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Abstract

A finitely generated subgroup Γ of a real Lie group G is said to be Diophantine if
there is β > 0 such that non-trivial elements in the word ball BΓ(n) centered at 1 ∈ Γ
never approach the identity of G closer than |BΓ(n)|−β. A Lie group G is said to be
Diophantine if for every k > 1 a random k-tuple in G generates a Diophantine subgroup.
Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in
this direction. We give a characterization of Diophantine nilpotent Lie groups in terms
of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups
of class at most 5, or derived length at most 2, as well as rational nilpotent Lie groups
are Diophantine. We also find that there are non-Diophantine nilpotent and solvable
(non-nilpotent) Lie groups.
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1. Introduction

Let G be a connected real Lie group, endowed with a left-invariant Riemannian metric d. We
investigate Diophantine properties of finitely generated subgroups of G. If Γ = 〈S〉 is a subgroup
of G with finite generating set S, we define, for n ∈ N,

δΓ(n) = min{d(x, 1) | x ∈ BΓ(n), x 6= 1}

where BΓ(n) = (S ∪S−1 ∪{1})n is the ball of radius n centered at 1 for the word metric defined
by the generating set S. We will say that Γ = 〈S〉 is β-Diophantine if there exists a constant
c > 0 (depending maybe on Γ and S and d) such that, for all n > 1,

δΓ(n) > c · |BΓ(n)|−β.

In general, the Diophantine exponent β may depend on the choice of a generating set S. But if
G is nilpotent, then it depends neither on the choice of generating set of Γ, nor on the choice of
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left-invariant Riemannian metric. So the notion of a β-Diophantine finitely generated subgroup of

G makes sense without mention of a choice of generating set, or metric.1 This notion naturally

generalizes the classical notion of a Diophantine number in dynamical systems and number

theory: γ ∈ R/Z is a Diophantine rotation if and only if the cyclic subgroup it generates in the

torus R/Z is Diophantine in our sense.

We will say that the ambient group G is β-Diophantine for k-tuples if almost every k-tuple

of elements of G, chosen with respect to the Haar measure of Gk, generates a β-Diophantine

subgroup. We will also say that G is Diophantine for k-tuples if G is β-Diophantine for

k-tuples and some β = β(k) > 0. Finally we say that G is Diophantine if for every integer

k > 1 it is Diophantine for k-tuples. We will show that for every k there are Lie groups G that

are Diophantine for k-tuples, but not for (k + 1)-tuples (see Theorem 1.4). However, if G is

Diophantine and nilpotent then β can always be chosen independently of k (see Theorem 1.8).

When the ambient group G is a connected abelian Lie group, the behavior of δΓ(n) depends

on the rational approximations to a set of generators of Γ. This case has been much studied in

the past and constitutes a classical chapter of Diophantine approximation. For example, from

Dodson’s generalization [Dod92] of Jarńık’s Theorem [Jar31], it is not difficult to compute the

Hausdorff dimension of the set of β-Diophantine k-tuples in any abelian connected Lie group.

On the other hand, little is known in the non-commutative setting. Gamburd, Jakobson and

Sarnak [GJS99] first identified the relevance of the Diophantine property for dense subgroups

of G = SU(2) in their study of the spectral properties of averaging operators on L2(SU(2)) and

the speed of equidistribution of random walks therein. In particular they stressed that, although

there is a Gδ-dense set of k-tuples in SU(2) which are not Diophantine (this assertion still holds

in any nilpotent Lie group as we will see, cf. Proposition 5.1), every k-tuple whose matrix entries

are algebraic numbers is a Diophantine tuple. Then it is natural to conjecture (as Gamburd et al.

did in [GHSSV09, Conjecture 29]) that almost every k-tuple in the measure-theoretic sense is

Diophantine. Although this remains an open problem, Kaloshin and Rodnianski [KR01] have

shown that almost every k-tuple in SU(2) generates a subgroup Γ which is weakly Diophantine

in the sense that BΓ(n) avoids a ball of radius e−Ckn
2

centered at 1 (the genuine Diophantine

property as defined above would require this radius to be much larger, namely bounded below

by some e−Ckn). Similarly the second-named author showed in [Bre11, Corollary 1.11] (as a

consequence of the uniform Tits alternative) that every k-tuple generating a dense subgroup

of SU(2) satisfies a closely related weak form of the Diophantine property. Finally Bourgain

and Gamburd proved in [BG08] that every (topologically generating) k-tuple in SU(2) whose

matrix entries are algebraic numbers has a spectral gap in L2(SU(2)). Their proof uses the

Diophantine property of these k-tuples in an essential way. Conjecturally almost all, and perhaps

even all, topologically generating k-tuples in SU(2) have a spectral gap (cf. Sarnak’s spectral gap

conjecture [Sar90, p. 58]).

Recently Varjú [Var12] tackled a similar problem for the group of affine transformations of

the line, the {ax + b} group, and showed that in a certain one-parameter family of 2-tuples in

this group, almost every 2-tuple is Diophantine.

In this paper we investigate Diophantine properties of finitely generated subgroups of

nilpotent and solvable Lie groups. Perhaps the main surprise in our findings is that, in sharp

contrast with the abelian case, not every solvable or nilpotent real Lie group is Diophantine.

1 The left-invariant assumption is just for convenience, because any two Riemannian metrics on G are comparable
in a neighborhood of the identity; however, it is important that the metric be Riemannian. Allowing the metric
to be sub-Riemannian could affect the Diophantine exponents, yet not the property of being Diophantine.
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We exhibit examples of connected nilpotent Lie groups G of nilpotency class 6 and higher, and
of non-nilpotent connected solvable Lie groups G of derived length 3 and higher, which are not
Diophantine; and, indeed, in those examples one can find, for every k > 3, a sequence of words
wn in k-letters, which are not laws of G, but behave like almost laws (see § 5.4) inasmuch as,
for any fixed compact set K in Gk, wn(K) → 1 with arbitrarily fast speed as the length of the
word l(wn) tends to +∞. To put it briefly, the bad behavior of Liouville numbers with respect to
Diophantine approximation by rationals can be replicated to build real Lie algebras exhibiting
this bad behavior. Of course such Lie algebras are not defined over Q.

If g is a Lie algebra of step s, we define the ideal of laws on k letters Lk,s(g) of g as the set of
all elements of the free step s nilpotent Lie algebra on k generators Fk,s that are identically zero
when evaluated on k-tuples of elements of g. We show that the property of being Diophantine
for a connected s-step nilpotent Lie group G is intimately related to the way the ideal of laws on
k letters Lk,s(g) of the Lie algebra g of G sits in the free s-step nilpotent Lie algebra Fk,s on k
generators. Although Fk,s is naturally defined over Q, the ideal of laws Lk,s(g) may not be and
we have a natural epimorphism of real Lie algebras:

Λ : Fk,s/Lk,s(g)Q → Fk,s/Lk,s(g)

where Lk,s(g)Q is the real vector space spanned by Lk,s(g) ∩ Fk,s(Q). It is the Diophantine
properties of the kernel of Λ viewed as a real subspace of Fk,s/Lk,s(g)Q which determines the
Diophantine properties of G as a Lie group. In brief, a real subspace of a real vector space
defined over Q is said to be Diophantine if integer points outside it cannot be too close to it (see
Definition 3.10 below). It turns out that if s 6 5, then Lk,s(g) is always defined over Q regardless
of g, and hence Diophantine. Recall that there is a continuous family of non-isomorphic 2-step
nilpotent Lie algebras, so g may not be defined over Q or over a number field and still give rise
to a Diophantine Lie group. Similarly if G is metabelian (i.e. if Lk,s contains the ideal generated
by all double commutators [[x, y], [z, w]]), then Lk,s(g) is again defined over Q, regardless of s
and of g (see Theorem 4.5 below). This follows from a study (made in the appendix) of the
multiplicities of the irreducible SLk-submodules of Lk,s(g), where SLk acts by substitution of the
variables.

We now summarize the above discussion and state our results. See § 3 for precise definitions
and notation. The nilpotent real Lie groups considered in this paper will always be endowed with
a left-invariant Riemannian metric.

Theorem 1.1. Let G be a connected nilpotent Lie group with Lie algebra g. For any integer
k > 1, the following are equivalent.

(1) The group G is Diophantine for k-tuples.

(2) The ideal of laws on k letters of g, Lk,s(g), is a Diophantine subspace of the free s-step
nilpotent Lie algebra on k generators Fk,s.

It may seem surprising at first glance that this criterion for Diophantinity is given only in
terms of Lie algebra laws as opposed to group laws. However, as is well known, nilpotent Lie
groups are best analyzed through their Lie algebra and there is a simple relation between word
maps in G and bracket maps in g (see Lemma 3.5 below).

