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Power synchronisations determine the hovering
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The power exchange between fluid and structure plays a significant role in the force
production and flight efficiency of flapping wings in insects and artificial flyers. This
work numerically investigates the performance of flapping wings by using a high-fidelity
fluid–structure interaction solver. Simulations are conducted by varying the hinge
flexibility (measured by the Cauchy number, Ch, i.e. the ratio between aerodynamic and
torsional elastic forces) and the wing shape (quantified by the radius of the first moment
of area, r̄1). Results show that the lift production is optimal at 0.05 < Ch ≤ 0.2 and
larger r̄1 where the minimum angle of attack is around 45◦ at midstroke. The power
economy is maximised for wings with lower r̄1 near Ch = 0.2. Power analysis indicates
that the optimal performance measured by the power economy is obtained for those cases
where two important power synchronisations occur: anti-synchronisation of the pitching
elastic power and the pitching aerodynamic and inertial powers and nearly in-phase
synchronisation of the flapping aerodynamic power and the total input power of the system.
While analysis of the kinematics for the different wing shapes and hinge stiffnesses reveals
that the optimal performance occurs when the timing of pitch and stroke reversals are
matched, thus supporting the effective transfer of input power from flapping to passive
pitching and into the fluid. These results suggest that careful optimisation between wing
shapes and hinge properties can allow insects and robots to exploit the passive dynamics
to improve flight performance.

Key words: swimming/flying, flow-structure interactions

† Email address for correspondence: f.tian@adfa.edu.au

© The Author(s), 2023. Published by Cambridge University Press 974 A41-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:f.tian@adfa.edu.au
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.821&domain=pdf
https://doi.org/10.1017/jfm.2023.821


Q. Huang and others

1. Introduction

The aerodynamics of flapping wings inspired by insects and birds has been studied
extensively due to its importance in unsteady aerodynamic fundamental and micro-aerial
vehicle (MAV) designs (Wang 2005; Shyy et al. 2010; Deng et al. 2013; Shyy et al. 2016;
Eldredge & Jones 2019). One of the typical features of insect wings is flapping forward and
backward, implementing pitch reversal to maintain a positive angle of attack throughout
both half-strokes to maximise the lift production (Dickinson, Lehmann & Sane 1999). The
lift production can be enhanced by employing a variety of mechanisms, as can be found in
Shyy et al. (2008, 2010).

A few mechanisms of force production for biolocomotion work through a variety of
synchronisations (see e.g. Somps & Luttges 1985; Kang & Shyy 2013; Van Buren, Floryan
& Smits 2019; Wang et al. 2020; De & Sarkar 2021; Cai et al. 2022; Liu et al. 2022a). For
example, the wake capture mechanism works by synchronising the translational reversal
of the wing and the vortex wake created during the previous stroke, so that the effective
flow velocity increases, resulting in an additional aerodynamic force peak (Dickinson et al.
1999; Birch & Dickinson 2003; Shyy et al. 2010; Bomphrey et al. 2017). Rapid pitching
rotation mechanism synchronises the pitch and flapping stroke (translational) motions to
form an advanced rotation, gaining additional lift in a way similar to the Magnus effect
(Dickinson et al. 1999; Sun & Tang 2002; Shyy et al. 2010). For propulsive-type flapping
foils, the motion is well synchronised to avoid uncontrolled flow separation and vortex
shedding, and thus, to save the energy expended (Triantafyllou et al. 2002). Dragonflies
often synchronise their forewings and hindwings, maintaining a specific phase relationship
between the wings to enhance the lift generation (Somps & Luttges 1985). Detailed
studies show that the anti-phase wing motion generates uniform forces with nearly minimal
power, which is commonly observed in steady hovering. On the other hand, the in-phase
motion generates higher lift, providing an additional force to accelerate, which is normally
observed during takeoffs (Wang & Russell 2007; Hu & Deng 2014). In addition, the lift
enhancement is obtained via the downwash and the leading-edge–vortex interactions (Hu
& Deng 2014). The synchronisation between the foil motion and the vortex wake generated
by a leading body can enhance the thrust of the foil to save energy, and to provide sufficient
lift for the foil to maintain its location in the wake (see e.g. Beal 2003; Taguchi & Liao
2011; Tian et al. 2011; Stewart et al. 2016).

As discussed above, the synchronisations between motions (pitching and heaving),
multiple wings (fore and hind wings), motion–self-generated vortex and motion–leading-
body-generated vortex have been extensively studied. However, the synchronisation due
to the elasticity of wing material has not been well explored. Actually, wing flexibility
has a significant influence on force production and flight efficiency (see e.g. Shyy et al.
2010; Dai, Luo & Doyle 2012; Tian et al. 2013). Increasing evidence gained through
direct kinematics measurements (Bergou, Xu & Wang 2007; Gehrke et al. 2022; Mathai
et al. 2022), numerical (Bergou et al. 2007; Dai et al. 2012; Tian et al. 2013; Chen et al.
2016; Kolomenskiy et al. 2019; Cai et al. 2022) and analytical modelling (Ennos 1988;
Whitney & Wood 2010) have shown that the wing flexibility and passive deformation
could significantly enhance the force production and flight performance of flapping wings.
Specifically, the flexible wing with medium flexibility enjoys a higher lift force (see e.g.
Tian et al. 2013; Shahzad et al. 2018a,b; Gehrke et al. 2022; Mathai et al. 2022). Mathai
et al. (2022) and Gehrke et al. (2022) particularly reported that camber is enhanced by
the hydrodynamic forces during the flapping motion. Kang & Shyy (2013) found that
the optimal lift is obtained when the wing deformation synchronises with the prescribed
translational motion.
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One of the important consequences of wing flexibility is passive pitching, which has
received significant interest over the last decade (Bergou et al. 2007; Tian et al. 2013;
Liu et al. 2022a). In MAV designs, purely passive pitching could reduce mechanical
complexity and the system mass required in miniature robotic systems as it removes the
need to actuate the wing in the pitching direction (Whitney & Wood 2010). To facilitate
this application, passively pitching flapping wings have been implemented in several
experimental models and MAV designs (Lentink, Jongerius & Bradshaw 2009; Keennon,
Klingebiel & Won 2012; Ma et al. 2013; Farrell Helbling & Wood 2018). Passive pitching
during a flapping stroke is a consequence of flexibility and mediated by the interplay of
elastic restoring, wing inertial and aerodynamic forces, associated with energy transfer
between the fluid and structural kinetic and elastic energies (Peng & Milano 2013; Tian
et al. 2013; Ishihara & Horie 2016; Kolomenskiy et al. 2019; Cai et al. 2022), and thus,
it is governed by many factors, including the architectural and material properties of the
wings. The surface density, flexural stiffness as well as the vein distribution of real insect
wings vary in the chordwise and spanwise directions (Combes & Daniel 2001; Shahzad
et al. 2018b).

To simplify the complicated variation, the torsional flexibility can be lumped together
and be modelled by an elastic spring (see e.g. Bergou et al. 2007; Ishihara et al. 2009;
Zhang, Liu & Lu 2010; Lei & Li 2020). To understand the passive pitching mechanism
of flapping wings, various experimental and numerical studies have been conducted
(see e.g. Ennos 1988; Bergou et al. 2007; Ishihara et al. 2009; Eldredge, Toomey &
Medina 2010; Spagnolie et al. 2010; Whitney & Wood 2010; Zhang et al. 2010; Ishihara,
Horie & Niho 2014; Beatus & Cohen 2015; Chen et al. 2016; Wang, Goosen & van
Keulen 2017; Bluman, Sridhar & Kang 2018; Kolomenskiy et al. 2019; Wu, Nowak &
Breuer 2019; Lei & Li 2020; Mazharmanesh et al. 2021. Specifically, Chen et al. (2016)
performed experiments on an insect-scale passively pitching robotic flapper and compared
the results with a quasi-steady dynamic model and a computational fluid dynamic solver
incorporating fluid–structure interaction (FSI). They showed that the wing kinematics
and flapping efficiency depend on the hinge stiffness and found that stiffer wing hinges
achieve favourable pitching kinematics leading to larger mean lift forces. Lei & Li (2020)
numerically investigated the effects of different flapping trajectories on the wing’s passive
pitching dynamics for a fruit fly wing, finding that the optimal lift and lift-to-power ratio
are achieved with medium flexural stiffness (i.e. with Cauchy number of approximately
0.3). A special note is given to Bergou et al. (2007), who numerically analysed the
aerodynamic pitching power expenditures in four different insect species with passive
pitching kinematics. They calculated the pitching power about the torsion axis due to
aerodynamic and wing inertial forces and found that the net pitching rotational power
is negative, suggesting the feasibility of passive wing pitching without the additional
rotational power input from the muscles. The time and rate of the elastic energy released
during the supination of a flexible wing can significantly affect its performance. For
example, there is a delayed effective pitching motion (related to the active pitching
component) for a lower-mass-ratio wing compared with a higher-mass-ratio one, resulting
in a higher power economy (Tian et al. 2013). Therefore, the synchronisation between
fluid-mechanic, structural kinetic and elastic energies is very important in determining
the aerodynamics and efficiency of flexible flapping wings and needs to be carefully
studied.

