
BULL. AUSTRAL. MATH. SOC. 20C I 5

VOL. 17 ( 1977), 451-461.

On character values in finite groups

Marcel Herzog and Cheryl E. Praeger

Let u be a nonidentity element of a finite group G and let c

be a complex number. Suppose that every nonprincipal irreducible

character X of G satisfies either X(l) - X(u) = c or

X(u) = 0 . It is shown that c is an even positive integer and

all such groups with a - 8 are described.

1 . Introduction

In [70] the first author completely classified finite groups G

containing a nonidentity element u , with respect to which every

nonprincipal irreducible character X satisfies X(l) - X(u) = a for some

fixed complex number c .

In this paper we investigate finite groups G satisfying the

following, more general, condition.

HYPOTHESIS. There exist u £ G , u ± 1 , and a complex number a ,

such that every nonprincipal irreducible (complex) character of G which

does not satisfy

(1) X(l) - X(u) = c

satisfies

(2) Z(M) = 0 .

We shall denote by X and Z the sets of irreducible characters of

G satisfying (l) and those satisfying (2), but not (l), respectively. The
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groups G mentioned in Theorem 3 of [7 0] certainly satisfy the hypothesis

with an empty Z . The group SL(2, 5) is an example of a group

satisfying the hypothesis with a nonempty Z with respect to any element u

of order k and a = k (see the character table in [4, p. 228]).

In Section 2 we analyze groups satisfying the hypothesis. We show,

among other facts, that o is a positive even rational integer (Lemma 2)

and if a = 2 , then \u\ = 2 , G = < u)G' , and CJu) n G' = 1
o-

(Proposition 12). Our main result is the following Theorem 2, the proof of

which is given in Sections 3 and 4.

THEOREM 2. Let G be a finite group satisfying the hypothesis with

respect to a 5 8 . Then 0{G) is abelian and one of the following holds:

e = 2 , G/O{G) ̂ C2 , \CQ(u)\ = \u\ = 2 ;

a = k , G/O{G) SPSL(2, 5) , \Cr(u)\ = k , \u\ = 2 ;

a = k , G/O(G) SSL(2, 5) , \CG(u) \ = \u\ = h ;

a = 8 , G/O(G) ^PSL(2, 8) , \CG(u)\ = 8 , \u\ = 2 .

In this paper G denotes a finite group and Irr G is the set of

irreducible (complex) characters of G . If x, y (. G , then x ~ y means

that a; is conjugate to y in G . The principal character of G will

be denoted by 1_ and its values will sometimes be written as 1 ix) . An
u

integer in this paper means a rational integer, and if n is an integer

then its 2-part is denoted by |rc|o *

2. General results

From now on G denotes a finite group satisfying the hypothesis. The

summations £ XV{g) , i = 1, 2 , £ Z%{g) , i = 1, 2 , £ Y^(ff) ,

i = 1, 2 , where ^ £ ff , will run over all X € X , all Z d I , and all

y € Irr(G) , respectively. If h (. G , a similar convention will be

applied to ^ X(g)X{h) , £ y(g0Y(7l) , and £ Z(g)Z(fc) . For centralizers

in G the subscript G in C-{g) will be dropped. The principal

2-block of G will be denoted by B (G) .
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In this section we show that G can be characterized if

(i) BQ(G) c X u {lG} (see [7]), or

(ii) G # G' (Proposition 12), or

(iii) e = 2 (Proposition 12).

If G = G' , then G has a unique maximal normal subgroup H (Corollary

lU), with u ^ fl (Lemma ll). Clearly then G/# is a nonabelian simple

group which satisfies the hypothesis with respect to uH and the same a .

Finally, if Y is a nonprincipal irreducible character of G = G' of

minimal degree m , then 1 < m 5 e-1 and G = G/(ker Y) is a primitive

unimodular irreducible group in dimension m with Z(G) c_ G = G' .

LEMMA 1.

i +£x2(i) =c E*(i) = |c| -I z2d) .

Proof. By the orthogonality relations between irreducible characters

and the hypothesis,

0 = I nu)Y(l) = I Y2(l) - e £ *(1) - £ Z2(l)

= 1 + £ X2(l) - c X X(l) = |G| -'fl £ X(l) - I Z
2(l) .

LEMMA 2. a is a positive even integer. Hence Y(u) is an integer

for each Y € Irr((?) and u ~ w~ in G .