The proof of Theorem 1.1 relies on a Borel–Cantelli argument (analogous to the classical
one showing that almost every real number is Diophantine and to the one used by Kaloshin
and Rodnianski [KR01]) and sub-level sets estimates for polynomial maps, originating in the
work of Remez (see Theorem 2.8) and related to the (C,α)-good functions of Kleinbock and
Margulis [KM98].
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This criterion immediately settles the case of nilpotent Lie groups whose Lie algebra has
rational (or even algebraic) structure constants.

Corollary 1.2. If G is a connected rational nilpotent Lie group, then it is Diophantine.

Combining Theorem 1.1 with a study of the structure of fully invariant ideals of the free Lie
algebra on k letters, we are also able to construct examples of non-Diophantine nilpotent
Lie groups, and to show that such groups must have nilpotency step at least 6.

Theorem 1.3. Fix an integer k > 3 (respectively k = 2). Then, all connected nilpotent Lie
groups of step s 6 5 (respectively s 6 6) are Diophantine for k-tuples, but for all integers s > 5
(respectively s > 6), there exists a connected nilpotent Lie group of step s that is not Diophantine
for k-tuples.

The numbers s = 6 and s = 5 appear here for the following reason: the free s-step nilpotent
Lie algebra on k letters Fk,s admits multiplicity as an SLk-module if and only if s > 6 when
k > 3 and if and only if s > 7 when k = 2. See Theorem A.2. The existence of multiplicity allows
one to construct fully invariant ideals of Fk,s which are not Diophantine, hence giving rise to
non-Diophantine Lie groups via Theorem 1.1.

The decomposition of Fk,s into irreducible SLk-modules has been very much studied in the
literature on free Lie algebras starting with Witt [Wit37] and Klyachko [Klj74]. See [Reu93]
for a book treatment. We survey some of these results in the appendix. In particular, we
recall a relatively recent formula due to Kraskiewicz and Weyman [KW01], which allows one
to compute the multiplicity of any given irreducible submodule of Fk,s in terms of its Young
diagram. Together with Theorem 1.1 this allows us to show the following.

Theorem 1.4. For every integer k > 1, there exists a connected (nilpotent) Lie group, which is
Diophantine for k-tuples, but not for (k + 1)-tuples.

We also give two other applications of Theorem 1.1. The first one concerns connected
nilpotent Lie groups that are metabelian, i.e. solvable of derived length 2.

Theorem 1.5. Every metabelian connected nilpotent Lie group is Diophantine.

Again the point here is the fact that the free metabelian Lie algebra is multiplicity-free
as an SLk-module (see Lemma A.9). The second application is a construction of a solvable
non-nilpotent non-Diophantine Lie group.

Proposition 1.6. There exists a connected solvable non-nilpotent Lie group that is not
Diophantine.

For a nilpotent Lie group with Lie algebra g set di = dim g(i)/g(i+1), where g(i) is the ith term
of the central descending series. The next statement clarifies what happens to a topologically
generic tuple in Diophantine and non-Diophantine nilpotent Lie groups.

Theorem 1.7. Let G be a connected s-step nilpotent Lie group.

(1) Regardless of whether G is Diophantine or not, if k > d1, then there is a Gδ-dense set of
k-tuples in Gk which are not Diophantine.

(2) If G is non-Diophantine for k-tuples, then there is a proper closed algebraic subvariety
of Gk outside of which every k-tuple is non-Diophantine. In particular there is an open dense
subset of Gk made of non-Diophantine tuples.

Finally we study the dependence in k, the size of the k-tuple and prove the following (see
§ 5.2).
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Theorem 1.8. Let G be a connected s-step nilpotent Lie group.

(1) The group G is Diophantine if and only if it is Diophantine for s-tuples.

(2) If G is Diophantine, and βk is the infimum of the β > 0 such that G is β-Diophantine on
k-tuples, 1/ds 6 lim inf βk 6 lim supβk 6 s as k → +∞.

The lower bound on lim inf βk follows from a simple pigeonhole argument (analogous to
Dirichlet’s principle in Diophantine approximation), while the upper bound on lim supβk relies
on Theorem 1.1 and the sharp Remez-type inequality derived in Theorem 2.8 together with a
study of Lk,s(g) as k grows.

Remark 1.9. From this theorem, we see that the exponent β seems to carry some interesting
information on the group G. It is reassuring that it does not degenerate to either 0 or +∞ as
k grows. More importantly it makes much sense to try to determine the critical β > 0 below
which almost no k-tuple is Diophantine and above which almost all are. The work of Kleinbock
and Margulis [KM98] is much relevant here. For example, in the case of the Heisenberg groups,
a simple application of [KM98] yields the exact value of critical β for each k. We plan to tackle
this problem in a future paper.

The paper is organized as follows. After giving the general setting of our work and some
preliminary lemmas in § 2, we prove Theorem 1.1 in § 3. Section 4 is devoted to the study of fully
invariant ideals of the free Lie algebra and to the proof of Theorem 1.3. This section makes use
of some computations on the free Lie algebra given in the appendix. The last section contains
the proofs of Theorems 1.4, 1.7 and 1.8 and further remarks.

2. Preliminaries

2.1 Nilpotent Lie groups
We briefly review some elementary theory of nilpotent Lie groups. Proofs of all the results
mentioned below may be found in [CG90, ch. 1]. Let g be a Lie algebra over R. The descending
central series of g is defined inductively by

g(1) := g, g(l+1) := [g, g(l)] = spanR{[X,Y ] : X ∈ g, Y ∈ g(l)}.

The algebra g is said to be nilpotent if g(s+1) = 0 for some s ∈ N. If s is the smallest integer such
that, g(s+1) = 0, then g is said to be nilpotent of step (or class) s.

A connected Lie group G is called nilpotent if its Lie algebra is nilpotent, or, equivalently, if
it is nilpotent as a group. We have the following basic result (see [CG90, Theorem 1.2.1]).

Proposition 2.1. LetG be a connected simply connected nilpotent Lie group with Lie algebra g.
Then, the exponential map exp : g → G is a diffeomorphism.

As a consequence, every connected simply connected nilpotent Lie group G can be
diffeomorphically identified with its Lie algebra g. The product operation on G ' (g, ∗) is then
given explicitly by the Campbell–Baker–Hausdorff formula: for all X,Y ∈ g,

X ∗ Y =
∑
n>0

(−1)n+1

n

∑
pi+qi>0
16i6n

(
∑

16i6n pi + qi)
−1

p1!q1! · · · pn!qn!
(adX)p1(adY )q1 · · · (adX)pn(adY )qn−1Y.

(If qn = 0, the term in the sum ends with · · · (adX)pn−1X instead of (adX)pn(adY )qn−1Y ; of
course, if qn > 1, or if qn = 0 and pn > 1, then the term is zero.) If G is nilpotent of step s, this
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sum is finite: only commutators of length no greater than s may be non-zero. For example, for
nilpotent groups of step 2, the Campbell–Baker–Hausdorff formula reads

X ∗ Y = X + Y + 1
2 [X,Y ]

and for nilpotent groups of step 3

X ∗ Y = X + Y + 1
2 [X,Y ] + 1

12 [X, [X,Y ]] + 1
12 [Y, [Y,X]].

From now on, whenever we are considering a connected simply connected nilpotent Lie group
G we realize it as the algebra g = Lie(G) equipped with the multiplication ∗ given by the
Campbell–Baker–Hausdorff formula. The identity element of G will therefore be denoted by 0.
Also, if g is a nilpotent Lie algebra, we will denote by (g, ∗) the corresponding connected simply
connected nilpotent Lie group.

2.2 Word maps on nilpotent Lie groups
Let Fk be the free non-abelian group on k letters x1, . . . , xk. For any group G, any word w ∈ Fk
induces a map

wG : Gk −→ G

g = (g1, . . . , gn) 7−→ w(g)

where w(g) is the element of G one gets by substituting gi for xi in w. A word map ω on k
letters on G is a map that can be obtained in this way: ω = wG for some w ∈ Fk. For Lie groups,
word maps are smooth, and we will see in this subsection that, for nilpotent Lie groups, they
are polynomial maps of degree bounded by the nilpotency step of G.

Definition 2.2. Let V and W be two finite-dimensional vector spaces. A map f : V → W is
said to be polynomial of degree at most d if it is a polynomial map of degree at most d when
expressed in some (or any) bases for V and W .

In the following lemma, G = (g, ∗) is endowed with the vector space structure coming from
the Lie algebra g.

Lemma 2.3. Let G be a connected simply connected Lie group, nilpotent of step s. For any word
w ∈ Fk, the map wG : Gk → G is a polynomial map of degree at most s.

