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Abstract

If the second dual of a Banach space E is smooth at each point of a certain norm dense subset, then its
first dual admits a long sequence of norm one projections, and these projections have ranges which are
suitable for a transfinite induction argument. This leads to the construction of an equivalent locally
uniformly rotund norm and a Markuschevich basis for E*.

1980 Mathematics subject classification (Amer. Math. Soc): 46 B 99.

1. Preliminaries

Let E be a real Banach space, E* its dual, E the canonical embedding of £ in
E**, and S(E) the unit sphere of E. The mapping D: E -» 2E' which associates
with each x G E the { / G £ * : f(x) = \\f\\\\x\\ and | | / | | = ||x||} is called the
duality mapping. The duality mappings on E*, E**, and Y, a subspace of E, will
be denoted by Dx, D2, and DY, respectively. The set D(S(E)) will be denoted by
D(S) and elements of D(S) by fx. Recall that the Bishop-Phelps Theorem states
that D(S) is norm dense in S(E*).

E is smooth [very smooth] at x E: S(E) if D(x) [D2(x)] is a singleton (see Giles
(1975) and Yorke (1977) for equivalent definitions). E is smooth [very smooth] if E
is smooth [very smooth] at each x E S(E). E is rotund if x, y G S(E) with
II* + Jll — 2 implies x — y. E is weakly locally uniformly rotund (WLUR) [locally
uniformly rotund (LUR)] at x G S(E) if every sequence (or net) {xn} in S(E)
with ||xn + x\\ -> 2 has xn -> x in the o(E, E*) topology [the norm topology]. E is
WLUR (LUR) if E is WLUR [LUR] at each x G S(E).

© 1983 Australian Mathematical Society 0263-6115/83 $A2.00 + 0.00

334

https://doi.org/10.1017/S1446788700027026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027026


(21 A renorming theorem 335

A biorthogonal set {(*,, / ) : / G / } C E X E* is called a Markuschevich basis

(M-basis) for E if E — sp{x,} and s p { / } is total over E. The density character of

a subspace Y C E, denoted dens Y, is the minimum cardinality of a (relatively)

norm dense subset of Y. E is weakly compactly generated (WCG) if there is a

a(E, E*) compact set K C E such that E =sp{#}. The symbol " ss " will be
used to mean "isometrically isomorphic to".

Tacon (1970) showed that if £** is smooth at each point of S(E), that is, if E
is very smooth, then E* can be equivalently renormed to be rotund. The main
step in obtaining this norm involves the construction of a long sequence {Pa:
u> < a < ja, ji — dens E*} of norm one projections on E*. However, in order to
use the transfinite induction method of Troyanski (1971) to improve this result,
one must be able to identify each (Pa + 1 — Pa)E*, u < a< [i, with the dual of a
very smooth space, or, equivalently, prove that certain quotient spaces of E are
also very smooth. The purpose of this paper is to show that if E** is given a
stronger type of partial smoothness: if E** is smooth at each iy G D^S), then
the necessary amount of smoothness will pass to the required quotient spaces.
Now the standard transfinite induction argument can be used to construct an
M-basis and an equivalent LUR norm for E*. Unfortunately, as with Tacon's
rotund norm, this LUR norm need not be a dual norm.

2. The theorem

In what follows the expression "D(S) is smooth" will be used to mean that E*
is smooth at each/^ G D(S).

PROPOSITION. Let Y be a subspace of E. If D(S) is smooth, then so is DY(S).

PROOF. If Y* is not smooth a t / G DY(S) there are sequences {yn} and {zn} in
S(Y), a g G S(Y*), and an e > 0 such that/(.yn + zn) -* 2 but \g(yn - zn)\ 3= e for
all n (Yorke (1977; Proposition 3)). But, by the Hahn-Banach Theorem, there are
/and g in S(E*) such t h a t / = / a n d g = g on Y. Thus \g(yn — zn)\ s» e for all n
even though f(yn + zn) -> 2, hence E* is not smooth at /. However, since
/ G DY(S) and/ = /on Y, f G D(S), so D(S) can not be smooth either.

LEMMA. Let D^S) be smooth. Then there is a transfinite sequence of projections
{Ts: 8 G D} defined on E* such that, for each S,

O)||7i||<oo,
(2)TsTy=TyTs=Tsify<8,
(3) Uy < s Ty+lE* is norm dense in TSE*,
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(4) for any e > 0 and f £ E* the {d: \\{Ts+i - 7J)/ | | > e(\\Ts\\ + \\Ts+l\\)} is
finite,

(5) (Ts+l - TS)E* is separable, and
(6) U8eD(Ts+l-Ts)E*=E*.

PROOF. Let [i be the first ordinal number of cardinality dens E*. Then since
D{(S) is smooth and S(E) C Dt(S), E is very smooth. Thus for every a, w «£ a ^
H, there is a subspace Ea C E, with dens Ea < a, and a projection i*a on E* such
that

(3)PaPp = PpPa = Pfi if p< a,
(4) U/3<a Pp+XE* is norm dense in PaE*,
(5) / ; = /, and
(6) (P.+, " Pa)E* » (£„+,/£„)*, a < M.

(For (1) through (5) use Tacon (1970; Theorem 2); (6) is given in John and Zizler
(1975, Lemma 1(8)).) Now proceed by induction on dens£*. If E* is separable
the result is immediate. Assume that the lemma holds for all cardinal numbers
less than dens E*. Let Ga denote Ea+1/Ea for each a ,« < a < p. Since G* =
(/"„+, — Pa)E* and D^S) is smooth, the proposition shows that each DG.(S) is
smooth. (This means that each Ea+l/Ea is very smooth.) Thus, since dens
(Pa+i — Pa)E* < jS, « < a < /i, the inductive hypothesis gives a transfinite se-
quence of projections {S^: u < /? < ra, Ta = dens(/>

a+1 — Pa)E*} on each
(Pa+l — Pa)E* which satisfies the conditions of the lemma. Let D = {(a, /?):
u < a < /i, w < /? < Ta} and order this set lexiographically. For each 8 G D
define

Now as in Troyanski (1971, page 177) one can show that the elements of {Ts:
8 G D) have the desired properties.

THEOREM. //Z),(5) is smooth, then
(1) is* admits an M-basis, and
(2) E* can be equivalently renormed to be LUR.

PROOF. (1) Use the standard transfinite induction argument (for example, see
John and Zizler (1975, page 294)).

(2) Since D^S) is smooth, E is very smooth, hence there is a continuous
one-to-one linear operator which maps E* into co(F) for some set F (Tacon
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(1970, Theorem 1)> This, together with properties (3), (4), (5), and (6) of the
lemma, shows that E* satisfies the conditions of Proposition 1 of Troyanski
(1971, page 175).

COROLLARY. If E* is WLUR, then
(1) E* admits an M-basis, and
(2) E* can be equivalently renormed to be LUR.

PROOF. E* WLUR implies D^S) is smooth (Yorke (1979, Theorem 1)).

Notice that although this WLUR norm for E* must be a dual norm, the LUR
norm, although equivalent, need not be dual.

If the projections of the lemma are a(E*, E) continuous it is not difficult to
show that E must be WCG. On the other hand if E is WCG, as well as very
smooth, then the projections will be o(E*, E) continuous (use John and Zizler
(1974, Lemma 4)). However, even though it is likely that if E** is smooth, E is
WCG, it appears that the methods used in the proof of the lemma will not give
this result without additional assumptions.
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