Proof. By Lemma 1, e is a positive rational number. Since by (l),

a is an algebraic integer, it follows that a is a positive integer. As

£*(l) and 1 + Y. % (!) a r e o f opposite parity, c is even by Lemma 1.

Consequently, in view of the hypothesis, Y(u) is an integer for each

Y € Irr(G) , which implies that u ~ u~ in G .

LEMMA 3. £ x ( l ) and £ *(w) are odd integers .

Proof. By the argument of Lemma 2, £ AT(l) is an odd integer. Since

e i s even, £ X(M) i Z * ( l ) (mod 2) .
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LEMMA 4 . | C ( M ) | = - e £ X{u) . Hence £ X(u) is a negative odd

integer, a \ \C{u)\ , and

(3) | e | _ = 1 + [ 1 2 { 1 ) = | C ( M ) | _ .

2 2

Proof. By the orthogonality relations between irreducible characters

and the hypothesis

0 = I Y(l)Y(u) = I Y2(u) + c £ *(u) = |C(M) I + a £ *(K) .

The other statements follow by Lemmas 3 and 1.

LEMMA 5. If either BQ(G)±Ku Q or u2 * 1 , then

2 | |ff : C(u)\ .

Proof. Suppose first that Z 6 Z n B AG) . Then, using Brauer's

criterion for block membership,

° " \c(u)\z(D = \c(u)\.1(1) ( m ° d 2 ) ;

hence 2 | |ff : C(w) | .

2
Next, suppose t h a t u # 1 . By Lemma 2 t he re e x i s t s g (. G such

o - 1
t h a t u - u and consequently

\(g, C(u))\ = 2\c(u)\ | | f f | .

REMARK. I f BAG) c X u 1 , t h e n t h e g r o u p s were c l a s s i f i e d i n [ / ] .
0 G

LEMMA 6. u is a 2-element iff 2 | Z(l) for all Z .

Proof . I f Z ( l ) a r e a l l even , then by Lemma 2 ,

(1+) y ( l ) = Y(u) (mod 2) fo r a l l 7 € I r r ff .

Let u' be the 2 ' - p a r t of u . Then, by [ 5 , ( 6 . U ) ] ,

y ( D E y(M) E y ( u ' ) (mod P)

for a l l Y € I r r ff , where P i s a prime i d e a l over 2 in the r i n g of

i n t e g e r s of $ ( ' G ' v T ) . I t follows by [Z, ( 3 c ) , p . 1*12] t h a t u' = 1 ;

hence u i s a 2-e lement .
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If, on the other hand, u is a 2-element, then both Y(l) and Y{u)

are a sum of T(l) 2-power roots of 1 and both being integers, i t

follows that (k) holds. In particular, 2 | Z(l) for a l l Z .

LEMMA 7. For x € G let d{x) = 0 if x ~ u in G and d{x) = 1

otherwise. Then for all x ,

1 + £ ^

Proof. By the hypothesis,

(5) I y(l)Kx) - I H u M x ) = o l X(u) + £ Z(l)ZU) .

If a: ~ u in (7 , then by the orthogonality relations between irreducible

characters,

o = £y(imx) = i +Y,x(i)x(x) ,

as required. Otherwise, £ y(w)y(a;) = 0 and, cancelling V Z(l)Z(x) on

both sides of (5), the formula follows.

NOTATION. Since a is even, let a = 2e' . Denote by r. the

number of irreducible characters of degree i in X . By the hypothesis,

r. = 0 for i < a' . Y- will denote summation over i , a' S i 5 °° .

One of the irreducible characters of X of minimal degree will be denoted

by X± .

LEMMA 8. |CU)| = 1 + T^ (i-c)2ri = (-c) J\ U - e ) ^ .

Proof. By the orthogonality relations between irreducible characters

and Lemma h,

\C(u)\ = 1 +X*2(u) = -a Tx(u) .

In view of the hypothesis, the lemma follows.

LEMMA 9. 1 + L• Ui-c)r. = 0 ; hence
If %r

oo e _ l
1 + Y, iU-e)r. = £ i{c-i)r. .

i=c+l i=o'
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Proof. By Lemma 8,

£ ( ) r . = 0 .

Lemma 9 immediately yields

COROLLARY 10. ^(l) s c - 1 .

Since u does not belong to the kernel of any Y € Irr G other than

1G , we get

LEMMA 11. If u € H 5 G , then H = G .

