summarized the scientific obser-
vations requirements commonly used by the science com-
munity for sea-ice monitoring. Data assimilation will
provide a framework, which we believe will improve the
measurements of the following ice-related parameters: (1)
ice concentration, mainly during the melt season, at higher
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Fig. 1. Time series of coverage by six different surface types
used for the forward simulation model. Types included are
open water (OW ), furst-year (FY) ice, multiyear ( MY')
ice, frost-flower-covered young ice (V1) wet snow (WS)
and melt ponds ( MP).

temporal resolutions between observations, (2) ice thickness
and mass estimates, and (3) ice motion/deformation. Note
that the targeted parameters do not represent the complete
list of needed observations inTable 1.

The following is a case-study illustrating the combin-
ation of a physical sea-ice model with remote-sensing data.
An ice model was combined with a model of radar-back-
scatter values to simulate C-band synthetic-aperture radar
(SAR) data from the European Remote-sensing Satellite
ERS-1. The simulation of the Arctic ice cover was achieved
using a two-layer dynamic/thermodynamic ice model based
on the formulations of Hibler (1979) and Hibler and Walsh
(1982), as described by Maslanik and Silcox (1993). Model
runs were carried out at 160 km spatial resolution with a
24 hour time-step over a 13 month period. Daily geostrophic
wind fields were obtained from the U.S. National Center for
Environmental Prediction (NCEP) model output; air pres-
sures, climatological air temperatures and humidity values
were obtained from Crutcher and Meserve (1970); and
oceanic heat flux and geostrophic ocean currents were
taken from ice—ocean simulations of Hibler and Bryan
(1987). Periods for the occurrence of wet snow, melt ponds
and young ice were derived using the NCEP temperature
data. The physical model output, expressed as cover frac-
tions of open water, first-year ice, multiyear ice, young ice,
wet snow and melt ponds, is shown in Figure 1. Backscatter
values for all of these surface types were simulated using em-
pirically derived values for the ice types and an exponential
relationship between ocean surface backscatter and wind
speed (Wismann, 1993). Figure 2 shows the estimated back-
scatter produced by the forward simulation model com-
pared with the actual ERS-1 SAR calibrated backscatter
time series. The root-mean-square difference between the
two time series is only 0.65 dB. The forward simulation was
able to reproduce the summer melt and autumn freeze-up
events seen in the SAR data. In a full data-assimilation
model, the ice-type coverage might be adjusted iteratively
to obtain the greatest correspondence with the actual SAR
data. The model would thus serve as a robust and physically
consistent ice-type classifier: one without the problems in-
herent in simpler classifiers based on thresholds or statistics

(Steffen and Heinrichs, 1994).
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Fig. 2. Comparison between actual ERS-I SAR backscatter

time series and estimates from the forward simulation model.

DATA ASSIMILATION FOR SEA ICE

Data assimilation is a method to produce a four-dimen-
sional representation of the state of a physical system. It is
derived from: (1) a heterogeneous array of in situ and
remote-sensing measurements which sample imperfectly
and irregularly in space and time; (2) known physics of the
system; and (3) prior information (including prior analy-
ses). From a theoretical point of view, data assimilation can
be viewed as the quantitative analysis of information using
the principles of estimation theory.

The most general approach to data assimilation, called
the Bayesian approach, is based on a definition of informa-
tion in terms of probabilities. The conditional probability of
a particular analysis field given the observational data is
calculated, and the analysis field that yields the greatest
probability 1s chosen. Because of the large number of prob-
abilities that need to be calculated, the Bayesian approach is
not computationally efficient.

A more practical technique, which is currently used to
produce analysis fields for NCEP and other operational cen-
ters, is the variational approach. This method, like other
data-assimilation approaches, begins with a model
d = m(g), where g is the gridded data field, m is a model
that estimates observational data (either remote-sensing or
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in situ) from the gridded field, and d is a vector of the
modeled observational data without instrument error. The
vector d can also be thought of as a forward simulation vec-
tor. The variational formulation defines a cost function as
the fit of the assimilated field to observations plus a set of
penalties to force the solution to be smooth. The data-assim-
ilation problem then becomes finding the g that minimizes
the cost function. This can be done by formalizing the data-
assimilation problem as g — g, = K[m(g,) — do)], where g,
is the previous gridded field, dy is the actual measured vec-
tor of observations, and K is a matrix that relates the obser-
vational errors to the model prediction errors. TFor the
variational approach, K is obtained using the cost function.