Proof. The map (X,Y ) 7→ [X,Y ] is bilinear, and therefore any map of the form

(X1, . . . , Xk) 7→ [Xi1 , [Xi2 , . . . , [Xis−1 , Xis ] . . .]]

is polynomial of degree at most s. Now, from the Campbell–Baker–Hausdorff formula, one sees
that the word map wG can be expressed as a linear combination of such brackets, and this proves
the lemma. 2

Definition 2.4 (Length of a word map). For ω a word map on k letters on G, set

l(ω) := min{l(w);w ∈ Fk and wG = ω}

and call it the length of ω. Here l(w) denotes the length of the word w.

Lemma 2.5 (Group of word maps). The set Fk,G of word maps on k letters on a group G has a
natural group structure, and we have the following properties.

(1) The group Fk,G is finitely generated.
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(2) If G is a nilpotent group of step s, then so is Fk,G.

(3) If G is a connected Lie group, then, for almost every k-tuple g = (g1, g2, . . . , gk) ∈ Gk, the
subgroup Γg generated by the subset {g1, g2, . . . , gk} is isomorphic to Fk,G.

Proof. Let Fk be the abstract free group on k letters x1, . . . , xk. The group structure on Fk,G is
uniquely defined by the fact that the surjective map

Φ : Fk → Fk,G
w 7→ wG

is a group homomorphism. Parts (1) and (2) are clear. To justify part (3), note that if w /∈ ker Φ,
then the set of g ∈ Gk such that w(g) = 0 is a proper analytic subvariety of Gk, and hence has
zero Lebesgue measure. They are only countably many such w, so we see that, for almost every
k-tuple g ∈ Gk, the unique group homomorphism θg : Fk → Γg mapping xi to gi for i ∈ {1, . . . , k}
has kernel exactly ker Φ. Hence Γg is isomorphic to Fk,G. 2

Recall (cf. [Bas72, Gui73, Pan83]) that every finitely generated s-step nilpotent group Γ = 〈S〉
has polynomial growth, and, more precisely, there is an integer τ(Γ) ∈ N independent of the
generating set S such that |BΓ(n)| ∼ cS · nτ(Γ) for some constant cS > 0. The growth exponent
τ(Γ) is given by the Bass–Guivarc’h formula:

τ(Γ) =
s∑

k=1

k · rk(Γ(k)/Γ(k+1)), (1)

where the Γ(k) are the terms of the central descending series of Γ and rk the (torsion-free) rank
of the corresponding abelian group. We conclude that the following corollary holds.

Corollary 2.6 (Generic growth for a random subgroup). Let τk be the growth exponent of
the finitely generated group Fk,G. Then, for almost every g ∈ Gk, the group Γg has growth
exponent τk.

2.3 Estimates on polynomial maps
The purpose of this paragraph is to derive the elementary estimates on the measure of the set
of points on which a polynomial takes small values.

Let B be a convex subset of Rn, and f : B → R a real-valued polynomial function of degree
at most d. For ε > 0, we set Zε,B(f) := {x ∈ B; |f(x)| 6 ε}. Then, from Brudnyi and Ganzburg
[GB73], we have the following.

Theorem 2.7 (Remez-type inequality).

sup
x∈B
|f(x)| 6 ε · Td

(
1 + (1− |Zε,B(f)|/|B|)1/n

1− (1− |Zε,B(f)|/|B|)1/n

)
where Td is the dth Chebyshev polynomial of the first kind.

Here |B| denotes the Lebesgue measure of B in Rn. It is well known that those Remez-type
inequalities imply the following estimate; we recall the proof for convenience of the reader.

Proposition 2.8 (Sublevel set estimate). Fix n1, n2, d ∈N∗. For any polynomial map f : Rn1 →

Rn2 of degree at most d and any convex subset of B of Rn1 , one has

|{x ∈ B; ‖f(x)‖ 6 ε}| 6 4 · n1

(
ε

‖f‖B

)1/d

|B|, (2)
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where ‖f‖B := supx∈B ‖f(x)‖, and ‖f(x)‖ := max16i6n2 |fi(x)| if f(x) = (f1(x), . . . ,

fn2(x)) ∈ Rn2 .

Proof. Clearly we may assume that n2 = 1. Then the estimate follows immediately from

the above Remez-type inequality after verifying the following two simple facts: first,

for every η ∈ [0, 1], (1 + (1− η)1/n1)/(1− (1− η)1/n1) 6 2n1/η; and second, Td(x) = 1
2((x −√

x2 − 1)d + (x+
√
x2 − 1)d) 6 1

2(2d + 1)xd 6 2dxd if x > 1. The first calculus fact can be seen

as follows: using the change of variable z = (1 − η)1/n1 , the desired inequality is equivalent to

(1 + z)/(1− z) 6 2n1/(1 − zn1), hence to (1 + z)((1− zn1)/(1− z)) 6 2n1. Since z ∈ [0, 1) and

(1− zn1)/(1− z) = 1 + z + · · ·+ zn1−1, the inequality follows. 2

Remark 2.9. The above bound goes back to Remez [Rem36]. See [Gan00] for some historical

discussion and related references. We thank P. Varjú for providing these references. Note that

the exponent 1/d is independent of the dimensions n1 and n2. This can be compared with

[KM98, § 3] and [KT07, Lemma § 3.4], where a similar bound, albeit with a worse exponent

1/dn1 is derived. The fact that the exponent is independent of n1 will be important in the proof

of Theorem 1.8.

3. A characterization of Diophantine nilpotent Lie groups

3.1 The Borel–Cantelli lemma and condition (PUB)

Let G= (g, ∗) be a connected simply connected nilpotent Lie group, endowed with a left-invariant

Riemannian metric. Denote n = dimG and s the nilpotency step of G. Throughout we identify G

with its Lie algebra g via the exponential map. Then Lebesgue measure on g coincides with Haar

measure on G. In the following, we fix a basis of g and the associated norm ‖x‖ := max{|xi|}
on g.

Definition 3.1 (Polynomial uniform lower bound). We will say that the group G satisfies

condition (PUB) for words in k letters – or simply (PUBk) – if there exist constants Ck > 0 and

Ak > 0 such that

∀ω ∈ Fk,G,
(

sup
g∈B

Gk (0,1)
‖ω(g)‖

)
> Ck · l(ω)−Ak . (PUBk)

This condition ensures that no word map contracts too much the unit ball of Gk. In other

terms, it is a polynomial uniform lower bound on the size of word maps, whence the chosen

abbreviation (PUB).

Proposition 3.2. Let G be a connected simply connected nilpotent Lie group. Then G is

Diophantine for words on k letters if and only if it satisfies condition (PUB) for words on k

letters. In short,

Diophantinek ⇐⇒ (PUBk).

Proof. We start by the implication (⇒) and prove the contrapositive. If G does not satisfy

(PUBk), then there is a sequence of words wn in Fk whose associated word maps on G are

non-trivial and satisfy ‖wn(g)‖ 6 (1/n)l(wn)−n for all g ∈ BGk(0, 1). However, the level sets

w−1
n ({0}) are proper subsets of zero Haar measure in Gk. The complement of the union of all

these sets therefore has full measure in Gk. No k-tuple in this complement is Diophantine, hence

G is not Diophantine on k letters.
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Now we turn to the converse (⇐). It is based on the Borel–Cantelli lemma. For a word map
ω on G, and R > 1, β > 0, set

Eω(β) := {g ∈ BGk(0, R) : ‖ω(g)‖ 6 |BΓg(l(ω))|−β}.

Recall that τk := τ(Γg) is the growth exponent of Γg for a random g (i.e. |BΓg(n)| ∼ ckn
τ
k, see

Corollary 2.6), that s is the nilpotency class of G and that Ak is the exponent appearing in the
above definition of (PUBk). We will show that if β > s+Ak/τk one has∑

ω∈Fk,G

|Eω(β)| <∞.

In view of the Borel–Cantelli Lemma, this is enough to conclude that G is Diophantine for k
letters. By Lemma 2.3 we know that if ω is a word map on G, then it is polynomial of degree at
most s. Therefore, if it is non-trivial, we may apply Proposition 2 with f = ω, B = BGk(0, R)
and ε = (ck/2)l(ω)−τkβ > 0 to get, assuming (PUBk),

|Eω(β)| �
(
l(ω)−τkβ

‖ω‖B

)1/s

� l(ω)(−τkβ+Ak)/s, (3)

where the implied constants depend only on G, R and k. Therefore∑
ω∈Fk,G

|Eω(β)| �
∑

ω∈Fk,G

l(ω)(−τkβ+Ak)/s.

We now split this infinite sum in annuli {ω ∈ Fk,G; 2m−1 6 l(ω) < 2m} noting that the size of
each annulus is bounded above by the size of the ball of radius 2m in Fk,G and hence is a O(2mτk).
It follows that the series converges for every β > s+Ak/τk as desired. 2

Remark 3.3. The proof shows that condition (PUBk) with exponent Ak implies that G is
Diophantine for words in k letters, with exponent s+Ak/τk. We will show later that the number
Ak can always be bounded above independently of k. As a consequence (see Proposition 5.9),
for every β > s, every Diophantine s-step nilpotent Lie group is β-Diophantine on k letters if k
is large enough.