PROPOSITION 12. The following statements are equivalent:

(a) \u\ = 2 , G =< u)0{G) , and C(u) =< u> ;

(b) G< * G ;

(c) c = 2 ;

(d) X1(i) = c' .

Proof. (a) c lear ly implies (b) . Suppose now that G' / G and l e t Y

be a nonprincipal l inear character of G • Then Y € X and by Lemma 2,

Suppose, next, that c = 2 . By Corollary 10, ^.(l) = 1 = c' .

Suppose, finally, that X (l) = c' . As X € X , it follows that

X^iu) = -a' = -X^l) . Let

= {g i G \ X^

Then u € ker*X < G ; hence, by Lemma 11, ker*X = G . As

(ker** )/(ker X ) is elementary abelian, it follows that G' f G ; hence

a = 2 by previous argument. Thus, by the hypothesis, Y(u) =-1 for every

nonprincipal linear character of G , and consequently \G/G'\ = 2 .

follows that r = 1 and Lemma 9 implies that r. = 0 for t > 2 . Hence,

by Lemma 8, \C(u) \ = 2 and (a) follows. The proof of Proposition 12 is

complete.

LEMMA 13. If H < G , H t G , then G/H is not a direct product of
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its proper subgroups.

Proof. In view of Lemma 11, G/H satisfies the hypothesis with

respect to uH . Thus it suffices to prove Lemma 13 for H = 1 . Suppose

that G = G x G , G ? 1 or G , and u = u uo , u. € G. . By Lemma
-i- ^ JL _L C. if Ir

11, u^± 1 for i = 1, 2 , and consequently G. satisfy the hypothesis

with respect to u. and the same a as in G .
'Ir

Let X and X, be characters of X of ff. and of G ,

respectively, satisfying Xfli"1) * 0 and xAu^ * 0 . By Lemma 9, X

and X, exist. Now X , X, , and X X, may be regarded as characters of

G belonging to X . Thus

Xa(l)Xb(l) - Xa{u^Xb{u^ = a ,

Xa(l) ~ *>l) = ° '

and

Xb(l) - Xb{u2) = a .

It follows that X (l) + X, (l) = a + 1 . Thus G. have no characters of
a u i.

degree larger than a in their X . By Lemmas 9 and 8,

\C„ {u.) | = a = 2 , in contradiction to Proposition 12.

COROLLARY 14. Let H be a maximal normal subgroup of G . If
K < G , K t G , then K c H .

Proof. Suppose that K 4 H . Then G = HK and

G/(H n X) = (G/H) x (G/K) , in contradiction to Lemma 13.

NOTATION. The maximal normal subgroup of G will be denoted by H •

The minimal degree of a nonprincipal character in Irr G will be denoted

by m .

LEMMA 15. Suppose that G also satisfies the hypothesis with

respect to v € G and the same c , but possibly with different X and

1 . Then u ~ v in G .

Proof. Suppose that u 4- v in G . Then by the orthogonality
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relations between irreducible characters

0 = V Hu)I(v) = 1 + [Z y(«)7(w)-l(u)l(w)) 2 1 ,

as Y(u) < 0 implies tha t Y(l) < e . Hence either Y{v) = 0 or

Y(V) < o .

ASSUMPTIONS. From now on G = C . By Corollary 10 and Proposition

12 we have

(6) \ < m S e-1 and X^l) > a' .

LEMMA 16. Let Y € I r r G , Y(l) = m . Then G = G/(ker y) is a

primitive unimodular irreducible group in dimension m with

Z(G) cG=G> .

Proof. As G = G' , ~G = G1 i s unimodular with 2(ff) c ~G' . By

definit ion of Y , G i s i r reducible. Finally, primit ivi ty of ff

follows from the minimality of m , since otherwise G would have a _
si

subgroup L of index r , 1 < r < m (see [ 3 ] , Theorem i*.2B), and [ l ]

would contain nonprincipal irreducible components of degree less than m .

3. e = 4

In th is section we prove the following

THEOREM 1. Let G be a finite group satisfying the hypo-thesis with

respect to a = h . Then 0(G) is abetian and
i

G/O(G) & PSL(2, 5) , or SL(2, 5) .

In the first case \u\ = 2 and in the second case \u\ = h .

Proof. As by P r o p o s i t i o n 12, G = G' , (6) impl ies t h a t 1 < m S c-\ ;

hence e i t h e r m = 2 or m = 3 . Let H be the maximal normal subgroup of

G (Coro l l a ry l^t) . Then by Lemma l6 app l i ed t o G/H , G/H i s a simple

p r i m i t i v e i r r e d u c i b l e group i n dimension n , l < m S n < 3 . By F e i t ' s

l i s t [ 6 , p . 7 2 ] , n = 3 and

G/H ^A or PSL(2, 7) .