Other approaches that have been used for data assimila-
tion include function fitting and successive corrections, opti-
mal interpolation, Kalman filters and smoothers, and
ensemble techniques (Monte Carlo models). All of these ap-
proaches can be formalized similarly to the variational ap-
proach, the difference being how the matrix K is obtained.
The variational approach, because it has been used for opera-
tional products, and because a software base exists in the form
of the 3DVAR and 4DVAR programs, may be the lowest-risk
approach for assimilation of sea-ice fields. However, if the
models involved are highly non-linear, or if there is no suffi-
ciently accurate model m, other techniques may be useful.

The requirements for any of the data-assimilation ap-
proaches include models (forward simulation models, interpo-
lation operators and operators to extrapolate prior
information) and error statistics for the observations (the na-
ture of the distributions, independence, biases, variances, co-
variances, and the likelihood of extreme events). The
importance of these error statistics to data assimilation cannot
be overemphasized. Without accurate information from sensor
engineers and operational data-processing sites, the accuracy
of the assimilation process cannot be estimated a priori.

A significant amount of work has been done already on
the techniques required for data assimilation within sea-ice
models, although the individual pieces remain separated.
Several promising studies have attempted to use data from
multiple sensors to generate sea-ice products (Steffen and
Heinrichs, 1994; Comiso and Kwok, 1996; Kwok and others,
1998). In general, the use of multiple data sources improved
either the product accuracy or the robustness of the algo-
rithms. A number of operational or potentially operational

Table 2. Known efforts that are potentially useful as stepping-stones towards data assimilation of sea-ice parameters

Multi-sensor algorithms

Sensor—model interaction

Forward simulation

Ice motion SMMR, SSM/I, buoy and SAR ice
motion (Kwok and others, 1998)

Landsat, ERS-1 SAR (Steffen and Hein-
richs, 1994); SSM/I, AVHRR and SAR

(Comiso and Kwok, 1996)

Ice concentration

Ice mass (thickness)

NICT heuristic (expert system) classifier;
Landsat/SAR classifier (Steffen and
Heinrichs 1994)

Ice/cloud discrimination  SSM/T with AVHRRY surface temperature

Ice typing

PIPS" model assimilating buoy motions
(Cheng and Preller, 1992)

PIPS ice model initialized with SSM/I ice
concentration (Cheng and Preller, 1992);
Kalman filter incorporation of SMMR
data (Rothrock and Thomas, 1988)

RGPS ice-thickness algorithm uses simple ice- ~ Arctic basin ice model
growth model (Kwok and others, 1995)

Arctic basin ice model
(Hibler, 1979)

Seasonal cycle of pack ice in the
Beaufort Sea (this paper: see
case-study); Arctic basin ice
model (Hibler, 1979)

(Hibler, 1979)
Arctic basin ice-type model
(Flato and Hibler, 1995)

#Polar Ice Prediction System.
U.S. National Ice Center.
! Advanced Very High Resolution Radiometer.
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Atmospheric Forcing
*Downwelling

*Air temperature, moisture
*Geostrophic wind
*Snowfall

model that conserves:

Prior Information from Physical Model
Estimate at present time-step from a sea-ice

smomentum; velocity; deformation; stress;
mass; ice thickness; snow
depth;heat;surface temperature; surface

Raw Sateltite Observations
*Visible and infrared
radiances

*Backscatter

*Brightness temperatures

l

Ocean Forging or Mixed
Model

*Near-surface current
*QOcean heat flux to ice
*Ocean surface salinity

Geophysical Data for
Assimilation

*Bouy velocity

albedo; ice-temperature profile l

Data
Assimilation
Scheme

Atmospheric Radiation
Model

«Atmospheric temperaturc
and moisture profiles or
integrated water vapor
*aerosol, gases

v

Satellite Data for

Assimilation
*Either as geophysical data

«Satellite-derived velocity
¢Deformation

«Ice thickness

*Snow depth

*Lead orientation

*Floe sizes

principles

Updated Estimates of Variables

«Same dependent variables as in model
*Comprormise between the observations and
the physical model based on conservation

from an algorithm or
retrieval, or as satellite
radiance to be computed and
fit by using model variables
eIce (type) concentrations
*Surface temperature
*Surface Albedo