Apart from the flexibility, the wing planform (i.e. shape and aspect ratio) can also
significantly affect the passive pitching and thus energy/power synchronisation and flight
efficiency (Stanford et al. 2012). In the MAV designs, it is technically easier to change
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the wing planform compared with implementing changes in the wing kinematics (Ansari,
Knowles & Zbikowski 2008a,b). Therefore, several studies have been conducted to seek
the optimal wing shape for various sizes and Reynolds number scales (Luo & Sun 2005;
Ansari et al. 2008b; Young et al. 2009; Stanford et al. 2012; Li & Dong 2016; Shahzad et al.
2016, 2018a; Bhat et al. 2019b; Wang & Tian 2020; Ji et al. 2022; Wang, Tian & Liu 2022).
Specifically, Ansari et al. (2008b) numerically studied the effects of various synthetic wing
planforms with fully prescribed kinematics on the aerodynamic performance. They found
that wing planforms having larger area outboard produce the highest lift. The recent work
of Bhat & Thompson (2022) showed that increasing the leading-edge curvature can further
enhance the lift. Shahzad et al. (2016) numerically investigated the effects of wing shape on
the aerodynamic performance in hover. The wing shapes were defined by the radius of the
first moment of the wing area r̄1 and aspect ratio (AR) while the power economy PE was
defined as the ratio of the mean lift coefficient to the mean aerodynamic power coefficient.
They found that maximum PE was achieved at AR = 2.96. Although the maximum lift
was observed at high r̄1 (i.e. large area outboard of the wing) and high-AR wings, they
recommended low r̄1 (i.e. large area inboard of the wing) and high AR to maximise PE
for a given lift at the Reynolds numbers of insects. Similar conclusions were obtained for
flexible flapping wings (Shahzad et al. 2018a,b). Despite the above studies, it is unclear
how the planform would affect power synchronisation.

This work numerically investigates the performance of flexible flapping wings, with a
focus on power synchronisation. The wings undergo prescribed flapping (stroke) motion
and passive pitching motion, of which the latter is determined by the torsional flexibility.
Following previous studies (Spagnolie et al. 2010; Zhang et al. 2010; Lei & Li 2020),
the torsional flexibility is lumped together and modelled by an elastic torsional spring
at the wing root, with the wing itself being modelled as a rigid plate. The FSI system
is solved by an in-house FSI solver based on an immersed-boundary–lattice Boltzmann
method. Two parameters are particularly considered. The first parameter is the Cauchy
number (Ch), which is defined by the ratio of aerodynamic forces acting on the wing
and the elastic torsional spring force, and is varied from 0.05 to 0.6 covering low-,
medium- and high-flexible cases. The other parameter is the radius of the first moment
of the wing area normalised with the wingspan (r̄1), which is used to describe the wing
shape and is varied from 0.39 to 0.63. The forces and the power economy are studied, and
power synchronisation is discussed. Compared with our previous work on flexible flapping
wings (see e.g. Tian et al. 2013; Shahzad et al. 2018a,b), this work particularly focuses on
how power synchronisations determine the hovering flight efficiency of passively pitching
flapping wings. Here, hovering flight is selected as it is considered a vital flight profile in
artificial and natural flyers alike.

This paper is organised as follows. The physical and mathematical models are
described in § 2 with more details of the derivation provided in Appendix A. The
numerical method is given in § 3 with validation presented in Appendix B. The
numerical results are presented and discussed in § 4, and concluding remarks are provided
in § 5.

2. Model description

As the flight speed of insects is low (generally less than 20 m s−1) and the flapping
frequency ranges from 10 to 1000 Hz, the Mach number is much lower than 0.3 and the
flapping period is much larger than the time of sound propagation over the characteristic
length (Taylor, Nudds & Thomas 2003; Wang 2005; Landau & Lifshitz 2013).
Therefore, the flow around the flapping wing is considered incompressible and is governed
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Figure 1. The schematic shows the two-angle flapping kinematics of an insect wing, with the stroke angle
(φ) and the pitching angle (θ ). Here, φ̇ and θ̇ are the stroke and pitching angular velocities, respectively; c is
the mean wing chord and L is the wingspan; x′, y′ and z′ are the coordinate axes in the laboratory coordinate
system, whereas x, y and z are the axes in the body-fixed coordinate system.

by

∇ · u = 0, (2.1)

ρ
∂u
∂t

+ ρu · ∇u = −∇p + μ∇2u + f , (2.2)

where u is the fluid velocity, ρ is the fluid density, p is the pressure, μ is the dynamic
viscosity and f is the body force density. A wing of mean chord c and span L is modelled
to undergo two-angle flapping kinematics, where the two angles of concern are the flapping
(stroke) position angle φ and the pitching angle θ , as shown in figure 1. The deviation angle
outside the stroke plane is taken as zero as a simplified case of normal hovering (Ellington
& Lighthill 1984). In such a case, the straight leading edge of the wing remains parallel to
the horizontal plane throughout the flapping motion. The flapping axis is situated along the
z-axis, passing through the wing root, and the pitching axis is aligned with the leading edge
of the wing. Such a wing model is used because Ansari et al. (2008b) showed that wings
with straight leading edges produce higher lift and that the pitching axis located within
0–0.25c from the leading edge provides an optimised compound performance for the wings
similar to those in the current study. Thus, the leading edge is used as the pitching axis for
simplicity.

The wing flapping motion is prescribed by the stroke angle according to

φ = −φA

2
cos(2πft), (2.3)

where φA is the peak-to-peak flapping amplitude, and f is the flapping frequency. The
stroke amplitude is maintained to be φA = 140◦, which corresponds to that of fruit flies
(Altshuler et al. 2005; Berman & Wang 2007). The flapping motion profile used here is
similar to that used in several previous studies (Li, Dong & Zhao 2018; Lei & Li 2020) as
it nominally matches the kinematics of real insects (Li et al. 2018).

Initially, the wing surface is vertically oriented. The passive pitching dynamics is
modelled using a torsional spring at the wing hinge, which provides the restoring torque
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to the wing and returns it to its neutral position (vertical orientation). The passive pitching
angle θ is determined by solving the dynamical equation for the pitching motion of the
wing, as described in Kolomenskiy et al. (2019),

−Jyyθ̈ + Jzyφ̈ cos θ + 1
2 Jyyφ̇

2 sin 2θ︸ ︷︷ ︸
Tpitch

iner

+Tpitch
aero −Ks(θ − θ0)︸ ︷︷ ︸

Tpitch
spri

−Cθ̇ = Tpitch
input, (2.4)

where Jyy is the moment of inertia around the pitching axis y, Jzy is the moment of inertia
around the pitching axis when the wing is rotated around the z-axis (i.e. flapping axis),
θ̇ and θ̈ are the pitching angular velocity and acceleration, respectively, φ̇ and φ̈ are the
flapping angular velocity and acceleration, respectively, C is the damping coefficient of the
spring and set as zero here, Ks is the torsional stiffness of the spring, θ0 is the rest pitching
angle, Tpitch

iner is the pitching inertial torque, Tpitch
aero is the aerodynamic pitching moment on

the wing, Tpitch
spri is the torque of the spring and Tpitch

input is the input torque to actuate the wing

pitch (note, Tpitch
input = 0 for purely passive pitching). Please note that the angles are defined

in the body-fixed coordinate system. Then, the pitching inertial power (Ppitch
iner ), the pitching

aerodynamic power (Ppitch
aero ), the pitching elastic power (Ppitch

spri ) and the total input power

for pitching (Ppitch
input) can be calculated, respectively, as

Ppitch
iner = Tpitch

iner θ̇ , Ppitch
aero = Tpitch

aero θ̇ , Ppitch
spri = Tpitch

spri θ̇ , and Ppitch
input = Tpitch

inputθ̇ .

(2.5a–d)

The dimensional torsional spring stiffness is defined using a non-dimensional Cauchy
number (Ch)

Ch = ρφ2
A f 2c3L2

Ks
, (2.6)

which provides a relative measure of the aerodynamic forces acting on the wing and the
elastic torsional spring force at the wing hinge. Note that the mean wing chord c and wing
length L are maintained as constant across all wing planforms in this study. Thus, the
parameters Ch and r̄1, by definition, are independent of each other in this study. For all
wing planforms, Ch is systematically varied from 0.05 to 0.6 by changing the stiffness Ks
of the torsional spring. This range of Ch includes values for realistic passive pitching
flapping-wing kinematics (Ishihara et al. 2009; Lei & Li 2020) to well beyond those
tested in previous studies, covering low-, medium- and high-flexible cases. The other
non-dimensional parameters include the Reynolds number Re and mass ratio M, which
are respectively given by

Re = ρUL
μ

= 300, M = ms

ρL
= ms

ρc
c
L

= Mc

AR
= 0.338, (2.7a,b)

where U = 2f φAL is the mean wingtip velocity, ms is the surface density of the wing
material, Mc is the mass ratio based on the mean chord and AR is the aspect ratio of the
wing. The value of M dictates the relative effects of the inertial force vs the aerodynamic
force (Tian et al. 2013). Here, Mc is maintained to be 1.0 as this value is close to the mass
ratios found in a variety of insect species, such as fruit flies and honeybees (Lei & Li
2020).
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To quantify the flapping inertial and aerodynamic power expenditures, the torque used
to actuate the wing flapping motion in (2.3) is given (see the derivation in Appendix A) as

(Jzz + Jyy sin2 θ)φ̈ + Jyy sin(2θ)θ̇ φ̇ − Jyz(θ̈ cos θ − θ̇2 sin θ)︸ ︷︷ ︸
Tflap

iner

−Tflap
aero = Tflap

input, (2.8)

where Jzz is the moment of inertia around the z-axis, Jyz is the moment of inertia around
the z-axis when the wing is rotated around the pitching axis y (note, Jyz = Jzy), Tflap

iner is
the flapping inertial torque, Tflap

aero is the flapping aerodynamic torque and Tflap
input is the total

input torque to actuate the wing flapping motion in (2.3). Then, the flapping inertial power
(Pflap

iner), the flapping aerodynamic power (Pflap
aero) and the total input power for flapping

(Pflap
input) can be calculated, respectively, as

Pflap
iner = Tflap

inerφ̇, Pflap
aero = −Tflap

aeroφ̇, and Pflap
input = Tflap

inputφ̇. (2.9a–c)

The combination of (2.4), (2.5a–d), (2.8) and (2.9a–c) can provide a measure of the
total power (= Pflap

input + Ppitch
input) required for flapping (stroke) and pitching as well as the

contributions of each parameter to the total power. Here, the total power consumption for
the passively pitching wing is only the total input power for flapping Pflap

input, which has no

net power consumption for pitching (Ppitch
input = 0). The positive power indicates the work

done by the wing on the fluid. For example, a positive flapping aerodynamic power means
the work done by the wing on the fluid to overcome the drag.