As the characters of PSL(2, 7) do not satisfy the hypothesis, G/H = A-

and X of G contains at least two characters of degree 3 .
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Let Y € Irr G be of degree 3 . By Lemma ll», K = ker Y c_ H and

G = (J/X is a unimodular irreducible group in dimension 3 satisfying

Z(G) <^ G' . As G = G' , it follows by Theorem U.2B in [3, p. 68] that ~G

is primitive. Hence by [6, p. 76] and the fact that K 2 H and G/# ^A ,

we get K = H .

Thus, using the notation and the statements of Lemmas 9 and 8 with

respect to G , it follows that 2°_ = 2 , r_ = 1 , and r. = 0 for

-i > 5 ; hence |c(u)| = h .

Groups with a central izer of an element of order it were

characterized by Suzuki [7 2] and Wong [73] . As G = G' and G/fl 3* A ,

i t follows by [73 , Theorems 1 and 2, statements and proofs] that

G/O(G) '=* PSL(2, 5) or SL(2, 5) . If \u\ = 2 , then the f i r s t case holds

and certainly 0(G) i s abelian. If | u\ = h , then the second case holds

and 0(G) i s abelian by [7 2, Proposition 5 ] . The proof of Theorem 1 i s

complete.

4 . a 2 8

This section is devoted to the proof of the main theorem, Theorem 2,

stated in Section 1 . The case a = 2 was treated in Proposition 12 and

the case a = k was analyzed in Section 3, Theorem 1.

So suppose that a = 6 or 8 . Let H be the maximal normal

subgroup of G . Then by Proposition 12, Lemma 16, and (6), G/H is a

simple primitive irreducible group of dimension n , l < m S n S 7 , where

m is the minimal degree of Y 6 Irr G , 7 * !„ . By [6, pp. 76-77], G/H
u

is isomorphic to one of the groups:

A3, PSL(2, 7 ) , A6, PSL(2, 11), 0^(3), Av PSU(3, 3), PSL(2, 13),

PSL(2, 8), AQ , and 5 (6, 2) .

Since G/H satisfies the hypothesis with a = 6 or 8 , inspection of the

character tables of these groups (for S (6.

groups see [7 7]J yields a single candidate:

character tables of these groups (for S (6, 2) see [7]; for the other

(7) a = 8 , n = 7 , G/H 3* PSL(2, 8) , 1? Z H , u $ H .
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Let Y be an i rreducible character of G of degree m . Then by

Lemma lU, K = ker Y c_ H and by Lemma 16, G/K i s a perfect primitive

ir reducible group of dimension m , 1 < m 5 7 . In view of (7) , the table

[ 6 , pp. 76-77] yields m = 7 , K = H . Thus X of G has exactly U

characters of degree 7 , and other nonprincipal irreducible characters of

G are of degree greater than or equal to 8 . Applying the notation and

the resu l t s of Lemmas 9 and 8 to G , we get

2»T = U , r 9 = 3 , i^ = 0 for i * 7, 8, 9 ;

hence |tT(u) | = 8 = e . Also, by Lemmas 11 and k, if K i s a proper

normal subgroup of G , then \C„ , (ziK) | = 8 .

Define Z = 0{G) and for •£ > 1 ,

h'h-x - z(G/hJ •
It is easy to see that Z./Z. are 2-groups for t J 1, and 0{G/Z.) = 1

for i > 0 . Let j be the least nonnegative integer for which

Z. = Z. ^ . Then G = G/Z . satisfies:
3 J+l J

G' = G , Z(C) = 0(G) = 1 , |C^ (M) | = 8 ,

where u = uZ . . By Harada [9 , Theorem 2 ] , G is of sectional 2-rank
3

l e ss than or equal to h . Thus by Gorenstein and Harada [&, Corollary C] ,

i t follows, in view of (7) and Lemma 13, that G/Z. S PSL(2, 8) .
3

Suppose tha t j > 0 . Then Z./Z. i s an even nontr ivial Schur

mul t ip l i e r of PSL(2, 8) , a contradiction. Thus G/0{G) S¥ PSL(2, 8) and

as |C(w)| = 8 , u i s an involution and 0{G) is abelian.
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