Fig. 3. Suggestion of eventual sea-ice data-assimilation scheme. The fainier boxes represent the traditional sea-ice model with forcing.
The heavier boxes involve data assimilation. This diagram was originally drafted by D. Rothrock, APL, University of Washington,
Seattle, for his presentation at the data-assimilation workshop in Boulder, CO, December 1997,

ice-prediction systems have incorporated remote-sensing
data to constrain the model output (Rothrock and Thomas,
1988; Chang and Preller, 1992; Kwok and others, 1995). A
product generation system has been designed to use a simple
ice-growth model as a component. An under-studied area is
the use of a forward simulation approach, which combines
ice conditions predicted by a physical model with conver-
sion of these conditions to spectral radiances, reflectance,
backscatter or brightness temperature using radiative-
transfer and/or microwave-scattering models. A case-study
was presented in this paper using a backscattering model
combined with an ice model to predict the seasonality of
the sea-ice backscatter coefficient. Quite sophisticated radi-
ative-transfer and microwave-scattering models exist, but
these need to be intimately coupled to the ice models, and
their error characteristics further assessed. Table 2 lists, by
variable, a few studies identified that can fit into one of three
categories, multi-sensor algorithms, sensor-model inter-
action and forward simulation. This list is not complete
and should only serve as an example.

PROSPECT OF DATA ASSIMILATION IN SEA-ICE
MONITORING

The hypothetical sea-ice data-assimilation scheme (Tig. 3)
shows the complexity for a full-scale assimilation effort. This
approach uses atmospheric and ocean forcing to initiate a
sea-ice model that conserves momentum, mass and heat,
with satellite-derived geophysical data or satellite radiances
as additional data input. The scheme proposes to assimilate
buoy velocity, satellite-derived velocity, deformation, ice
thickness, snow depth, lead orientation and floe size, in des-
cending order of readiness.

All methods of data assimilation attempt to estimate
values that have a lower error than either the model or the
data. A system that is appropriate for assimilation is shown
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in Figure 4a. Model and observational errors are somewhat
comparable, so neither dominates the assimilation solution.
In the system shown in Figure 4b, the assimilation does not
accomplish the error reduction but may provide a suitable
way to interpolate the observations to a grid. The opposite
situation can occur when the model solutions are of little
value, and thus the observations dominate (Fig. 4c).

The key question to be asked is how well do we know the
error variance of observations (1.e. satellite data) and modeled
data? Observation error statistics remain poorly defined, in
terms of the requirements for assimilation applications.

Models used in a sea-ice data-assimilation scheme that
are based on conservation equations for quantities like mo-
mentum, mass and heat provide a means to test the effective-
ness of assimilation. Changes in conserved quantities brought
about by assimilation of observed data can be evaluated,

Ig. 4. Error variance for observations (A), assimilated vari-

ables ( B) and modeled variables (C) for three cases ( see text).
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which in turn allows errors in the prescribed forcing and
model parameters to be corrected. The aim is to have a data-
assimilation scheme in which biases in both the observations
and the model are removed to the extent possible, so that
long-term average sources and sinks added to the model’s
conservation equations by data assimilation are near zero.

Ice-motion observations are available from buoy and
drift-station data and more recently from satellite sources.
This kinematic information can be used in a data-assimila-
tion scheme in several ways. Assimilating ice velocity is per-
haps the most straightforward; and although this provides a
constraint on the large-scale transport patterns, it may not
be a sufficient constraint on local deformation. Assimilation
of strain-rate estimates could provide a more direct con-
straint on ice deformation (and hence local thickness build-
up). However, deformation estimates derived from high-
resolution velocity fields are only possible from recent SAR
data but with a relatively long time-span between samples
(Kwok and others, 1998). Estimates from lower-resolution
passive-microwave- and scatterometer-derived velocity
fields may be useful, which would cover the period since
1987 using higher-resolution SSM/I data, and the period
1979-87 using lower-resolution SMMR imagery (Agnew
and others, 1997). Buoy-derived velocity estimates are avail-
able from 1979 onwards (Thorndike and Colony, 1980; Rigor
and Heiberg, 1997). These provide the most precise motion
information available for specific locations and are thus use-
ful within assimilation. However, they are deemed unsuita-
ble for detailed strain-rate estimation given the relatively
sparse spatial distribution of Arctic buoys.