Remark 3.4. IfG= Rd, then word maps are of the form (x1, . . . , xk) 7→
∑k

i=1 nixi, with ni ∈ Z, so
condition (PUB) is clearly satisfied. More generally, one can see, e.g. using the Campbell–Baker–
Hausdorff formula, that word maps on rational nilpotent Lie groups have integer coefficients in
an appropriate basis, so those groups certainly satisfy (PUB), and hence are Diophantine. This
will also follow from the detailed analysis of condition (PUB) that we describe in 3.3.

3.2 An example: 2-step nilpotent groups
In order to motivate the discussion of the next paragraph, we start by studying the case of
2-step nilpotent groups. We will show that all of them satisfy condition (PUB) and hence are
Diophantine. Note that this is not a particular case of Remark 3.4 above, as there exist non-
rational nilpotent Lie groups of step two (see [Rag72, Remark 2.14, p. 38]).

Let G = (g, ∗) be a connected simply connected nilpotent Lie group of step 2, and let k ∈ N.
As Fk,G is nilpotent of step 2, by [MKS76, § 5.1], any word map ω ∈ Fk,G has a representative
of the form

w =
k∏
i=1

xeii
∏

16i<j6k

[xi, xj ]
fi,j . (4)
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We will show that ‖ω‖B := supg∈B
Gk (0,1) ‖ω(g)‖ admits a uniform lower bound when ω ranges

over the set of word maps on k letters on G. Clearly this will imply that G satisfies (PUBk) and

hence is Diophantine thanks to Proposition 3.2.

The map ω naturally induces a map on the abelianization, which under the identification

G ' g and in view of (4) is just ω̄ : gk → g/g(2), (x1, . . . , xk) 7→
∑k

i=1 eixi mod g(2). If some ei is

non-zero, then obviously the map is not uniformly small on BGk(0, 1) and ‖ω‖B � 1. If, however,

all ei are zero, then the map can be written ω : gk → g(2), (x1, . . . , xk) 7→
∑

16i<j6k fij · [xi, xj ],
where fij ∈ Z. Fixing i < j and letting xm be the identity for all indices m except i and j, we

see that ‖ω‖B > |fij | supx,y∈BG(0,1) ‖[x, y]‖. Since the fij are integers and not all zero, we obtain

the desired uniform lower bound.

With analogous elementary methods, one can also treat the case of 3-step nilpotent groups.

The idea, as in the 2-step case, consists in verifying that relations among word maps have to be

rational. In particular all word maps sit inside a lattice in the space of polynomial maps gk → g,

and this yields the desired uniform lower bound on their norm. Unfortunately this approach fails

in step 6 and higher as we will demonstrate below.

We now turn to a more systematic study of the possible relations among word maps on

a nilpotent Lie group, which will allow us, in § 4, not only to show that nilpotent groups of

step up to 5 satisfy (PUB), but also to construct non-Diophantine nilpotent Lie groups of any step

from 6 onwards.

3.3 Laws on nilpotent Lie algebras and the Diophantine property

Our goal in the remainder of this section will be to prove another characterization of the

Diophantine property for a nilpotent Lie group G in terms of the ideal of laws of the Lie algebra

g (cf. Theorem 3.12 below). Recall that G is a connected simply connected nilpotent Lie group

of step s. The group Fk,G of word maps on k letters on G is by definition isomorphic to the

quotient group Fk,s/Rk,s(G), where Fk,s is the free nilpotent group of step s on k generators,

and Rk,s(G) is the group of laws of G in Fk,s, i.e. the normal subgroup of Fk,s consisting of all

(classes of) words that are identically zero on Gk.

For any ring R, we denote by Fk,s(R) the free s-step nilpotent Lie algebra on the finite

set {x1, . . . , xk} over R. It is the quotient of the free Lie algebra by the ideal generated by

commutators of length at least s+ 1. For R = R, we write Fk,s = Fk,s(R). The group Fk,s sits

naturally as a lattice in (Fk,s, ∗), the simply connected nilpotent Lie group associated to the free

nilpotent Lie algebra of step s over k generators. The precise connection between group laws and

Lie algebra laws is given by the following lemma. If r ∈ Fk,s is written as a sum of homogeneous

components r =
∑s

1 ri, each ri being a linear combination of brackets of order i, then we set

|r| := maxs1 ‖ri‖1/i, where ‖ · ‖ is a norm on Fk,s.

Lemma 3.5. For each s ∈ N∗, there are positive integers C,D such that the following hold.

(i) If w ∈ Fk,s, then w(ex1 , . . . , exk) = e1/Cr(x1,...,xk) for some r ∈ Fk,s(Z) with |r| 6 D · l(w).

(ii) If r ∈ Fk,s(Z), then eCr(x1,...,xk) = w(ex1 , . . . , exk) for some w ∈ Fk with l(w) 6 D · |r|.

Proof. For the first part, one shows by induction on l(w) that w = e
∑s

1 (1/ai)ri , where ri ∈ Fk,s(Z)

is homogeneous of degree i and ‖ri‖1/i 6D · l(w). Here the ai are positive integers which are fixed

once and for all and independent of w. One picks the ai recursively in such a way that a1 . . . ai−1bi
divides ai for each i, where bi is the least common multiple of the denominators of the coefficients

appearing in front of the brackets of order at most i in the Campbell–Baker–Hausdorff formula.
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The main point to observe is that due to this choice of integers ai if w = e
∑s

1 (1/ai)ri for some
values ri, then exjw remains of this form when applying the Campbell–Baker–Hausdorff formula.

The second part is proved by induction on the nilpotency class s. Suppose it holds when
the nilpotency class is less than s, then write r = r<s + rs the homogeneous components of
order less than s and order s respectively. From the induction hypothesis there is a word w<s
of length 6 Ds−1|r| such that, for C = Cs−1, eCr<s = w<s modulo commutators of order s in
Fr,s. It then follows from the first part that eCr<s = w<se

1/Cr′s , where r′s is homogeneous of
order s and in Fk,s(Z). Moreover |r′s| 6 Dsl(w<s) 6 D2

s |r|. Since r<s and r′s commute, we have

eC
2r = wC<se

r′s+C2rs . It thus suffices to prove the assertion in the case when r = r′s is homogeneous
of degree s. This follows from two observations. First if c is a commutator of order s in Fk,s
with letters xj , then ec coincides with the group commutator of the same form in the letters exj .
Denote by n the least integer greater than |r|. The second remark is that every positive integer
m < ns can be written in base n as a sum of at most s terms of the form ani for some integers
i = 0, . . . , s− 1 and a ∈ [0, n− 1]. This shows that for every commutator shape c(x1, . . . , xk) one
can write emc as a product of at most s group commutators in the variables (exj )`, where |`| 6 n.
The result follows immediately. 2

For future reference, we record the following observation, which was used in the proof: if r in
Lemma 3.5(ii) is a bracket commutator of order s and shape c(x1, . . . , xk) (so that it belongs to

F [s]
k,s, the ideal of homogeneous elements of degree s in Fk,s), then the associated word w ∈ Fk

given by the lemma can be taken to be the commutator of order s with exactly the same shape
(e.g. if r(x1, x2) = [x1, [x1, x2]], then w(g1, g2) := (g1, (g1, g2)) works, where (a, b) = aba−1b−1 is
the group commutator). This is a simple consequence of the Campbell–Baker–Hausdorff formula
(see after Proposition 2.1 above). Conversely, given a commutator word w of order s, we have
w(ex1 , . . . , exk) = er(x1,...,xk) for all xi in Fk,s, where r is the bracket commutator of the same
shape.

In particular, if r belongs to F (i)
k,s, the ith term in the central descending series of Fk,s, then

w can be chosen to belong to F
(i)
k , the ith term in the central descending series of Fk. Similarly,

if r belongs to D(i)(Fk,s), the ith term in the derived series of Fk,s, then w can just as well be
taken to belong to the ith term in the derived series of Fk; and, conversely, the same holds in the

opposite direction, i.e. given w in F
(i)
k (respectively D(i)(Fk)) we may find r in F (i)

k,s (respectively

D(i)(Fk,s)) satisfying the conclusion of Lemma 3.5(i).
Lemma 3.5 is fairly standard. We added a proof for the reader’s convenience. More

information on this topic and on the geometry of nilpotent groups, is contained in Tits’ appendix
to [Gro81] and in the second author’s paper [Bre14, § 2].

If g is an arbitrary real nilpotent Lie algebra with nilpotency class no greater than s, for
each X = (X1, . . . , Xk) ∈ gk, there is a unique Lie algebra homomorphism θX : Fk,s → g such
that, for each i, θX(xi) = Xi.

Definition 3.6. The ideal of laws on k letters on g is defined to be

Lk,s(g) :=
⋂

X∈gk
ker θX.