The drag, lift and aerodynamic power coefficients are defined, respectively, as

CD = 2Fx

ρU2A
φ̇

|φ̇| , CL = 2Fz

ρU2A
, and CP = −2Paero

ρU3A
, (2.10a–c)

where Fx and Fz are the forces acting on the wing by the ambient fluid in the x and
z directions, respectively, Paero is the aerodynamic power and A is the surface area of
the wing (A = cL for a rectangular plate). Note that CD is defined in such a way as to
measure the force coefficient along x in the opposite direction to the flapping motion.
Here, Paero consists of the flapping aerodynamic power and the pitching aerodynamic
power (Paero = Pflap

aero + Ppitch
aero ). An example is provided in Appendix B.1 to demonstrate

the calculation of the aerodynamic powers. The cycle-averaged lift, drag and power
coefficients are respectively denoted as C̄L, C̄D and C̄P. The power economy PE = C̄L/C̄P
is introduced to discuss the hovering efficacy, which measures the lift production per unit
aerodynamic power.

Eight different wing shapes are considered to systematically explore the interaction
between wing-hinge properties and wing planform, as shown in figure 2. Each wing shape
is generated using the beta function (β( p, q)) by varying the radius of the first moment of
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(b)(a) (c) (d )

(e) (g) (h)( f )

r̄ r̄ r̄ r̄
Figure 2. Eight different wing planforms have been obtained by varying r̄1: (a) r̄1 = 0.39; (b) r̄1 = 0.43;

(c) r̄1 = 0.48; (d) r̄1 = 0.53; (e) r̄1 = 0.565; ( f ) r̄1 = 0.58; (g) r̄1 = 0.605; (h) r̄1 = 0.63.

area r̄1. The equations for the wing-shape generation are adopted from Ellington (1984a)

r̄k
k =

∫ 1

0
c̄(r̄k) dr̄, r̄2 = 0.929 (r̄1)

0.732 , (2.11a,b)

p = r̄1

(
r̄1 (1 − r̄1)

r̄2
2 − r̄2

1
− 1

)
, q = (1 − r̄1)

(
r̄1 (1 − r̄1)

r̄2
2 − r̄2

1
− 1

)
, (2.12a,b)

β( p, q) =
∫ 1

0
r̄p−1(1 − r̄)q−1 dr̄, c̄ = r̄p−1(1 − r̄)q−1

β( p, q)
, (2.13a,b)

where c̄ is the wing chord normalised by c and r̄ is the spanwise distance from the wing
root normalised by L; r̄k is the non-dimensional radius of the kth moment of the wing
area. The values of r̄1 chosen for wing-shape generation are varied between 0.39 and 0.63,
including the range of 0.43 and 0.6 for most insect wings (Ellington 1984a; Bhat et al.
2019a; Wang & Tian 2020). The wing shapes are modelled with a constant planform area
A, aspect ratio AR, wingspan L and the mean chord length c (c = L/AR) for all cases to
easily cross-compare performance metrics between them. As r̄1 increases, the planform
area of the wing shifts further outboard from the wing root. The value AR = 2.96 is
chosen because previous studies on rigid wing shapes with prescribed flapping kinematics
(Shahzad et al. 2016) have shown that maximum power economy is achieved at this aspect
ratio independent of Re and r̄1. The values of Jyy, Jzz and Jyz for different wings are
provided in Appendix B.2.

The far-field boundary condition is applied at the external boundaries of the
computational domain and the no-slip boundary condition is applied on the wing surface.
Zero velocity and constant pressure are specified as the initial condition of the flow. The
initial stroke position of the wing is at −φA/2 with zero velocity, and the initial pitching
angle is the rest pitching angle. Note that we have conducted simulations to verify that the
results are independent of the initial condition of the wing (see Appendix B.3).
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3. Numerical method

The flow over a flapping wing is solved by an immersed boundary-lattice Boltzmann
method (IB–LBM) FSI solver based on the three-dimensional nineteen discrete velocity
(D3Q19) lattice Boltzmann method (LBM) with a multi-relaxation-time (MRT) model
for modelling the fluid dynamics and the feedback immersed-boundary method (IBM) for
handling the boundary conditions at the fluid-solid interface. In the LBM, the macroscopic
dynamics of the fluid is the result of the statistical behaviour of the fluid particles, which is
described by the distribution function gi(x, t) according to (Lallemand & Luo 2000; Luo
et al. 2011)

gi (x + eiΔt, t + Δt) − gi (x, t) = Ωi (x, t) + ΔtGi, (3.1)
where gi(x, t) is the distribution function for particles with velocity ei at position x and
time t, Δt is the time increment, Ωi(x, t) is the collision operator and Gi is the forcing term
accounting for the body force f . The D3Q19 model (D’Humieres et al. 2002) is used on
a cube lattice. Compared with the single-relaxation-time collision model, the MRT model
has been proven to be numerically more stable (Lallemand & Luo 2000; Xu et al. 2018).
Therefore, the MRT collision model is adopted here and is given by (Lallemand & Luo
2000)

Ωi = −(M−1SM)ij[gi(x, t) − geq
i (x, t)], (3.2)

where M is a 19 × 19 transform matrix, and S = diag(τ0, τ1, . . . , τ18)
−1 is a non-negative

diagonal relaxation matrix. The determination of S in a three-dimensional model can be
found in D’Humieres et al. (2002). The equilibrium distribution function geq

i is defined as

geq
i = ρωi

[
1 + ei · u

c2
s

+ uu : (eiei − c2
s I)

2c4
s

]
, (3.3)

where cs = Δx/(
√

3Δt) is the speed of sound, Δx is the lattice spacing, I is the unit tensor
and the weighting factors ωi are given by ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36. The
velocity u, mass density ρ and pressure p can be obtained according to

ρ =
∑

i

gi, p = ρc2
s , and u =

(∑
i

eigi + 1
2

f Δt

)/
ρ, (3.4a–c)

respectively. The force scheme proposed in Guo, Zheng & Shi (2002) is adopted to
determine Gi

Gi = [M−1(I − S/2)M]ijFi, (3.5)

Fi =
(

1 − 1
2τ

)
ωi

[
ei − u

c2
s

+ e · u
c4

s
ei

]
· f , (3.6)

where τ is the non-dimensional relaxation time.
The feedback IBM (e.g. Goldstein, Handler & Sirovich 1993; Huang & Tian 2019;

Huang et al. 2021b, 2022) is adopted to handle the no-slip boundary conditions on the
flapping wing. In this method, the body force f is added in the Navier–Stokes equations
to mimic a boundary condition according to

f (x, t) = −
∫

F ib(s, t)δ(x − X (s, t)) dA, (3.7)

F ib(s, t) = κρ(x, t)(U ib(s, t) − U(s, t)), (3.8)

U ib(s, t) =
∫

u(x, t)δ(x − X (s, t)) dx, (3.9)
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where F ib(s, t) is the Lagrangian force density, dA is the element surface area of
the immersed boundary, δ(x − X (s, t)) is Dirac’s delta function, x = (x′, y′, z′) is the
coordinate of the fluid lattice nodes, X is the coordinate of the structure (i.e. the flapping
wing here), κ is the feedback coefficient and is set to κ = 2 m s−1 in the LBM simulations
(Huang et al. 2021b, 2022), U ib(s, t) is the immersed-boundary velocity obtained by an
interpolation at the immersed boundary and U(s, t) is the velocity of the wing. The 4-point
discrete delta function δh(x − X (s, t)) is used to approximate the Dirac delta function
(Peskin 2002)

δh(x − X (s, t)) = 1
Δx′Δy′Δz′ ζ

(
x′ − X(s, t)

Δx′

)
ζ

(
y′ − Y(s, t)

Δy′

)
ζ

(
z′ − Z(s, t)

Δz′

)
,

(3.10)

ζ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 0 ≤ |r| ≤ 1,

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, |r| > 2.

(3.11)

The numerical method used here has been extensively validated (e.g. Xu et al. 2018; Ma
et al. 2020; Huang 2021; Huang et al. 2021a,b, 2022; Liu, Tian & Feng 2022b) for external
and internal flows. The velocity error, the spurious flow penetration and their consequences
in external and internal flows of the numerical method have been discussed in Huang et al.
(2022). Here, the simulations of a rectangular flapping wing and a fruit fly flapping wing
are used to further validate the computations for three-dimensional flapping-wing cases
with grid and time-step-independence tests (see Appendix B). To reduce the computational
effort, a multi-block LBM (Yu, Mei & Shyy 2002; Xu et al. 2018; Liu et al. 2022b)
has been implemented to provide a high-resolution Cartesian grid near the solid body,
with relatively lower resolutions in the far field. The computational domain has a size
of 30c × 30c × 30c. Four blocks of grid are used, with a minimum grid size of 0.04c
around the wing and the maximum grid size of 0.32c in the far field, resulting in a total
grid number of 7.25 × 106. The determination of the finest fluid grid size is based on
the two validation cases shown in Appendix B. The grid size of the wing is half of the
finest fluid grid size (i.e. 0.02c) which is required by the IBM employed here. The far-field
boundary conditions along six sides of the computational domain are set to be the Dirichlet
boundary conditions for the velocity and pressure, which produce almost identical results
as the Neumann boundary conditions due to the large computational domain used. The
in-house solver is parallelised by a hybrid open multi-processing (OpenMP) and open
message-passing interface (OpenMPI). Six stroke cycles are simulated to ensure that
all force histories (e.g. CD and CL) and kinematics are periodic, and the time-averaged
values are calculated over the last cycle. Validation has been conducted to show that the
cycle-to-cycle variations in CL and CD are negligible, as shown in Appendix B.4.