Because sea-ice motion is so discontinuous and deform-
ation is highly concentrated spatially, we recommend that
modelers and data analysts guard against any smoothing of
kinematic data. Data should be assimilated at no coarser
spacing than a model’s resolution; any smoothing beyond
that imposed by a model’s grid spacing would mask the nat-
ural concentration of deformation into features such as
leads, flaws, ridges and shear-zone slip lines. Similarly,
because ice kinematics show high-frequency spectral con-
tent, temporal information should not be lost by excessive
smoothing but should be retained at the temporal resolution
of models.

At present, many of the datasets that could be used for
assimilation are available only at 1-3 day time-scales. Ar-
chived products should be expanded to include data at the
full temporal as well as spatial resolution at which the data
were acquired. This should also include the time of acquisi-
tion for each data value, and also perhaps ancillary par-
ameters that may affect data quality, such as sensor scan
angle, etc. In many cases this implies that orbital data
should be made available to test data-assimilation schemes.
Some assimilation strategies require radiance-level data
that have been subjected to a minimum of processing using
adjustments or product-generation algorithms. In general,
this suggests that the standard approaches to product gen-
eration and archiving would need to be reconsidered in the
context of assimilation requirements.

We acknowledge that data-assimilation constraints for
the science community and for the operational forecast
community are quite different, but not contradictory. The
operational forecast community needs the product in a
timely manner but at lower resolution, whereas the science
community has no production time constraint and will
probably use more complex models.
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RECOMMENDATIONS

In conclusion, we provide some recommendations, in par-
ticular targeted for those just starting to make use of data
assimilation in sea-ice monitoring,

(I) Use simple data-assimilation models in pilot studies to
gain a better understanding of data and model error
characteristics, and to determine which assimilation
methods are best suited to particular applications and
data types. The variational data-assimilation model ap-
pears promising.

(2) Take an incremental approach. We suggest the following
three steps could provide adequate validation before
more effort is invested in the next, more complex step.

(a) Use data assimilation in (possibly) low-resolution
models to find to the first order whether data assim-
ilation will improve sea-ice parameterizations (e.g.
ice concentration compared with dynamical model;
then include ice thickness and deformation).

(b) Use data assimilation in higher-resolution models,
which incorporate multiple variables, and high-fre-
quency variations.

(c) Couple radiative models to ice models to explore as-
similation methods that operate on raw data rather
than geophysical products. Evaluate results by inter-
comparisons of error statistics and simulated low-
level data.

(3) Investigate coupling of efforts between operational and
research groups to make more efficient use of resources.
Both communities can benefit from data assimilation,

but have slightly different goals.

(4) Without accurate error statistics, data assimilation will be
less successful, since the error uncertainty will remain in
the assimilated variables. Thus data producers must place
more emphasis on error assessment of both data fields and
the models themselves. At a minimum, data distributors
must take steps to secure data error statistics from data
producers. In the case of satellite data, this means compil-
ing sensor engineering data and pre-launch test data, as
well as assessments of on-orbit sensor errors.

(5) Many of the assimilated data are available only at 1 -3 day
time-scales, whereas the available physical models are
capable of assimilating variables more frequently. There-
fore, datasets will need to be reconfigured and/or reissued
if they are to provide much higher-temporal-resolution in-
put data.

(6) Datasets (e.g. passive-microwave satellite data) must
carry time tags for each pixel since the actual time of
the observation is essential in data assimilation.

(7) We suggest that a passive-microwave test dataset (SSM/I)
with error assessment and time tags for each orbit should
be made available to the user community (e.g. U.S. Nat-
ional Snow and Ice Data Center Distributed Active

Archive Center (NSIDC-DAAC)).
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