A RENORMING THEOREM FOR DUAL SPACES

A. C. YORKE

(Received 10 November 1979, revised 10 July 1982)

Communicated by E. Strzelecki

Abstract

If the second dual of a Banach space E is smooth at each point of a certain norm dense subset, then its first dual admits a long sequence of norm one projections, and these projections have ranges which are suitable for a transfinite induction argument. This leads to the construction of an equivalent locally uniformly rotund norm and a Markuschevich basis for E^* .

1980 Mathematics subject classification (Amer. Math. Soc.): 46 B 99.

1. Preliminaries

Let E be a real Banach space, E^* its dual, \hat{E} the canonical embedding of E in E^{**} , and S(E) the unit sphere of E. The mapping $D: E \to 2^{E^*}$ which associates with each $x \in E$ the $\{f \in E^*: f(x) = \|f\| \|x\| \text{ and } \|f\| = \|x\| \}$ is called the duality mapping. The duality mappings on E^* , E^{**} , and Y, a subspace of E, will be denoted by D_1 , D_2 , and D_Y , respectively. The set D(S(E)) will be denoted by D(S) and elements of D(S) by f_x . Recall that the Bishop-Phelps Theorem states that D(S) is norm dense in $S(E^*)$.

E is smooth [very smooth] at $x \in S(E)$ if D(x) [$D_2(\hat{x})$] is a singleton (see Giles (1975) and Yorke (1977) for equivalent definitions). E is smooth [very smooth] if E is smooth [very smooth] at each $x \in S(E)$. E is rotund if $x, y \in S(E)$ with ||x + y|| = 2 implies x = y. E is weakly locally uniformly rotund (WLUR) [locally uniformly rotund (LUR)] at $x \in S(E)$ if every sequence (or net) $\{x_n\}$ in S(E) with $||x_n + x|| \to 2$ has $x_n \to x$ in the $\sigma(E, E^*)$ topology [the norm topology]. E is WLUR (LUR) if E is WLUR [LUR] at each $x \in S(E)$.

© 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

A biorthogonal set $\{(x_i, f_i): i \in I\} \subset E \times E^*$ is called a Markuschevich basis (M-basis) for E if $E = \overline{\operatorname{sp}}\{x_i\}$ and $\overline{\operatorname{sp}}\{f_i\}$ is total over E. The density character of a subspace $Y \subset E$, denoted dens Y, is the minimum cardinality of a (relatively) norm dense subset of Y. E is weakly compactly generated (WCG) if there is a $\sigma(E, E^*)$ compact set $K \subset E$ such that $E = \overline{\operatorname{sp}}\{K\}$. The symbol " \cong " will be used to mean "isometrically isomorphic to".

Tacon (1970) showed that if E^{**} is smooth at each point of $S(\hat{E})$, that is, if E is very smooth, then E^* can be equivalently renormed to be rotund. The main step in obtaining this norm involves the construction of a long sequence $\{P_{\alpha}: \omega \leq \alpha \leq \mu, \bar{\mu} = \text{dens } E^*\}$ of norm one projections on E^* . However, in order to use the transfinite induction method of Troyanski (1971) to improve this result, one must be able to identify each $(P_{\alpha+1} - P_{\alpha})E^*$, $\omega \leq \alpha < \mu$, with the dual of a very smooth space, or, equivalently, prove that certain quotient spaces of E are also very smooth. The purpose of this paper is to show that if E^{**} is given a stronger type of partial smoothness: if E^{**} is smooth at each $F_f \in D_1(S)$, then the necessary amount of smoothness will pass to the required quotient spaces. Now the standard transfinite induction argument can be used to construct an M-basis and an equivalent LUR norm for E^* . Unfortunately, as with Tacon's rotund norm, this LUR norm need not be a dual norm.

2. The theorem

In what follows the expression "D(S) is smooth" will be used to mean that E^* is smooth at each $f_x \in D(S)$.