4. Results and discussion

4.1. Flight performance on the plane of r̄1 and Ch
The flight performance of the wing measured by cycle-averaged lift coefficient C̄L and
power economy PE on the plane of r̄1 and Ch is shown in figure 3, where several interesting
results are obtained. Firstly, C̄L increases with r̄1 when Ch < 0.15 where the passive
pitching is small. This behaviour is similar to the discussion for rigid wings (Ellington
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Figure 3. Flight performance on the plane of r̄1 and Ch: (a) mean lift coefficient C̄L, and (b) power
economy PE.

1984b; Shahzad et al. 2016; Bhat et al. 2019b), which is understandable as the area of
the wing is shifted towards the wingtip when r̄1 increases (see also figure 2) generating
increasing aerodynamic forces. Secondly, when Ch is large (e.g. ≥0.2), C̄L first increases
and then decreases with r̄1. The decrease of C̄L is caused by the large passive pitching
and the inertia force during stroke reversal, which have a significant negative effect on lift
generation. This observation is consistent with the results obtained with wings modelled
by flexible plates of low mass ratio (Mc ≤ 1) and aspect ratio (AR < 3.0) (Shahzad et al.
2018a,b), and the compliant membrane wings (Gehrke et al. 2022; Mathai et al. 2022).
Such complex behaviour is because flexibility becomes important at large Ch, and the
FSI system undergoes complex power synchronisation, which will be further discussed in
§ 4.2. Thirdly, when Ch increases from 0.05 to 0.6, C̄L first increases and then decreases,
with the peak located in the band of 0.05 ≤ Ch ≤ 0.2. This observation is consistent
with the studies with wings modelled by flexible plates (see e.g. Dai et al. 2012; Tian
et al. 2013; Shahzad et al. 2018b). Overall, a high r̄1 (≥0.565) and a low Ch (≈0.1)
is useful in maximising C̄L with an optimal value of ≈0.67. Finally, the behaviours of
PE in relation to Ch are similar to C̄L, but its maximum value (≈0.71) is obtained with
r̄1 ≈ 0.45 and Ch ≈ 0.2. This r̄1 value is very close to that of hawkmoth wings, which
has been reported to be r̄1 ≈ 0.47 (Willmott & Ellington 1997). However, in relation
to r̄1, PE shows negligible changes for Ch < 0.15. This will be further investigated
in § 4.3.

We should point out that, even though the above observations are obtained at Re = 300,
Mc = 1.0 and a specific wing shape, they can be generalised to other conditions (e.g.
different Re and Mc), with the optimal values and locations dependent on these conditions.
This statement is made based on the results from previous studies. Specifically, the optimal
C̄L is larger, but the optimal PE is smaller for higher AR, as reported by Shahzad et al.
(2018a), who considered flexible wings at Re = 400. Moreover, the optimal locations of
C̄L and PE are shifted to larger r̄1 for higher AR (Shahzad et al. 2018a). In addition, insects
may fly close to, but not exactly in, the optimal region. For example, the wings of fruit
flies are found to be of r̄1 ≈ 0.53 (Meng, Liu & Sun 2017) and Ch ≈ 0.27 (Lei & Li
2020). According to figure 3, C̄L = 0.43 might be just sufficient to balance their weight
and PE ≈ 0.58 might be the near-optimal power economy. Overall, the current analysis
highlights the strong influence of the coupled effects of wing shape and pitching spring
stiffness on wing performance, which will be helpful for designing the flapping-wing flyers
and further explain the mechanisms of insect flight.
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Figure 4. Variations in (a) C̄L, (b) C̄D and (c) PE are shown as functions of Ch for three different wing
shapes of r̄1 = 0.39, 0.48 and 0.58.

To summarise this section, two distinct regions of maximum lift production and
efficiency are identified. It is found that a high r̄1 (≥0.565) and a low Ch (≈0.1) is useful
in maximising C̄L, and the power economy is maximised for wings with lower r̄1 (≈0.45)
near Ch = 0.2.

4.2. Effects of the torsional spring stiffness
To discuss the mechanisms of high lift generation and flight performance, we present
the results obtained by varying Ch for three values of r̄1 (0.39, 0.48 and 0.58).
The forces, power economy, passive pitching and power components are particularly
analysed.

We first discuss C̄L, C̄D and PE, as shown in figure 4. The trends of C̄L and PE are
similar when Ch increases from 0.05 to 0.6, as introduced in § 4.1. The peak values of
C̄L are approximately 0.36, 0.52 and 0.65 for r̄1 = 0.39, 0.48 and 0.58, respectively (see
figure 4a). For all three r̄1 values, the highest value of C̄L is observed between Ch = 0.1
and 0.15, suggesting an optimum range of Ch to achieve the highest possible C̄L. The
exact value of the optimum Ch is found to vary within this small range with a change in
the wing shape. For all the wings, C̄D is observed to decrease monotonically with Ch, see
figure 4(b). This observation is consistent with that of the two-dimensional hovering wing
studied, for example, by Yin & Luo (2010). The decrease in C̄D for a higher Ch is caused
by the larger passive pitching motion resulting in a smaller angle of attack. On the other
hand, PE increases with Ch, reaching its maximum value at Ch ≈ 0.15 before decreasing
with Ch, similar to the trend observed in C̄L (see figure 4c). From Ch = 0.05 to 0.15, PE
is increased due to the increase of lift and the decrease of aerodynamic power (C̄P) caused
by the softening of the spring. For Ch > 0.15, PE is found to decrease as the rate of the
decrease in C̄L is higher than that in C̄P. The significant and quick decrease of C̄L is due
to the negative lift caused by the delayed pitch for soft springs and the reduced size of the
leading-edge vortex, which will be demonstrated in the analysis of wing kinematics and
vortex structures.

We then present the flapping and pitching power expenditures from various sources,
as shown in figure 5, from which several important observations are obtained. Firstly,
the flapping aerodynamic power dominates power consumption with peak values roughly
3 times those of the flapping inertial power. This is consistent with the definition of
the mass ratio, M = Mc/AR ≈ 1/3, which indicates that the scale of the inertial forces
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Figure 5. Time traces of power coefficients (CP values) at r̄1 = 0.48 for six different spring stiffness values
indicated by Ch = 0.05, Ch = 0.1, Ch = 0.15, Ch = 0.2, Ch = 0.3 and Ch = 0.6. CPflap

iner: flapping inertial
power coefficient; CPflap

aero: flapping aerodynamic power coefficient; CPpitch
iner : pitching inertial power coefficient;

CPpitch
aero : pitching aerodynamic power coefficient; CPpitch

spri : pitching elastic power coefficient; CPtotal: total power
coefficient. CP = power/(0.5ρU3A), where A is the surface area of the wing. Here, tf is non-dimensional time,
normalised by flapping frequency f .

is approximately 1/3rd of that of the aerodynamic forces. The exception is the case of
Ch = 0.6, where the spring is very soft, resulting in a much smaller aerodynamic force
(thus much smaller aerodynamic power) and larger pitching inertial power compared
with that of lower Ch cases. Secondly, the flapping aerodynamic power almost always
remains positive due to a low mass ratio considered and the continuous work required
to overcome the drag. The exception is the case of a very stiff wing (i.e. Ch = 0.05)
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Figure 6. (a) Phase difference (Δφ) of power coefficients, as a function of Ch. Here, Δφflap: phase difference
between the flapping aerodynamic power and the total system input power; Δφpitch: mean phase difference
between the pitching elastic power and the pitching aerodynamic and inertial powers. (b) The absolute value of
the peak pitching elastic power.

with a negative aerodynamic power just before the end of each half-stroke, similar to that
observed with a two-dimensional flapping wing in Tian et al. (2013), and is caused by
the deceleration of the stroke motion. According to two-dimensional simulations (Yin &
Luo 2010; Tian et al. 2013), the cases with high mass ratios could also generate negative
aerodynamic power due to a delayed rotation. Normally, the flapping aerodynamic power
reaches its maximum value at around midstroke (e.g. tf = 5.25 and tf = 5.75), where
the drag and the stroke velocity are maximal. Thirdly, for pitching motion, the elastic
power of the spring balances the pitching–inertial and pitching–aerodynamic powers and,
thus, no net power consumption is observed. Fourthly, the flapping aerodynamic power
decreases monotonically with Ch similar to the trend observed in CD (figure 4b), while the
flapping and pitching inertial powers increase monotonically with Ch because the wing
of higher Ch travels over a larger θ range, resulting in higher θ̇ and θ̈ . As a result, the
pitching elastic power increases correspondingly to balance the increased pitching inertial
and aerodynamic powers.

Finally, for Ch ∈ [0.1, 0.2], a nearly in-phase synchronisation (with a phase difference
Δφflap ∈ [18◦, 30◦] as measured in figure 6a) is observed between the flapping
aerodynamic power and the total system input power. Simultaneously, an anti-phase
synchronisation (with a mean phase difference Δφpitch ≈ 180◦ as measured in figure 6a)
between the pitching elastic power and the pitching aerodynamic and inertial powers is
observed. The nearly in-phase synchronisation between the flapping aerodynamic power
and the total system input power ensures that the total system input power is mainly used
to drive the flapping motion without being wasted in other power components, while
the anti-phase synchronisation between the pitching powers ensures that the pitching
aerodynamic and inertial powers are fully stored in the elastic pitching power and vice
versa. The phase difference between flapping aerodynamic power and the total system
input power shows an increasing trend as the increase of Ch. The nearly in-phase
synchronisation between the flapping aerodynamic power and the total system input power
is also reflected by the timing of pitch rotation, which will be further analysed below. As
shown in figure 6(b), the maximal absolute value of the peak pitching elastic power occurs
at Ch ∈ [0.1, 0.2], indicating an efficient storage and release process of the elastic energy
in this region. This is consistent with the work by Cai et al. (2022) who reported that
the elastic storage minimises the high energetic cost of flapping wings. For Ch = 0.05, the
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wing is stiff, and while the synchronisation between flapping and pitching is similar to that
required for high lift, the wing’s minimal angle of attack is much higher than 45◦ where
the optimum lift is produced. In addition, the drag is high for Ch = 0.05 resulting in a low
power economy. Wings with Ch ∈ [0.1, 0.2] produce an optimal lift and a relatively small
drag as the wing experiences the minimal angle of attack ≈45◦, which will be analysed
and discussed in the following parts of this section.