The quotient Fk,s/Lk,s(g) is the relatively free Lie algebra in the variety of k-generated Lie
algebras associated to g.

Proposition 3.7. The set Lk,s(g) is a fully invariant ideal of Fk,s, i.e. Lk,s(g) is an ideal of Fk,s,
and it is stable under all Lie algebra endomorphisms of Fk,s. Conversely, if L is a fully invariant
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ideal of Fk,s there exists a nilpotent Lie algebra g with nilpotency class no greater than s such
that Lk,s(g) = L.

Proof. By definition, Lk,s(g) is the intersection of all ideals ker θX, so it is itself an ideal. Let ϕ be
a Lie algebra endomorphism of Fk,s. For each i in {1, . . . , k}, denote ri = ri(x1, . . . , xk) the image
of xi under ϕ. For X ∈ gk, with a slight abuse of notation, we set ϕ(X) := (r1(X), . . . , rk(X)).
The homomorphism of Lie algebras θX ◦ ϕ : Fk,s → g maps each xi to ri(X) and therefore

θX ◦ ϕ = θϕ(X).

This shows that Lk,s(g) is stable under ϕ.
Conversely, if L is any ideal of the free Lie algebra Fk,s, the ideal of laws in k letters of the

quotient Lie algebra Fk,s/L is the smallest fully invariant ideal of Fk,s containing L. In particular
if L is a fully invariant ideal of Fk,s, then the ideal of laws of the quotient Lie algebra Fk,s/L is
exactly L. 2

Definition 3.8. The ideal of rational laws on k letters on g is defined to be the real vector
space Lk,s(g)Q generated by Lk,s(g) ∩ Fk,s(Q). It is also a fully invariant ideal of Fk,s.

Denoting by (g, ∗) the simply connected Lie group associated to the Lie algebra g, we have
the following.

Proposition 3.9. The group of word maps Fk,G naturally embeds into two Lie groups.

– It is a finitely generated subgroup of (Fk,s/Lk,s(g), ∗).
– It is a lattice in (Fk,s/Lk,s(g)Q, ∗).

We defer the proof to later in this section. The discrepancy between Fk,s/Lk,s(g)Q and
Fk,s/Lk,s(g) lies at the heart of the property of being Diophantine for G. We have a natural
epimorphism of real Lie algebras:

Λ : Fk,s/Lk,s(g)Q → Fk,s/Lk,s(g). (5)

Before we state the main result of this section we require one more definition.

Definition 3.10 (Diophantine subspace). Let V be a finite-dimensional Q-vector space and
choose a norm ‖ · ‖ on V (R). A real subspace L of V (R) is said to be Diophantine in V if there
are constants C,A > 0 such that

d(v, L) > C · ‖v‖−A

for every v ∈ V (Z)\L.

Example 3.11 (Subspaces defined over a number field). Let K 6 R be a finite field extension
of Q. If L has a basis made of vectors in V (K), then L is a Diophantine subspace of V . Indeed,
L is also the intersection of the kernels of linear forms `1, . . . , `codimL on V which are all defined
over K and we are left to verify that |`i(v)| � ‖v‖−A for each v ∈ V (Z)\{ker `i}. This is, of
course, well known, and can easily be verified from the product formula h(x) = h(x−1) and the
height bounds h(xy) 6 h(x)+h(y) and h(x+y) 6 h(x)+h(y)+ log 2, where h(x) is the absolute
Weil height for the algebraic number x (cf. [BG06]).

We now have the following.

Theorem 3.12. Let G be a connected simply connected nilpotent Lie group with Lie algebra g
and k > 1. The following are equivalent.

1168

https://doi.org/10.1112/S0010437X14007854 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007854


Diophantine properties of nilpotent Lie groups

(1) The group G is Diophantine for words in k letters.

(2) The group Fk,G is Diophantine as a subgroup of (Fk,s/Lk,s(g), ∗).
(3) The ideal of laws Lk,s(g) is Diophantine in Fk,s.
(4) The kernel ker Λ is Diophantine in Fk,s/Lk,s(g)Q.

Note that the condition that Fk,G be a Diophantine subgroup of (Fk,s/Lk,s(g), ∗) (i.e.
condition (2) in Theorem 3.12) is just a reformulation of (PUBk). Indeed by Lemma 3.5 for
each word map ω ∈ Fk,G, there is an element rω ∈ Fk,s/Lk,s(g) such that ω(g) = erω(log g) with
l(ω) . ‖rω‖ . l(ω)s and supB

Gk (0,1) ‖ω(g)‖ = supx∈B
gk

(0,1) ‖rω(x)‖ is a norm on the Lie algebra

Fk,s/Lk,s(g). All norms are equivalent, so (PUBk) (as formulated in Definition 3.1) precisely
means that Fk,G is Diophantine.

We are now ready to prove Proposition 3.9 and Theorem 3.12.

Proof of Proposition 3.9. As follows from Lemma 3.5, Fk,s is a lattice in (Fk,s, ∗). Moreover
the kernel of the natural group homomorphism Fk,s → (Fk,s/Lk,s(g), ∗) coincides with Rk,s(G).
Hence Fk,G = Fk,s/Rk,s(G) is naturally a subgroup of (Fk,s/Lk,s(g), ∗).

Similarly Lemma 3.5 implies that Rk,s(G) is a lattice in (Lk,s(g)Q, ∗). This implies (see
[Rag72, Lemma 1.16, p. 25]) that Fk,s/Rk,s(G) is a lattice in (Fk,s/Lk,s(g)Q, ∗). 2

Proof of Theorem 3.12. We just observed that part (2) is a reformulation of (PUBk). Hence
Proposition 3.2 shows that parts (1) and (2) are equivalent.

If W 6 V are finite-dimensional Q-vector spaces and L is a real subspace W (R) 6 L 6 V (R),
then it follows easily from Definition 3.10 that L is Diophantine in V if and only if L/W is
Diophantine in V/W . This yields the equivalence of parts (3) and (4).

We now prove the equivalence of parts (2) and (4). Let N := (Fk,s/Lk,s(g)Q, ∗) and the
discrete lattice Γ := Fk,s/Rk,s(G) inside it. Let L := ker Λ. We need to prove that Γ is Diophantine
in N/L if and only if the Lie algebra Lie(L) is a Diophantine subspace Lie(N) in the sense of
Definition 3.10. This again follows easily from Lemma 3.5 and the Campbell–Baker–Hausdorff
formula. Indeed, if Γ is not Diophantine in N , then for every A > 0 there are words w such
that w(x1, . . . , xk) = euwe`, where uw ∈ Lie(N)\{0} is very small, i.e. ‖uw‖ � l(w)−A,[(1)] and
` ∈ Lie(L). By Lemma 3.5, this implies that there are integer points r ∈ Lie(N)(Z) with ‖r‖ �
l(w)s such that er = eCuweC` for a constant C. Applying the Campbell–Baker–Hausdorff formula,
using the fact that Lie(L) is an ideal, we see that ‖r − C`‖ � ‖r‖−A/s, showing that Lie(L) is
not Diophantine as a subspace of Lie(N). The reverse direction is similar and we omit it. 2

Remark 3.13. Note that the proof shows that if Lk,s(g) is Diophantine in Fk,s with exponent A,
then G satisfies (PUBk) with exponent Ak = sA, and therefore, by Remark 3.3, G is Diophantine
in k letters with exponent s+ sA/τk.

3.4 Nilpotent Lie groups defined over an algebraic number field
A real Lie algebra g is said to be defined over a proper subfield K 6 R, if one can find a basis
{Xi}di=1 such that the associated structure constants of g (that is the numbers cijk such that

[Xi, Xj ] =
∑d

k=1 cijkXk) belong to K. We will also say that the associated connected simply
connected nilpotent real Lie group is defined over K when its Lie algebra is so.

One readily checks that if the s-step nilpotent Lie algebra g is defined over K, then its ideal of
laws Lk,s(g) is also defined over K. The following is then a direct consequence of Theorem 3.12.

Corollary 3.14. If G is a connected simply connected nilpotent Lie group defined over a
number field K ([K : Q] <∞), then G is Diophantine.
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Proof. The ideal of laws Lk(g) is defined over the number fieldK, and therefore, by Example 3.11,
it must be Diophantine. Theorem 3.12 then implies that the group G is Diophantine. 2

3.5 Connected, but non-simply connected, nilpotent Lie groups
We explain here how the above can be adapted to handle non-simply connected, connected
nilpotent Lie groups G as well.

Let G̃ be the universal cover of the connected nilpotent Lie group G, so that G = G̃/Z,
where Z is a discrete subgroup of G̃ contained in its center. The group Z is a torsion-free abelian
group, say of rank r.

A first observation is that the groups of words maps Fk,G and Fk,G̃ are naturally isomorphic:

indeed every law on G must also be a law on G̃ because Z is discrete in G̃. Second we prove the
following.