PROPOSITION. Let Y be a subspace of E. If D(S) is smooth, then so is $D_Y(S)$.

PROOF. If Y^* is not smooth at $f \in D_Y(S)$ there are sequences $\{y_n\}$ and $\{z_n\}$ in S(Y), a $g \in S(Y^*)$, and an $\varepsilon > 0$ such that $f(y_n + z_n) \to 2$ but $|g(y_n - z_n)| \ge \varepsilon$ for all n (Yorke (1977; Proposition 3)). But, by the Hahn-Banach Theorem, there are \tilde{f} and \tilde{g} in $S(E^*)$ such that $\tilde{f} = f$ and $\tilde{g} = g$ on Y. Thus $|\tilde{g}(y_n - z_n)| \ge \varepsilon$ for all n even though $\tilde{f}(y_n + z_n) \to 2$, hence E^* is not smooth at \tilde{f} . However, since $f \in D_Y(S)$ and $\tilde{f} = f$ on Y, $f \in D(S)$, so D(S) can not be smooth either.

LEMMA. Let $D_1(S)$ be smooth. Then there is a transfinite sequence of projections $\{T_{\delta}: \delta \in D\}$ defined on E^* such that, for each δ ,

- $(1) ||T_{\delta}|| < \infty,$
- (2) $T_{\delta}T_{\gamma} = T_{\gamma}T_{\delta} = T_{\delta} \text{ if } \gamma < \delta$,
- (3) $\bigcup_{\gamma<\delta} T_{\gamma+1}E^*$ is norm dense in $T_{\delta}E^*$,

- (4) for any $\varepsilon > 0$ and $f \in E^*$ the $\{d: ||(T_{\delta+1} T_{\delta})f|| > \varepsilon(||T_{\delta}|| + ||T_{\delta+1}||)\}$ is finite,
 - (5) $(T_{\delta+1} T_{\delta})E^*$ is separable, and (6) $\bigcup_{\delta \in D} (T_{\delta+1} T_{\delta})E^* = E^*$.

PROOF. Let μ be the first ordinal number of cardinality dens E^* . Then since $D_1(S)$ is smooth and $S(\hat{E}) \subset D_1(S)$, E is very smooth. Thus for every $\alpha, \omega \leq \alpha \leq$ μ , there is a subspace $E_{\alpha} \subset E$, with dens $E_{\alpha} \leq \overline{\bar{\alpha}}$, and a projection P_{α} on E^* such that

- $(1) ||P_{\alpha}|| = 1,$
- $(2) P_{\alpha} E^* = D \overline{(E_{\alpha})} \cong E_{\alpha}^*,$
- (3) $P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\beta}$ if $\beta < \alpha$,
- (4) $\bigcup_{B < \alpha} P_{B+1} E^*$ is norm dense in $P_{\alpha} E^*$,
- (5) $P_{u} = I$, and
- (6) $(P_{\alpha+1} P_{\alpha})E^* \cong (E_{\alpha+1}/E_{\alpha})^*, \alpha < \mu.$

(For (1) through (5) use Tacon (1970; Theorem 2); (6) is given in John and Zizler (1975, Lemma 1(8)).) Now proceed by induction on dens E^* . If E^* is separable the result is immediate. Assume that the lemma holds for all cardinal numbers less than dens E^* . Let G_{α} denote $E_{\alpha+1}/E_{\alpha}$ for each $\alpha, \omega \leq \alpha < \mu$. Since $G_{\alpha}^* \cong$ $(P_{\alpha+1}-P_{\alpha})E_{\alpha}^*$ and $D_{1}(S)$ is smooth, the proposition shows that each $D_{G_{\alpha}^{*}}(S)$ is smooth. (This means that each $E_{\alpha+1}/E_{\alpha}$ is very smooth.) Thus, since dens $(P_{\alpha+1}-P_{\alpha})E^*<\bar{\mu},\ \omega\leq\alpha<\mu$, the inductive hypothesis gives a transfinite sequence of projections $\{S_{\beta}^{\alpha}: \omega \leq \beta \leq \Gamma_{\alpha}, \overline{\Gamma}_{\alpha} = \operatorname{dens}(P_{\alpha+1} - P_{\alpha})E^*\}$ on each $(P_{\alpha+1}-P_{\alpha})E^*$ which satisfies the conditions of the lemma. Let $D=\{(\alpha,\beta):$ $\omega \le \alpha \le \mu$, $\omega \le \beta \le \Gamma_{\alpha}$ and order this set lexiographically. For each $\delta \in D$ define