To further study the reasons for high C̄L and PE with various Ch, the time histories
of CL, CD, the pitching angle θ and the corresponding angle of attack α are shown in
figure 7; the minimal angle of attack αmin and the pitch rotation delay δα are shown in
figure 8. It should be noted that the pitching angle θ about the pitching axis is measured
with reference to the z-axis. Hence, the angle of attack α is defined as

α =
{

90◦ − θ, if φ̇ < 0,

90◦ + θ, if φ̇ ≥ 0.
(4.1)

Various quasi-steady models correlate CL and α as CL = f [sin(2α)] (Dickinson et al. 1999;
Sane & Dickinson 2001, 2002; Wang, Goosen & van Keulen 2016). Thus, CL is expected
to be maximum when α ≈ 45◦, which is slightly higher than that for a translated flat-plate
wing (Taira & Colonius 2009). On the other hand, CD is expected to increase with α. As
the softer springs at higher Ch result in lower α values, the corresponding CD is also lower,
irrespective of r̄1. For a higher r̄1, a larger area is available outboard to support a larger
leading-edge vortex (LEV), which results in higher suction magnitudes beneath the LEV.
Thus, values of both CL and CD are slightly more enhanced in magnitude compared with
those at lower r̄1.

The instantaneous values of CL are also affected by the synchronisation in the flapping
and pitching kinematics. The delay in pitch reversal δα is calculated as the phase difference
between the flapping stroke reversal and the time when α reaches the neutral position of
90◦. From figures 7 and 8, a few interesting results are obtained. Pitch reversal is more
delayed with increasing Ch, as seen in figures 7(a) and 7(b). The delayed pitch causes
the instantaneous α after the flapping stroke reversal to be greater than 90◦, which results
in negative CL due to the wing being pushed down by the fluid on the wing pressure
side. Additionally, the rapid pitch-down motion observed prior to t/T = 5.2 results in high
circulation around the wing that contributes to a significantly high downward force. Thus,
Ch = 0.6 shows negative values of CL during a part of a stroke, which is responsible for a
lower C̄L of a complete cycle, see figures 7(e) and 7( f ). Close to t/T = 5.2, the pitch-down
motion decelerates, followed by the pitch-up motion, which contributes to a positive lift
even at low values of α close to t/T = 5.35. Irrespective of the wing shape, the pitching
amplitude of the wing during the midstroke is observed to increase with Ch; consequently,
the angle of attack α reached near the midstroke is lower, see figures 7(c) and 7(d). The
case Ch = 0.15 experiences the highest instantaneous CL, as the wing nearly maintains
α ≈ 45◦ (which is also very close to αmin, see figures 7(c) and 7(e)), which has been shown
in previous studies to be the most effective α for lift generation (e.g. Dickinson 1994;
Dickinson et al. 1999). The wing of r̄1 = 0.58 approaches significantly lower values of
αmin. Combined with a delayed pitch, this behaviour results in large negative instantaneous
values of CL as well as an overall lower C̄L. Typically, fruit fly wings have r̄1 ≈ 0.53 (Meng
et al. 2017) and Ch ≈ 0.27 (Lei & Li 2020). The time traces of θ and α for a hovering fruit
fly from Fry et al. (2005) are compared in figures 7(b) and 7(d) along with a wing with
r̄1 = 0.58. The variations in θ and α for a fruit fly wing appear to follow the time traces
between the cases Ch = 0.15 and 0.3, which are not in, but close to, the optimal lift region.
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Figure 7. Time traces of θ , α, CL and CD are shown for passively pitching wings with four different Ch values.
The left column shows the results for the wing of r̄1 = 0.39 and the right column shows the results for the wing
of r̄1 = 0.58. Data for fruit fly kinematics are obtained from Fry, Sayaman & Dickinson (2005). Here, tf is the
non-dimensional time. Note that the results are shown for the 6th flapping cycle at which point the forces and
kinematics are periodic. Markers are shown at every 10th time step in the calculations. (a) Time traces of θ

for r̄1 = 0.39. (b) Time traces of θ for r̄1 = 0.58. (c) Time traces of α for r̄1 = 0.39. (d) Time traces of α for
r̄1 = 0.58. (e) Time traces of CL for r̄1 = 0.39. ( f ) Time traces of CL for r̄1 = 0.58. (g) Time traces of CD for
r̄1 = 0.39. (h) Time traces of CD for r̄1 = 0.58.

For all wing shapes, CD decreases monotonically with Ch, caused by the reduced angle of
attack for softer springs, see figures 7(g) and 7(h).

The minimal angle of attack αmin is found to decrease continuously with increasing
Ch, see figure 8(a). This is expected since a softer spring will allow the wing to deform
more in pitch from its neutral position. Wings with Ch in the range of [0.1, 0.2] produce a
maximum CL (figure 4a) and experience αmin ≈ 45◦. The value of Ch required to achieve
αmin = 45◦ reduces with r̄1. This is because, for a higher r̄1, the larger area available
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Figure 8. Contours of αmin reached in a flapping stroke are shown in (a) on the map of r̄1 and Ch, where the
white colour represents αref ≈ 45◦. The contours of pitch-rotation delay (δα) as a percentage of the flapping
period are shown in (b) on the map of r̄1 and Ch.

outboard to support the LEV results in increased suction pressure, whose resultant force
makes the wing tilt more than that for a lower r̄1. Consequently, the region of αmin = 45◦
in figure 8(a) is observed to decrease linearly on the map of r̄1 and Ch. This also explains
why the region of high C̄L in figure 3(a) is shifted to lower Ch at high r̄1 values.

The delay in pitch reversal δα is seen to increase with Ch for all the examined wing
shapes, see figure 8(b). For stiffer springs with Ch < 0.15, the pitch rotation is advanced
with respect to the flapping stroke (i.e. δα < 0), whereas for softer springs, the pitch
rotation is delayed (i.e. δα > 0). As has been previously reported by Dickinson et al.
(1999) and Sane & Dickinson (2001), the advanced pitch can be useful in achieving
higher lift and the delayed pitch may be detrimental. On the other hand, the advanced
pitch also results in a higher CD. This confirms the in-phase synchronisation between the
flapping aerodynamic power and the total system input power. Similarly, the anti-phase
synchronisation between the elastic pitching power and the pitching aerodynamic and
inertial powers is reflected in δα ≈ 0◦ for optimal PE cases (see the Ch = 0.15 case
in figure 5). The region of δα = 0 represents the exact synchronisation between the
flapping and pitching motions. This is the region where the highest power economy
can be observed for a given wing shape or stiffness, which explains the variations in
PE shown in figure 3(b). Note that the cases with high flexibility, i.e. Ch > 0.45 and
r̄1 > 0.6 have the wing rotated up to and beyond αmin = 0◦, causing the lift and drag to be
highly unstable during a stroke. Overall, Ch ∈ [0.1, 0.2] may be ideal for simultaneously
obtaining αmin = 45◦ to maximise C̄L and δα ≤ 0 to maximise PE.

To summarise this section, the lift production is optimal at 0.05 < Ch ≤ 0.2 and larger
r̄1, where the minimum angle of attack is around 45◦ at the midstroke, while the best
configuration for the maximum PE is achieved at r̄1 = 0.45 and Ch = 0.2, where the
flapping aerodynamic power is approximately three times in magnitude of the flapping
inertial power.

The optimal performance measured by the power economy is obtained for those cases
where two important power synchronisations occur: anti-synchronisation of the pitching
elastic power and the pitching aerodynamic and inertial powers and nearly in-phase
synchronisation of the flapping aerodynamic power and the total input power of the system.
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Figure 9. Variations in (a) C̄L, (b) C̄D and (c) PE = C̄L/C̄P with r̄1 (wing shape) are shown for passively
pitching wings with three different Ch values.

4.3. Wing-shape effects
The effects of wing shape on the aerodynamic performance are explored by varying
r̄1. The variation in the cycle-averaged lift coefficient (C̄L) as a function of r̄1 using
three different torsional springs corresponding to Ch = 0.05, 0.15 and 0.45, is shown
in figure 9(a). For the case of the stiffest spring at the wing hinge (i.e. Ch = 0.05), C̄L
increases monotonically with r̄1. This is in concurrence with previous observations on
actively pitching rigid wing shapes with prescribed kinematics. It has been shown that
the larger outboard area of a high-r̄1 wing supports the larger LEV that is responsible for
creating higher suction on the wing surface, resulting in higher lift (Shahzad et al. 2018a;
Bhat et al. 2019b). However, this observation does not hold true for passively pitching
wings with softer torsional springs, see figure 9(a). For wings with softer springs (i.e.
Ch = 0.15 and Ch = 0.45), C̄L increases with r̄1 only until a certain r̄1, beyond which it
starts decreasing. The value of r̄1 giving a maximum C̄L changes with Ch: C̄Lmax = 0.573
at r̄1 = 0.565 for Ch = 0.15 and C̄Lmax = 0.187 at r̄1 = 0.48 for Ch = 0.45.

Similar trends are also observed in the cycle-averaged drag coefficient (C̄D), as shown in
figure 9(b). For the stiffest hinge (i.e. Ch = 0.05), C̄D appears to increase monotonically
with r̄1 but for less stiff hinges such as Ch = 0.15 and 0.45, C̄D increases with r̄1 to a
maximum after which it decreases with r̄1. Previous studies (e.g. Shahzad et al. 2018a)
have shown that, for actively pitching rigid wings, PE decreases with an increase in
r̄1 due to an increased C̄D. However, for passively pitching wings, the observations are
different, as can be seen in figure 9(c). For Ch = 0.05, the increase in the outboard area
with r̄1, together with a reducing angle of attack α approaching 45◦, results in a greater
increase in C̄L than in C̄D, causing PE to increase with r̄1 for r̄1 > 0.43. However, for
Ch = 0.45, both C̄L and C̄D are lower, resulting in the highest PE (0.466) at r̄1 = 0.43.
For the medium-soft spring case (Ch = 0.15) the balance between spring stiffness and
aerodynamic contribution results in the highest PE = 0.662, which remains virtually
constant for 0.43 ≤ r̄1 ≤ 0.565.