Theorem 3.15. Let G be a connected nilpotent Lie group and G̃ its universal cover. Then G is
Diophantine on k letters if and only if G̃ is Diophantine on k letters.

Proof. One direction is obvious: ifG is Diophantine, then so is G̃. In the converse direction, we use
the characterization in terms of the property (PUBk) of Proposition 3.2 and modify the Borel–
Cantelli argument used in the proof of this proposition. What needs to be estimated is the Haar
measure of the sets E′ω(β) := {g ∈ BG̃k(0, R); d(ω(g), Z) < |BFk,G

(n)|−β}. This splits into a union

of at most O(l(ω)rs) subsets of the form E′ω(β, z) := {g ∈ BG̃k(0, R); ‖z−1ω(g)‖ < |BFk,G
(n)|−β}

for z ∈ Z\{0}. Since Z is discrete, the quantity supg∈B
G̃k (0,R) ‖z−1ω(g)‖ is bounded away from

0 uniformly in z 6= 0. Applying the Remez-type inequality (Proposition 2.8) to each polynomial
map g 7→ z−1ω(g) and using condition (PUBk) for G̃, we obtain

|E′ω(β)| 6 |E′ω(β, 0)|+
∑
z 6=0

|E′ω(β, z)| � l(ω)−(βτk−Ak)/s + l(ω)rsl(ω)−βτk/s

and the series converges as soon as β > s+ max{rs,Ak}/τk. We conclude that G is Diophantine.
2

4. Fully invariant ideals of the free Lie algebra Fk

In this section, we complete our study of the Diophantine property for nilpotent Lie groups
and explain the connection between the Diophantine property for s-step nilpotent Lie algebras
and the absence of multiplicity in the ideal of laws Lk,s viewed as a module over SLk. We then
complete the proof of the results stated in the introduction.

4.1 Fk,s as an SLk-module

Recall that Fk denotes the free Lie algebra on k generators and Fk,s = Fk/F
(s+1)
k the s-step free

nilpotent Lie algebra. Here F (i)
k denotes the ith term of the central descending series of Fk. The

ring EndFk,s of Lie algebra endomorphisms of Fk,s acts naturally on Fk,s, so that Fk,s has a
structure of an EndFk,s-module. An EndFk-submodule of Fk,s is called a fully invariant ideal
of Fk,s.

Below we will show that, for k > 3 (respectively k = 2) and for all s > 6 (respectively s > 7),
there exists a fully invariant ideal of Fk,s(R) which is not Diophantine. By Theorem 3.12 this
will show existence of non-Diophantine nilpotent Lie groups.

The group SLk acts on Fk,s by linear substitution of the free variables, and thus embeds
naturally in EndFk,s.

1170

https://doi.org/10.1112/S0010437X14007854 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007854


Diophantine properties of nilpotent Lie groups

For s > 1, we denote F [s]
k the subspace of Fk,s consisting of homogeneous elements of degree s.

Note that F [s]
k is stable under the action of SLk and that a vector subspace V 6 F [s]

k is invariant
under the action of SLk if and only if it is a fully invariant ideal of Fk,s. So in order to build fully

invariant ideals in Fk,s we can look for SLk-invariant subspaces of F [s]
k . Our first observation is

the following.

Lemma 4.1 (Complete reducibility). The SLk-module F [s]
k is completely reducible, i.e. there are

positive integers ni such that

F [s]
k =

l⊕
i=0

V ni
i ,

where each Vi is an irreducible highest-weight SLk-module defined over Q and Vi 6' Vj if i 6= j.

Proof. This follows Weyl’s complete reducibility theorem. See Serre [Ser06, Part I, ch. 6, § 3]. 2

4.2 Multiplicity and Diophantine submodules

We now want to find under which condition F [s]
k (R), the subspace of Fk,s(R) consisting of

homogeneous elements of degree s, admits a non-Diophantine SLk-submodule. Say that F [s]
k (R)

is multiplicity free if in the decomposition given by the above lemma, ni = 1 for all i. If not, we

say that F [s]
k (R) admits multiplicity. The following simple observation is key to our proofs.

Lemma 4.2. Let k, s ∈ N.

(1) If F [s]
k (R) is multiplicity free, then it has only finitely many SLk-submodules, all of which

are defined over Q, and hence Diophantine.

(2) If F [s]
k (R) admits multiplicity, then it has a non-Diophantine SLk-submodule.

Proof. If F [s]
k (R) is multiplicity free, then, using notation of Lemma 4.1, we see that every

SLk-submodule V has the form V =
⊕

i∈I Vi where I ⊂ {1, . . . , n}. This certainly implies that
they all are defined over Q. Example 3.11 then shows that they are Diophantine.

Conversely, suppose F [s]
k admits multiplicity. Without loss of generality, we may assume

n1 > 2 so that F [s]
k admits a submodule of the form V1 ⊕ V ′1 , with V1 ' V ′1 , both of them being

defined over Q as subspaces of Fk. Fix an isomorphism α : V1 → V ′1 mapping V1 ∩ Fk(Z) to
V ′1∩Fk(Z). Then choose some Liouville number λ ∈R, i.e. some number such that the inequalities

0 <

∣∣∣∣λ− p

q

∣∣∣∣ 6 q−q−1 (6)

have infinitely many integer solutions in (p, q), and define

Lλ = {x+ λα(x) : x ∈ V1} ⊂ F [s]
k (R).

This is an SLk-submodule of F [s]
k (R), which we claim to be non-Diophantine. To see this, take

a non-zero vector x ∈ V1 ∩ Fk(Z), and let, for p, q ∈ Z, rp,q := qx + pα(x) ∈ F [s]
k (Z). Then, for

p, q large enough in the set of solutions to (6), we have

0 < d(rp,q, Lλ) 6 ‖qx1 + pα(x1)− q(x1 + λα(x1))‖ 6 |p− qλ|‖α(x1)‖ 6 q−q. (7)

As ‖rp,q‖ � q, this proves what we wanted. 2
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4.3 Applications
As we explain in the appendix, using Witt’s Character Formula for the free Lie algebra, one

may determine precisely when the SLk-module F [s]
k is multiplicity-free. The conclusion is the

following (Theorem A.2).

Theorem 4.3. The SLk-module F [s]
k is multiplicity-free if and only if s 6 5 when k > 3 and if

and only if s 6 6 when k = 2.

This will allow us to derive Theorems 1.3 and 1.5 announced in the introduction.

Theorem 4.4. Fix an integer k > 3 (respectively k = 2).

(1) Every connected nilpotent Lie group of step s 6 5 (respectively s 6 6) is Diophantine on
k letters.

(2) For every s > 6 (respectively s > 7), there are s-step nilpotent Lie groups which are not
Diophantine on k letters.

Proof. We only deal with the case k > 3, because the case k = 2 is entirely analogous. Let G
be a connected nilpotent Lie group of step s 6 5. From Theorem 3.12, it suffices to show that
Lk,s = Lk,s(g) is Diophantine in Fk,s. Now Lk,s is a fully invariant ideal of Fk,s and therefore
can be decomposed as

Lk,s =
⊕
r>1

L[r]
k,s,

where L[r]
k,s is the set of elements of Lk,s of homogeneous degree r. For each r, L[r]

k,s is an SLk-

submodule of F [r]
k,s. Combining Lemma 4.2 and Theorem A.2, we get that, for each r 6 5, L[r]

k,s is
defined over Q. Thus, Lk,s is defined over Q and hence Diophantine. This proves the first part
of the theorem in the case k > 3.

Now let k > 3 and s > 6. From Theorem A.2 and Lemma 4.2, we may find in F [s]
k (R) an

SLk-submodule L that is non-Diophantine as a subspace of Fk,s. This is a fully invariant ideal
of Fk,s which is not Diophantine. Let G be the connected simply connected Lie group with Lie
algebra Fk,s/Lk,s. Then G is s-step nilpotent, and its ideal of laws on k letters is Lk,s so that by
Theorem 3.12, G is not Diophantine. 2

The proof of Theorem 1.5 follows similar lines, the only new input is the fact, proved in
Lemma A.9 below, that the free metabelian Lie algebra is multiplicity-free as an SLk module.

Theorem 4.5. Every connected nilpotent metabelian Lie group is Diophantine.

Proof. Let G be such a Lie group with nilpotency step s and let g be its Lie algebra. Let

Lk = Lk(g) the ideal of laws on k letters in g. Since G is metabelian, for each r, L[r]
k contains

M[r]
k (see the notation of Lemma A.9). It then follows from this lemma that L[r]

k is equal either to

M[r]
k or to F [r]

k . In particular it is defined over Q. Hence so is Lk,s(g) in Fk,s. By Example 3.11,
it must then be Diophantine in Fk,s and Theorem 3.12 implies that G is Diophantine. 2

Remark 4.6. Observe that the non-Diophantine nilpotent Lie groups constructed in Theorem 4.4

in step s = 6 (or s = 7 if k = 2) are solvable of derived length 3 (indeed D3(Fk) ⊂ F
(8)
k ).