$$T_{\delta} = \begin{cases} S_{\alpha}^{\beta} (P_{\alpha+1} - P_{\alpha}) + P_{\alpha} & \text{if } \alpha < \mu (S_{\omega}^{\omega} = 0), \\ I & \text{if } \alpha = \mu. \end{cases}$$

Now as in Troyanski (1971, page 177) one can show that the elements of $\{T_8\}$: $\delta \in D$ } have the desired properties.

THEOREM. If $D_1(S)$ is smooth, then

- (1) E* admits an M-basis, and
- (2) E^* can be equivalently renormed to be LUR.

PROOF. (1) Use the standard transfinite induction argument (for example, see John and Zizler (1975, page 294)).

(2) Since $D_1(S)$ is smooth, E is very smooth, hence there is a continuous one-to-one linear operator which maps E^* into $c_0(\Gamma)$ for some set Γ (Tacon (1970, Theorem 1)): This, together with properties (3), (4), (5), and (6) of the lemma, shows that E^* satisfies the conditions of Proposition 1 of Troyanski (1971, page 175).

COROLLARY. If E* is WLUR, then

- (1) E* admits an M-basis, and
- (2) E^* can be equivalently renormed to be LUR.

PROOF. E^* WLUR implies $D_1(S)$ is smooth (Yorke (1979, Theorem 1)).

Notice that although this WLUR norm for E^* must be a dual norm, the LUR norm, although equivalent, need not be dual.

If the projections of the lemma are $\sigma(E^*, E)$ continuous it is not difficult to show that E must be WCG. On the other hand if E is WCG, as well as very smooth, then the projections will be $\sigma(E^*, E)$ continuous (use John and Zizler (1974, Lemma 4)). However, even though it is likely that if E^{**} is smooth, E is WCG, it appears that the methods used in the proof of the lemma will not give this result without additional assumptions.

References

- D. Amir and J. Lindenstrauss (1968), 'The structure of weakly compact sets in Banach spaces,' Ann. of Math. (2) 88, 35-46.
- J. Diestel (1975), Geometry of Banach spaces—selected topics (Springer-Verlag, Berlin, Heidelberg, New York)
- J. R. Giles (1975), 'On smoothness of the Banach space embedding,' Bull. Austral. Math. Soc. 13, 69-74.
- K. John and V. Zizler (1974), 'Smoothness and its equivalents in weakly compactly generated Banach spaces', J. Functional Analysis 15, 1-11.
- K. John and V. Zizler (1975), 'Markuschevich bases in some dual spaces,' Proc. Amer. Math. Soc. 50, 293-296.
- D. G. Tacon (1970), 'The conjugate of a smooth Banach space,' Bull. Austral. Math. Soc. 2, 415-425.
- S. L. Troyanski (1971), 'On locally uniformly convex and differentiable norms in certain non-separable Banach spaces,' Studia Math. 37, 173-180.
- A. C. Yorke (1977), 'Weakly rotundity in Banach spaces,' J. Austral. Math. Soc. Ser. A 24, 224-233.
- A. C. Yorke (1979), 'Differentiability and local rotundity,' J. Austral. Math. Soc. Ser. A 28, 205-213.

School of Mathematical and Physical Sciences Murdoch University Murdoch Western Australia 6150