Overall, the variation in PE appears to directly depend on the pitch-rotation delay caused
by the power synchronisations, as discussed earlier. For Ch = 0.05, the pitch rotation is
advanced compared with the flapping motion, as can be seen in figure 8(b). At higher r̄1,
the rotation is less advanced, which causes an increase in PE seen here in figure 9(c). At
Ch = 0.15, the delay of δα ≈ 2.5 % is mostly unaffected by r̄1. Thus, the value of PE also
remains mostly unchanged. However, at a higher Ch, the pitch rotation is more delayed.
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Figure 10. Time traces of the pitching angle θ , angle of attack α and lift coefficient CL are shown for passively
pitching wings with three different r̄1 values. The left column shows the results for Ch = 0.05 and the right
column shows the results for Ch = 0.45. Here, tf is non-dimensional time, normalised by flapping frequency f .
Note that the results are shown for the 6th cycle at which point the forces and kinematics are periodic. Markers
are shown at every 10th time step in the calculations. (a) Time traces of θ for Ch = 0.05. (b) Time traces of θ

for Ch = 0.45. (c) Time traces of α for Ch = 0.05. (d) Time traces of α for Ch = 0.45. (e) Time traces of CL
for Ch = 0.05. ( f ) Time traces of CL for Ch = 0.45.

It first decreases with r̄1, followed by an increase. Hence, the resulting PE also shows a
variation as shown for the case of Ch = 0.45 in figure 9(c).

It can be seen that the choice of the wing shape to achieve the best possible hover
performance, both in terms of C̄L and PE, is determined by the spring stiffness used for the
passively pitching wings. The reasons behind the trends in C̄L with various r̄1 are further
analysed by comparing their time histories of the pitching angle θ and the corresponding
angle of attack α, as shown in figure 10.

The pitching amplitude is observed to increase with r̄1, as can be seen in figures 10(a)
and 10(b). The corresponding variations in the angle of attack α are shown in figures 10(c)
and 10(d). As α approaches 45◦, CL is also observed to increase, in accordance with the
quasi-steady models (Dickinson et al. 1999; Sane & Dickinson 2001, 2002), as shown in
figures 10(e) and 10( f ). On the other hand, for a softer spring, i.e. Ch = 0.45, the elastic
energy from the spring is low and the pitching amplitudes are high, resulting in α < 45◦
during the midstroke (e.g. tf = 5.25). Hence, the corresponding values of CL at midstroke
are lower than those for Ch = 0.05. Please note that for most cases, α reaches its minimum
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Figure 11. Vortices are visualised by semi-transparent iso-surfaces of the normalised Q-criterion (Q∗ =
100) and the wing suction sides are coloured by the normalised pressure (p∗ = p/(ρU2)) contours at the
midstroke tf = 5.25. (a–c) Represent the wings of r̄1 = 0.39, 0.48 and 0.63, respectively, with Ch = 0.05.
(d–f ) Represent the same wings with Ch = 0.45.

value before the midstroke and reduces thereafter even though the stroke velocity is still
increasing. This is caused by the inertial force of the wing during stroke reversal (see e.g.
Dai et al. 2012; Tian et al. 2013). Due to the large pitching motions experienced by the
wing with a softer spring, there are also significant changes in the phase of pitch reversal,
identified by the phase at which the wing crosses the α = 90◦ threshold. Instantaneous CL
can assume significantly negative values near the midstroke for r̄1 = 0.63 and Ch = 0.45
(see figure 10f ) which contributes to the low C̄L produced by the wing. The negative
CL is due to the high negative pressure that develops near the trailing edge of the wing
pressure side during stroke reversal (see supplementary movie 1 available at https://doi.
org/10.1017/jfm.2023.821 for an animation of the time history of the lift coefficient and
the corresponding vortex structures). The animation for r̄1 = 0.63 and Ch = 0.05 is also
provided for comparison (see supplementary movie 2).

The wing-shape effects can be better understood by observing the flow structures around
the wing, as shown in figure 11. Here, the flow over wings of various r̄1 for Ch = 0.05 and
Ch = 0.45 is shown at the midstroke, i.e. at tf = 5.25. The LEV, the dominant flow feature
shown to be responsible for the high lift produced by flapping wings, is highlighted in all
cases. Since the value of α at midstroke is higher with a stiffer spring (Ch = 0.05) and
is closer to 45◦, the size of the LEV over the wings is larger than the LEV that forms
over the wing with a softer spring (Ch = 0.45). The larger LEV creates a higher suction
on the wing surface beneath the vortex. Moreover, the LEV is smaller near the root and
increases in size in the spanwise direction. Hence, a larger outboard area of the wing with
r̄1 = 0.63 supports a larger LEV, which results in a stronger suction. This explains the
increase in CL with r̄1 for the wing with a stiff hinge (figure 9(a) for Ch = 0.05) or fully
prescribed kinematics (Combes & Daniel 2001; Shahzad et al. 2018a). For a softer spring
with Ch = 0.45, the suction pressure beneath the LEV increases with r̄1. However, beyond
r̄1 = 0.48, the value of α at the midstroke also reduces significantly, causing the LEV to be
smaller and weaker. In addition, the wing of r̄1 = 0.63 and Ch = 0.45 rapidly pitches up
(i.e. the trailing edge swings up) before tf = 5.2, leading to a strong vortex at the bottom
surface near the trailing edge (see figure 11f ), and a strong deceleration occurs thereafter
until tf = 5.25 causing a strong inertia force downwards. Therefore, even with a larger
outboard area and a positive angle of attack, the r̄1 = 0.63 wing produces smaller C̄L, as
seen in figure 11( f ). Overall, the variation in CL with r̄1 is found to be dependent largely
on the torsional spring stiffness.
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Figure 12. Time traces of power coefficients (CP values) at Ch = 0.15 for four different wing shapes of
r̄1 = 0.39, r̄1 = 0.48, r̄1 = 0.58 and r̄1 = 0.63. Here, CPflap

iner: flapping inertial power coefficient; CPflap
aero:

flapping aerodynamic power coefficient; CPpitch
iner : pitching inertial power coefficient; CPpitch

aero : pitching
aerodynamic power coefficient; CPpitch

spri : pitching elastic power coefficient; CPtotal: total power coefficient.
Power coefficient CP = power/(0.5ρU3A), where A is the surface area of the wing. Here, tf is non-dimensional
time, normalised by flapping frequency f .

Power expenditures from various sources of four wing shapes r̄1 = 0.39, 0.48, 0.58 and
0.63 are further analysed in figure 12. For all four wing shapes, the flapping inertial power
traces two nearly sinusoidal curves with the positive part being larger than the negative
part, see figure 12. The positive flapping inertial power is used to accelerate the wing
at the beginning of each stroke cycle (i.e. from tf = 5 to tf = 5.25), and the negative
inertial power indicates the work done by the fluid on the wing to decelerate it after the
midstroke (i.e. from tf = 5.25 to tf = 5.5). The pitching inertial power increases with r̄1,
due to the significantly increased inertial contribution from flapping (i.e. Jzy). As a result,
the pitching elastic power increases with r̄1 to balance the increased pitching inertial and
pitching aerodynamic power.

As r̄1 increases from 0.39 to 0.58, the peak value of the flapping aerodynamic power
increases by 42.50 % (i.e. from 1.20 to 1.71), followed by a minor decrease (9.36 %) as r̄1
increases to 0.63. On the other hand, the flapping inertial power increases monotonically
and significantly with r̄1 as the moment of inertia around the flapping axis (i.e. Jzz) is
doubled (Jzz = 5.64 and 11.38 for r̄1 = 0.39 and 0.63, respectively). At Ch = 0.15, as
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shown in figure 9, C̄D and PE are roughly the same for different r̄1, with a 10.15 % increase
of C̄L for r̄1 = 0.48 and r̄1 = 0.58. The slight increase of C̄L is at the cost of a significant
increase in the flapping inertial power (50.52 % in the peak value).

5. Conclusions

A numerical investigation of the aerodynamic performance of passively pitching flapping
wings for different combinations of wing shapes (defined by the radius of the first
moment of area r̄1) and the pitching hinge stiffness (defined by Cauchy number Ch)
is conducted using an IB–LBM FSI model. The two parameters (r̄1 and Ch) of the
wing are found to have strong coupled effects on aerodynamic performance in hover.
For passively pitching flapping wings, the variations in the power economy (PE) with
r̄1 are found to be dependent on the hinge stiffness and significantly different from that
reported for wings with prescribed kinematics. The variations in the spring stiffness
are observed to result in variations in the phase synchronisations between the elastic,
aerodynamic, inertial and total power. The optimum wing performance occurs when
there is in-phase synchronisation between the flapping aerodynamic and total system
input power, simultaneously with the anti-phase synchronisation between the pitching
elastic and the pitching aerodynamic and inertial powers where the absolute value of the
peak pitching elastic power occurs. Across all wing shapes, the optimum value of Ch
to achieve the highest possible cycle-averaged lift coefficient (C̄L) occurs in the range
of 0.05 < Ch ≤ 0.2, where the wing’s minimum angle of attack approaches 45◦. The
combination of r̄1 and Ch is also found to affect the phase between the pitch reversal
and flapping motions that could either positively or detrimentally affect performance and
PE. For cases where the power economy was highest, there is also the synchronisation
between the pitching and flapping kinematics of the wings resulting in them being in
phase during stroke reversal. The best configuration for the maximum PE is achieved at
r̄1 = 0.45 and Ch = 0.2, where the flapping aerodynamic power is approximately three
times in magnitude of the flapping inertial power. Finally, comparing the wing shape and
kinematics of insects with the results presented here suggests that passive pitching may
allow insects like fruit flies to support their weight while maximising power economy.
This study provides insight into passive pitching hovering performance that may be used
to optimise the design of flapping-wing flyers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.821.
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Figure 13. Coordinates and dimensions for a rectangular wing planform: G is the centre of mass and θ is the
pitching angle. Here, z and y are the flapping and pitching axes, respectively. The wing has a chord length of
2a and a span of 2d.
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Appendix A. Derivation of the passively pitching and flapping-wing dynamics

The schematic diagram in figure 13 shows the schematic of a wing planform. The wing is
assumed as a thin (infinitesimal thickness) rectangular rigid plate for simplified analysis.
In this model, the two angles of concern are the stroke position angle φ around z-axis and
the pitching angle θ around the torsion axis (i.e. pitching axis). Here, the pitching axis is
aligned with the leading edge of the wing.