We can now build a non-Diophantine solvable but not nilpotent group.

Theorem 4.7. There exists a non-Diophantine solvable Lie group which is not nilpotent.

1172

https://doi.org/10.1112/S0010437X14007854 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007854


Diophantine properties of nilpotent Lie groups

Proof. Fix s > 7. Denote M2 = D2(Fk) the second term of the derived series of Fk. From

Theorem A.2 in the appendix, we know that F [s]
2 admits multiplicity. By Lemma A.9, this

implies that in fact M[s]
2 has multiplicity. From there, using a Liouville number as in the proof

of Lemma 4.2, we build an SL2-submodule L of M[s]
2 and a sequence (rn)n>1 of elements of

M[s]
2 (Z) such that ‖rn‖→∞ and, for each n,

0 < d(rn,L) < ‖rn‖−‖rn‖
s
. (8)

By Lemma 3.5, we may obtain from (rn) a sequence of words in two letters

wn = eCrn mod eF
(s+1)
2

with l(wn) 6 C · ‖rn‖s. Moreover, given that the rn are in M2, it follows from the remark made
right after the proof of Lemma 3.5 that the wn can be chosen in M2 = D2(F2), the second term of
the derived series of the free group F2. This implies in particular that, for any metabelian group
M , all word maps wn,M are trivial. Now take M any metabelian non-nilpotent Lie group, e.g.
the group of affine transformations of the real line, and let N be the connected simply connected

nilpotent Lie group with Lie algebra F2/(L ⊕ F (s+1)
2 ). Let G := M × N . The word maps wn,G

are trivial on M × {1}, and therefore, the bound (8) shows that, for any β > 0,

0 < sup
g∈BG2 (0,1)

d(wn(g), 0)� 4−βl(wn) � |BΓg(l(wn))|−β.

This shows that G cannot be Diophantine, and of course G is solvable non-nilpotent. 2

5. Concluding remarks

5.1 Baire category genericity
Here we prove Theorem 1.7. It is well known that, although almost every real number is
Diophantine, there is a Gδ-dense set of real numbers which are not. So topological and
measure-theoretic genericity are very different notions. For k-tuples on nilpotent groups a similar
phenomenon takes place.

Proposition 5.1. Let G be a connected nilpotent real Lie group. If k > dimG/[G,G], then
there is a Gδ-dense set D in Gk of k-tuples which are not Diophantine.

For the analogous result on SU(2) see [GHSSV09]. In fact D can be chosen so that the
k-tuples in D are as non-Diophantine as possible, namely the speed of an approximation to 1
by a word of length n can be arbitrarily fast in n. The proof is based on the following lemma.
Recall that Fk,G is the relatively free group on k generators associated to G (see § 2.2).

Lemma 5.2. If there is a dense subset D0 of Gk such that for each g ∈ D0 the induced natural
map Fk,G → G is not injective, then there is a Gδ-dense set D of non-Diophantine k-tuples.

Proof. Let ωg ∈ Fk,G\{1} be such that ωg(g) = 1. Then ω−1
g (1) is a proper analytic subvariety

of Gk. In particular, for every integer n > 1, the subset On,g := B(g, e−nl(ωg))\w−1
g (1) of the

open ball B(g, e−nl(ωg)) is open and its closure contains g. Set D :=
⋂
n>1

⋃
g∈D0

On,g. 2

Proof of Proposition 5.1. Note that we may assume that G is simply connected. Let c ∈ F [s]
k,s be

a commutator of length s not belonging to the ideal of laws Lk,s(g). Let D0 be the set of k-tuples
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(x1, . . . , xk) in Gk such that (x1, . . . , xk−1) span g modulo g(2) (via the identification G ∼ g),
and such that xk lies in the Q-span of (x1, . . . , xk−1) modulo g(2). Since k > dim g/g(2) this set
is clearly dense in Gk. By the definition of D0, and using the multi-linearity of c, if g ∈ D0, then
there are integers ni ∈ Z with nk 6= 0 such that nkc(x1, . . . , xk) =

∑k−1
i=1 nic(x1, . . . , xk−1, xi).

However, viewed as an element of Fk,s, the quantity

r(x1, . . . , xk) := nkc(x1, . . . , xk)−
k−1∑
i=1

nic(x1, . . . , xk−1, xi)

does not belong to Lk,s because the sum of the k−1 terms on the right-hand side does not depend
on xk, while the term on the left-hand side does. By Lemma 3.5, er is a word w in the group
elements exi and it does not vanish entirely on Gk although it vanishes at the point (x1, . . . , xk).
Hence D0 satisfies the requirements of Lemma 5.2 and we are done. 2

If G is not Diophantine, then a much stronger statement holds.

Proposition 5.3. Let G be a connected nilpotent Lie group, which is non-Diophantine for
k-tuples. Then there is a word map ω ∈ Fk,G\{1} such that all k-tuples g ∈Gk such that ω(g) 6= 1
are non-Diophantine. In particular there is an open dense subset of Gk made of non-Diophantine
k-tuples.

Before giving the proof we make the following observation.

Lemma 5.4. Let F be a finitely generated subgroup of a connected s-step nilpotent Lie group
G and Γ 6 F a subgroup. If min{d(x, 1);x ∈ Γ ∩ BF (n)\{1}} � n−A for all A > 0, then Γ is
non-Diophantine in G.

Proof. As is well known, every subgroup of a finitely generated nilpotent group is finitely
generated, so it makes sense to require that Γ be non-Diophantine as a subgroup of G, or
not. We claim that the word metric on Γ is bounded above by a fixed power of the trace on Γ of
the word metric coming from F , namely `Γ(γ) 6 O(`F (γ)s). Clearly this implies the lemma. To
see the claim let M be the Zariski closure of Γ in the Malcev closure N of F . It is a connected
and closed subgroup of N [Rag72, II.2.5, II.2.6]. Given a norm ||x|| on the Lie algebra of N ,
any homogeneous quasi-norm | · |N on N satisfies c|x|N 6 ||x|| 6 C|x|sN [Bre14, Example 2.3] for
some positive constants c, C > 0 assuming ||x|| > 1 say. Also the same holds for a homogeneous
quasi-norm | · |M on M if x ∈M . The ball-box principle (see e.g. [Bre14, Proposition 4.5] applied
to the distance on N induced by the word metric on F [Bre14, Example 4.3(1)]) tells us that | · |N
and `F (respectively | · |M and `Γ) are comparable up to multiplicative and additive constants.
The claim follows. 2

Proof of Proposition 5.3. Let N be the simply connected Lie group (Fk,s/Lk,s(g), ∗). Recall
(see Proposition 3.9) that Fk,G is a lattice in (Fk,s/Lk,s(g)Q, ∗) and that it embeds into N
via the natural Lie homomorphism ρ : (Fk,s/Lk,s(g)Q, ∗) → N (associated to the Lie algebra
homomorphism Λ of (5)). By Theorem 3.12, ρ(Fk,G) is a non-Diophantine subgroup of N . Let
Γ 6 Fk,G be a subgroup of the form Γ = ρ−1(ρ(Fk,G) ∩ L), where L is a connected subgroup
of N , which is such that ρ(Γ) is non-Diophantine in L. Choose Γ so that L has minimal possible
dimension. Pick ω ∈ Γ\{1}.

Now let g ∈ Gk be a k-tuple such that ω(g) 6= 1. The choice of g induces a homomorphism
φg : Fk,G → G, which extends by Malcev rigidity [Rag72, Theorem 2.11] to a Lie group
homomorphism from (Fk,s/Lk,s(g)Q, ∗) to G, which factors through N via ρ. This yields a
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Lie group homomorphism φ̃g : N → G. Now the main point is the following simple consequence
of the above lemma: if a finitely generated non-Diophantine subgroup of a nilpotent Lie group
maps to a Diophantine subgroup under a Lie group homomorphism, then its intersection with the
kernel is already non-Diophantine. In our case ρ(Γ) is non-Diophantine, so its image in G must

also be non-Diophantine unless ker φ̃g ∩ ρ(Γ) is non-Diophantine. By minimality of dimL, if this

happens, then L 6 ker φ̃g and so φg(Γ) = 1. However, this is impossible because we assumed that
ω(g) 6= 1. We conclude that φg(Γ) is non-Diophantine in G and hence so is the k-tuple g. 2

5.2 Dependence in k of the Diophantine exponent
We gather here a few additional remarks about the Diophantine exponent β, prove Theorem 1.8
and mention some related open problems. First we have the following simple observation.