From Newton’s second law of motion in classical mechanics, the total torque T̃ applied
on the wing root to actuate the flapping-wing system equals the rate of change of angular
momentum H̃, i.e.

T̃ = d
dt

(H̃). (A1)

The flapping-wing system is then decomposed into pitching and flapping motions,
as shown in figures 14 and 15, respectively. During the pitching motion, the angular
momentum is H̃pitch = r̄ × mv̄, where r̄ = (ûx, ûy, ûz) is the position vector of the centre
of mass G (relative to the wing root), m = 4ρwad is the wing mass, ρw is the wing surface
density and v̄ is the linear velocity vector at G. According to the resolved motions in three
different views in figure 14, the pitching angular momentum is more specifically calculated
as

H̃pitch = maθ̇ (aûy) + maθ̇ cos θ(dûz) + maθ̇ sin θ(dûx). (A2)

For the flapping motion, as shown in figure 15, the radius of rotation or the length of the
moment arm r and its angle definitions can be calculated as

r =
√

d2 + a2 sin2 θ, cos β = d
r
, sin β = a sin θ

r
. (A3a–c)
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Figure 14. Pitching motion analysis in three different views. Here, aθ̇ is the tangential pitching velocity at the
centre of mass G. Panels show (a) X–Z plane; (b) X–Y plane; (c) Y–Z plane.
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rφ̇ sin β

rφ̇ cos β

o

rφ̇ cos β rφ̇ sin β

Figure 15. Flapping motion analysis in three different views. Here, rφ̇ is the tangential flapping velocity at
the centre of mass G. Panels show (a) X–Y plane; (b) X–Z plane; (c) Y–Z plane.

Similarly, according to the resolved motions in three different views, the flapping
angular momentum H̃flap can be calculated as

H̃flap = mrφ̇(rûz) + mrφ̇ cos β(a cos θ ûy) − mrφ̇ sin β(a cos θ ûx). (A4)

Therefore, the total momentum H̃ of the flapping-wing system is

H̃ = H̃pitch + H̃flap

= (ma2θ̇ + madφ̇ cos θ)ûy + (madθ̇ sin θ − ma2 sin θ cos θφ̇)ûx

+ (madθ̇ cos θ + mr2φ̇)ûz. (A5)

For a general (non-rectangular) wing, we define the wing in the non-pitched position
with subscript o (i.e. θ = 0 and x = 0). Then, the moment of inertia around the flapping
axis (z-axis) when the wing is rotated around the pitching axis Jyzo is calculated as

Jyzo = −
∫

yz dm = −ρw

∫ 0

−2a

∫ 2d

0
yz dy dz = −4ρwadad = −mad. (A6)

Similarly, the moment of inertia around the pitching axis Jyyo and the moment of inertia
around the flapping axis Jzzo are, respectively, given as

Jyyo =
∫

(x2 + z2) dm = 1
3

m(2a)2, Jzzo =
∫

(x2 + y2) dm = 1
3

m(2d)2. (A7a,b)
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Substituting (A6) and (A7a,b) into (A5), this gives

H̃ = (Jyyoθ̇ − Jyzoφ̇ cos θ)ûy︸ ︷︷ ︸
pitch

+ (−Jyzoθ̇ sin θ − 1
2 Jyyoφ̇ sin 2θ)ûx︸ ︷︷ ︸

roll

+ [−Jyzoθ̇ cos θ + (Jzzo + Jyyo sin2 θ)φ̇]ûz︸ ︷︷ ︸
flap

. (A8)

If the deviation angle outside the stroke plane is taken as zero, then

d
dt

(ûz) = 0. (A9)

In addition, the Cartesian coordinate system (ûx, ûy, ûz) and the cylindrical coordinate
system (ûφ , ûr, ûz) have the following relationships:

ûx = −ûφ,
d
dt

(ûx) = − d
dt

(ûφ) = φ̇ûr = φ̇ûy,

ûy = ûr,
d
dt

(ûy) = d
dt

(ûr) = φ̇ûφ = −φ̇ûx.

⎫⎪⎪⎬
⎪⎪⎭ (A10)

Then, the total torque T̃ applied on the wing root can be calculated as

T̃ = dH̃
dt

= (Jyyoθ̈ − Jyzoφ̈ cos θ + Jyzoφ̇θ̇ sin θ)ûy

− (Jyyoθ̇ − Jyzoφ̇ cos θ)φ̇ûx

+ (−Jyzoθ̈ sin θ + Jyzoθ̇
2 cos θ − 1

2 Jyyoφ̈ sin 2θ − Jyyoφ̇θ̇ cos 2θ)ûx

+ (−Jyzoθ̇ sin θ − 1
2 Jyyoφ̇ sin 2θ)φ̇ûy

+ (−Jyzoθ̈ cos θ + Jyzoθ̇
2 sin θ + Jzzoφ̈ + Jyyo sin2 θφ̈ + Jyyo sin 2θφ̇θ̇ )ûz.

(A11)

Reorganising (A11) gives

T̃ = [−(Jyyoθ̇ − Jyzoφ̇ cos θ)φ̇ + (−Jyzoθ̈ sin θ + Jyzoθ̇
2 cos θ

−1
2 Jyyoφ̈ sin 2θ − Jyyoφ̇θ̇ cos 2θ)]ûx︸ ︷︷ ︸

roll

+ (Jyyoθ̈ − Jyzoφ̈ cos θ − 1
2 Jyyoφ̇

2 sin 2θ)︸ ︷︷ ︸
pitch

ûy

+ (Jzzoφ̈ + Jyyo sin2 θφ̈ − Jyzoθ̈ cos θ + Jyzoθ̇
2 sin θ + Jyyo sin 2θφ̇θ̇ )︸ ︷︷ ︸

flap

ûz. (A12)

Then, the flapping and pitching inertial torques are

Tflap
iner = (Jzzo + Jyyo sin2 θ)φ̈ + Jyyo sin(2θ)θ̇ φ̇ − Jyzo(θ̈ cos θ − θ̇2 sin θ),

Tpitch
iner = Jyyoθ̈ − Jyzoφ̈ cos θ − 1

2 Jyyoφ̇
2 sin 2θ.

}
(A13)
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Figure 16. Verification of the calculation of (a) aerodynamic powers and (b) inertial powers for the case of
r̄1 = 0.48 and Ch = 0.15.

Appendix B. Verification and solver validation

B.1. Verification of powers
The verification of the calculation of aerodynamic powers and inertial powers is provided
here. The total aerodynamic power Paero (Maeda & Liu 2013) and total system inertial
power Piner of the wing can be calculated as

Paero = F · U, Piner = ma · U, (B1a,b)

where F is the force acting on the wing by the fluid, U is the velocity of the wing, m is
the wing mass and a is the acceleration of the wing. Here, Paero and Piner can be also
calculated by Paero = Pflap

aero + Ppitch
aero and Piner = Pflap

iner + Ppitch
iner , respectively. An example

of the validation for the case of r̄1 = 0.48 and Ch = 0.15 is provided in figure 16. Note that,
in this figure, the power transfer for passive pitching has been considered to be positive
from the wing to the fluid and hence, it will be the opposite of the convention used for
the flapping-power calculations. Hence, as shown in figure 16(b), CPaero agrees very well
with CPflap

aero − CPpitch
aero . A similar agreement (CPiner = CPflap

iner − CPpitch
iner ) is observed for

the inertial powers as shown in figure 16(b).

B.2. Calculation of the Jyy, Jzz and Jyz

The calculation of the Jyy, Jzz and Jyz are based on the definition of the moment of inertia

Jyy =
∫

(x2 + z2) dm, Jzz =
∫

(x2 + y2) dm, Jyz =
∫

yz dm, (B2a–c)

where dm = msdA with dA being the area of the element. The specific values of Jyy, Jzz
and Jyz are provided in table 1. Note that, in table 1, the values are calculated based on
wing surface density ms = 1.0, mean chord length c = 1.0 and wing span L = 2.96. The
order of the value may vary, determined by the choice of the wing scale.

B.3. Initial pitching angle independence tests
The passive pitching of the wing in this study is found to be independent of the wing’s
initial pitching angle. To verify this, simulations are carried out with two different initial
pitching angles: θ0 = 45◦ and θ0 = 0◦. As shown in figure 17, the results from the two
pitching angles converge to the same solution after t/T = 0.35, confirming that the results
are independent of the initial condition of the wing.

974 A41-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.821


Power synchronisations determine the hovering efficiency

Wing r̄1 = 0.390 r̄1 = 0.430 r̄1 = 0.480 r̄1 = 0.530 r̄1 = 0.565 r̄1 = 0.580 r̄1 = 0.605 r̄1 = 0.63

Jyy 1.416 1.222 1.172 1.265 1.419 1.512 1.718 2.009
Jzz 5.643 6.507 7.643 8.836 9.703 10.082 10.725 11.380
Jyz −1.632 −1.858 −2.201 −2.635 −3.013 −3.201 −3.557 −3.987

Table 1. Specific values of Jyy, Jzz and Jzy used in this study.

tf

θ
(d

eg
.)
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–120

–90

–60

–30

0

30

60

90

120
θ0 = 45°

θ0 = 0°

Figure 17. Time traces of the pitching angle obtained after setting two different initial pitching angles
(θ0 = 45◦ and θ0 = 0◦) for the case of r̄1 = 0.48 and Ch = 0.15.

B.4. Verification of the periodic repeatability
The periodic repeatability of the variations in CL and CD is verified by analysing the
cycle-to-cycle variations in those quantities over 6 cycles. Figures 18(a) and 18(b) show the
time traces of CL and CD, respectively, for r1 = 0.53 and Ch = 0.3 over a flapping period
for 6 consecutive stroke cycles. Variations in CL and CD appear to be highly repetitive
after the 3rd cycle. Cycle-to-cycle variations in CL and CD are quantified as the standard
deviations between their values in ith cycle and those in the previous ((i − 1)th) cycle, as
shown in figure 18(c,d), and show that the variations in CL and CD values are negligible
after the 4th cycle. In the results, the cycle-averaged values are obtained from the 6th cycle,
where a periodic state is already obtained.

B.5. A rigid rectangular flapping plate with prescribed flapping and pitching motions
For validation of the current numerical method, a thin and rigid rectangular plate in
hovering flight with prescribed flapping and pitching motions is considered, as shown
in figure 19. The wing has a chord length c and a span of L = 2c. The aspect ratio is
AR = L/c = 2.0. The leading edge undergoes two degrees-of-freedom rotations, the same
as that prescribed by Dai et al. (2012),

φ = φA

2
sin
(

2πft + π

2

)
, θ = θA

2
sin(2πft). (B3a,b)

Here, the flapping and pitching amplitudes are φA = 2π/3 and θA = π/3, respectively, f
is the flapping frequency and t is time. The wing arm (from the pivot point to the wing
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Figure 18. Time traces of (a) CL and (b) CD during various flapping cycles, starting from rest, are shown for
r̄1 = 0.53 and Ch = 0.3. The cycle-to-cycle variations in CL and CD are shown in (c,d), respectively, in terms
of the standard deviations (σ ) of those values between an ith cycle and its previous, i.e. (i − 1)th cycle.
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Figure 19. Schematic diagram of the rectangular wing model used in the study. (a) Three-dimensional view.
(b) Two-dimensional view.
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Sources Domain size dxmin N (106) tw (hours)

Dai et al. (2012) [14c, 15c, 15c] 0.05c 1.72 —
Present IB–LBM [14c, 15c, 15c] 0.05c 3.14 0.18

Table 2. Fluid domain size in the x-, y- and z- directions (scaled with c), finest grid size (scaled with c), number
of grid elements and CPU time tw of one stroke cycle for the computation of the rectangular wing model.
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Figure 20. Rectangular wing: (a) wing kinematics in two stroke cycles and (b) the time history of the lift
coefficient. Here, tf is non-dimensional time, normalised by flapping frequency f .

root) has a length of 0.1c. The Reynolds number is defined as

Re = ρUc
μ

= 176, (B4)

where U is the mean wingtip velocity at the leading edge (U = 2φA f (L + 0.1c) =
8.797cf ).

As shown in table 2, the computational domain has a size of 14c × 15c × 15c, the same
as that of Dai et al. (2012). The finest grid around the wing is of size 0.05c, and the
total grid number is 3.14 × 106. The CPU time per stroke cycle of the present IB–LBM is
provided here for future reference. Six stroke cycles are simulated to ensure that all force
histories (e.g. CD and CL) are periodic. Dirichlet boundary conditions for the velocity
and pressure are applied on all six computational boundaries. The grid size of the wing is
maintained to be half of the fluid grid size. Figure 20(a) shows the wing kinematics, where
the flapping motion leads the pitching motion by a phase of 90◦. A grid convergence study
is performed where the grid size (dx) is systematically decreased from 0.1c to 0.025c.
Figure 20(b) shows the comparison of lift coefficient CL in three different grid densities.
The variation in CL is consistent across the last two consecutive cycles for all three grid
sizes, indicating that the flow field had reached a periodic state. The converged solution
for CL produced by dx = 0.025c agrees well with the computational result of Dai et al.
(2012). For a quantitative comparison, an L2-norm error is defined as

L2-norm error ≡
√√√√ 1

Ns

Ns∑
k=1

(ΔCL)2, (B5)
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Figure 21. The L2-norm error of the lift coefficient CL for three different grid densities: dx = 0.1c,
dx = 0.05c and dx = 0.025c.

where ΔCL is the difference of lift coefficients, and Ns is the number of sample points.
Figure 21 shows that the error converges to a smaller value for smaller grid sizes, and the
error decays more rapidly for the larger grid size.

B.6. A rigid rectangular flapping plate with finite thickness
To increase the level of confidence in the present results, here we extend our comparison
with the case proposed in Suzuki, Minami & Inamuro (2015) as this case has been
simulated by many different methods, e.g. the IB-finite volume method by Medina (2013),
IB–LBM by Suzuki et al. (2015), IB-spectral method by Engels et al. (2016), arbitrary
Lagrangian–Eulerian by Dilek, Erzincanli & Sahin (2019) and IB-wavelets method by
Engels et al. (2021). As shown in figure 22, flow around a rectangular wing with prescribed
flapping φ and pitching θ motions is simulated. The wing has a chord length of c, a
span of L = 2c and a thickness of h = 0.1c. The wing arm has a length of r = 0.4c, and
the distance from the leading edge to the pitching axis (y-axis) is d = 0.16c. The wing
undergoes two degrees-of-freedom rotations (Suzuki et al. 2015),

φ = φm cos (2πft) , θ = θm

tanh Cη

tanh(Cη sin(2πft)), (B6a,b)

where φm = 80◦, θm = 45◦ and Cη = 3.3. The Reynolds number is given by Re =
ρUc/μ = 100 where U = 2πφmf (r + L). In the simulation, we use a computational
domain with [−5c, 5c] × [−3.9c, 6.1c] × [−5.3c, 4.7c], which is the same as that of
Suzuki et al. (2015). A multi-block grid with the finest grid size Δx = 0.02c in
[−2.6c, 2.6c] × [−0.5c, 2.71c] × [−1.05c, 0.45c]. The grid size of the wing is maintained
to be half of the finest fluid grid size. Dirichlet boundary conditions for the velocity and
pressure are applied on all six computational boundaries.

A grid convergence study is performed with three grid densities, namely, dx = 0.08c,
dx = 0.04c and dx = 0.02c. Figure 23 compares the lift and drag coefficients obtained by
present IB–LBM simulations with the IB-finite volume method by Medina (2013) and the
IB–LBM by Suzuki et al. (2015). The grid convergence study shows that the solutions are
converged when dx = 0.02c which agrees well with the results of previous studies.

974 A41-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.821


Power synchronisations determine the hovering efficiency

–90
0 0.25 0.50 0.75 1.00

–60

–30

0

30

60

90

dO

z

r

y

h
L

A
n
g
le

 (
d
eg

.)

tf

(b)(a)

θ

φ

c

Figure 22. For the validation study simulating flow around a rectangular wing with a finite thickness, (a) the
schematic diagram of the wing and (b) wing kinematics are shown here.
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Figure 23. Flow around a rectangular wing with a finite thickness: the time history of (a) the lift coefficient
and (b) the drag coefficient. Here, tf is non-dimensional time, normalised by flapping frequency f .

B.7. An underactuated fruit fly wing in hovering flight
A fruit fly wing in hovering flight with passive pitching is considered to further validate
our solver’s capability to simulate the passive pitch dynamics. Figure 24 shows the shape
and dimensions of the wing, which are identical to those used by Lei & Li (2020). The
wing has a mean chord c with an aspect ratio AR = L2/A = 3.2, where L is the wingspan
and A is the wing surface area. The kinematics of the wing is defined as a combination
of the prescribed rotation around the z-axis and the passive pitching motion around the
y-axis. A torsional spring is modelled at the wing root along the pitching axis to simulate
passive pitching.

φ(t) = −φA

2
cos(2πft), (B7)

where φ is the flapping amplitude φA = 7π/9. The passive pitching angle θ is determined
by solving the passive feathering motion equation (2.4). The non-dimensional groups of
the problem include the Reynolds number, the mass ratio (mean chord) and the Cauchy
number, which are respectively given by

Re = ρUL
μ

= 300, Mc = ms

ρc
= 1, Ch = ρφ2

A f 2c3L2

Ks
= 0.15, (B8a–c)
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Figure 24. Shape and dimensions of the fruit fly wing model.

Sources Domain size dxmin N (106) tw (hours)

Lei & Li (2020) [30c, 30c, 30c] 0.03c 6.99 —
Present IB–LBM [30c, 30c, 30c] 0.03c 12.8 2.11

Table 3. Fluid domain size in the x-, y- and z- directions, finest grid size, grid number and CPU time tw of
one stroke cycle for the computation of the fruit fly wing model.
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Figure 25. Fruit fly wing: (a) wing kinematics and (b) the time history of the lift coefficient in three different
grid sizes. Here, tf is non-dimensional time, normalised by flapping frequency f .

where U = 2f φAL is the mean wingtip velocity, and ms is the surface density of the wing
material. Table 3 shows the cubical computational domain that has a size of 30c × 30c ×
30c, the same as that used by Lei & Li (2020). The finest grid around the wing is 0.03c, and
the total grid number is 12.8 × 106. Six stroke cycles are simulated to ensure that the flow
field reached a periodic state. Figure 25(a) shows the time history of the pitching angle,
which agrees well with the computational result of Lei & Li (2020). The grid refinement
study here shows that the solutions are converged.

In conclusion, the current computational method has been validated and the results agree
well with those from the literature with prescribed flapping and pitching as well as with
passive pitching kinematics.
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