Remark 5.5. Let G be a connected real Lie group G. The set of integers k > 1 such that G
is Diophantine on k letters is an interval [1, k0], where k0 is either a finite integer (in case G is
not Diophantine) or +∞ (in case it is). This is clear given that if a k-tuple (s1, . . . , sk) in G
is Diophantine, then any subtuple is again Diophantine. The following result is Theorem 1.4
from the introduction. It shows that, for any integer k0 > 1, one may construct a nilpotent Lie
group G that is Diophantine on k letters if and only if k ∈ [1, k0]. We thank A. Gamburd for
raising the question of the existence of such a Lie group G.

Theorem 5.6. For any integer k0 > 1, there exists a connected nilpotent Lie group G such that
G is Diophantine for words on k0 letters, but non-Diophantine for words in k0 + 1 letters.

Proof. If k0 = 1, 2, we may conclude, using Theorem 4.4, that any connected nilpotent Lie group
of nilpotency step 7 (respectively 6) that is non-Diophantine on 2 (respectively 3) letters will do.

Now assume k0 > 3. Let s = k0 + 3. By Corollary A.13, the Young diagram with s boxes and

k0 + 1 rows of shape λ := (2, 2, 1, . . . , 1) occurs with multiplicity in F [s]
k0+1,s. Take E1 and E2 two

copies of Eλ in F [s]
k0+1,s defined over Q, and let

L = {(x, λx) ∈ E1 ⊕ E2;x ∈ E1},

for some Liouville number λ. Finally, define G to be the connected simply connected nilpotent
Lie group with Lie algebra Fk0+1,s/L. The ideal of laws of G over k0 + 1 letters is just L, and
it is non-Diophantine in Fk0+1,s. Hence G is non-Diophantine for words on k0 + 1 letters, by
Theorem 3.12.

We claim that the ideal of laws of G over k0 letters is {0}, and in particular is Diophantine.
This will show that G is Diophantine for words in k0 letters by Theorem 3.12. To see the claim,
observe that the ideal of laws Lk0,s(Lie(G)) on k0 letters is homogeneous, so if it is non-zero, then
it must contain a weight vector (for the diagonal action (x1, . . . , xk0) → (t1x1, . . . , tk0xk0)), say
r := r(x1, . . . , xk0) ∈ Fk0,s, which, being a law of Lie(G), must belong to L. The weight of r is of
the form (u1, . . . , uk0). However, Theorem A.5 below shows that the dimension of the subspace
of L ' Eλ made of vectors of weight (u1, . . . , uk0) is the number of semi-standard tableaux of
shape λ having each number i = 1, . . . , k0 occurring ui times. In particular such a tableau has at
most k0 distinct entries. However, λ has k0 + 1 rows, and entries are strictly increasing in each
column of a standard tableau. Hence any semi-standard tableau of shape λ must have at least
k0 + 1 distinct entries. This contradiction proves the claim. 2

We will prove here two related results. First we show that if G is s-step nilpotent and is not
Diophantine on k letters for some k > 1, then it is not Diophantine on s letters already. In other
words we have the following.
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Proposition 5.7. An s-step nilpotent Lie group G is Diophantine if and only if it is Diophantine
on s letters.

Proof. Let k > s. In view of Theorem 3.12 and the above remark we are left to prove that Lk,s
is Diophantine in Fk,s if Ls,s is Diophantine in Fs,s. For each set B of at most s letters amongst
x1, . . . , xk, consider the subspace VB of Fk,s spanned by the commutators whose set of letters
occurring in them is precisely B. The VB are in direct sum, span Fk,s, and they decompose
further into weight spaces for the diagonal action (t1, . . . , tk) · c(x1, . . . , xk) := c(t1x1, . . . , tkxk) on
Fk,s. The weights occurring in VB are of the form (n1, . . . , nk) ∈ Nk, where ni 6= 0 if and only
if xi ∈ B. The fully invariant ideal Lk,s also decomposes as a direct sum of weight spaces, and
Lk,s =

⊕
B Lk,s ∩ VB. Observe that for each set B of s letters

⊕
B′⊂B VB′ is isomorphic to Fs,s

and
⊕

B′⊂B Lk,s∩VB′ to Ls,s. The result is now a direct consequence of the following lemma. 2

Lemma 5.8. Suppose V is a finite-dimensional Q-vector space and Vi 6 V are Q-subspaces such
that V =

⊕
i Vi. Let L 6 V (R) be a real subspace such that L =

⊕
i L ∩ Vi(R). Then L is

Diophantine in V (R) (with exponent A > 0) if and only if each L ∩ Vi(R) is Diophantine in
Vi(R) (with same exponent A).

Proof. This is easily verified since for some choice of norm on V (R), ‖v−l‖ = max{‖vi−li‖}. 2

It is worthwhile to stress that the argument above shows that if A = As is the exponent
making Ls,s Diophantine in Fs,s (see Definition 3.10), then Lk,s is again Diophantine with the
same exponent as a subspace of Fk,s, for all k > s. Here is an immediate consequence of this and
of the proof of Proposition 3.2.

Proposition 5.9. Let G be a Diophantine s-step nilpotent Lie group. Then for every β > s
there is k0 > 1 such that G is β-Diophantine for k-tuples for each k > k0.

Proof. Let Ak be the Diophantine exponent of Lk,s(g) in Fk,s, and τk the growth exponent of
Fk,G (see § 2.2 for notation). By Remark 3.13, the group G is β-Diophantine for k-tuples if
β > s+ sAk/τk. We just observed that, for any k > s, we have Ak 6 As; as the growth exponent
τk goes to +∞ as k → +∞, the result follows. 2

Finally in the opposite direction, using a simple pigeonhole argument, we show that β cannot
be too small.

Proposition 5.10. Let G be an s-step nilpotent Lie group with Lie algebra g. Let ds be the
dimension of the last step g(s). For every ε > 0 there is k0 > 1 such that if, for some k > k0, G
is β-Diophantine for k-tuples, then β > 1/ds − ε.

Proof. Let ei be the rank of the ith successive quotient in the central descending series of
Fk,G. Then, since Fk,G is a lattice in Fk,s/Lk,s(g)Q (see Proposition 3.9), ei is the dimension

of F [i]
k,s/L

[i]
k,s(g)Q for each i = 1, . . . , s. However, L[i]

k,s(g)Q is an SLk-submodule of Fk,s for the
action by linear substitution of the variables; and by Corollary A.4 each irreducible SLk-module

appearing in F [i]
k has its dimension equal to a polynomial of degree i in k, when k > s. The

number of irreducible modules that may appear in F [i]
k is bounded in terms of i only, so each

ei is bounded above and below by a polynomial of degree i in the variable k. With some extra
work it can be shown that ei is a polynomial in k when k > s, but we will not need that.

Now the Bass–Guivarc’h formula (1) tells us that τk − ses is a linear combination of the ei,
i < s. Hence it is bounded above by a polynomial in k of degree at most s − 1. In particular
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limk→+∞ ses/τk = 1. Now there are roughly nses word maps in the word ball of Fk,G with radius

n that lie in F
[s]
k,G. For a given k-tuple the images of these word maps lie in G[s] and are at

(left-invariant Riemannian) distance O(n) from the origin. Hence they lie in a part of G[s] of
measure O(nsds), because their norm in Lie(G) is of order O(ns) (by the ball-box principle, e.g.
see [Bre14, Proposition 4.5]). By the pigeonhole principle, there must be a word of length 6 2n
lying at (Riemannian) distance � n−s(es/ds−1) from the origin. By letting k tend to +∞ the
result follows. 2

For a Diophantine s-step nilpotent Lie group G, we can set

βk := inf{β > 0;G is β-Diophantine for k-tuples}.

The above discussion shows that

1

ds
6 lim inf βk 6 lim supβk 6 s

where ds = dimG[s]. At first glance it may seem surprising that these bounds hold for every
Diophantine nilpotent group regardless of the Diophantine exponent Ak of Lk,s(g) in Fk,s.

It seems plausible that limk βk exists and is greater than 0 for every Diophantine nilpotent Lie
group. This can be verified in certain cases. For example, a Borel–Cantelli argument can be used
to prove that the critical exponent for the 3-dimensional Heisenberg group is βk := 1−1/k−2/k2.
In this case for any β < βk almost every k-tuple is not β-Diophantine. It would be interesting to
compute exactly the critical exponent say for all nilpotent Lie groups defined over Q. We plan
to address some of these issues in a subsequent paper.

5.3 Speed of equidistribution
In [Bre10] the second-named author proved that finitely generated dense subgroups of connected
nilpotent Lie groups are equidistributed. However, no rate of convergence was derived, in part
because of the use of ergodic theory through Ratner’s theorem in the proof. Of course no
good error term is to be expected for general dense subgroups. Indeed even when G = R, the
2-generated subgroup Z + λZ is equidistributed (Weyl) but no rate can be expected if say λ
is irrational and yet extremely well approximable by rationals. It seems likely, however, that
Diophantine dense subgroups are equidistributed with some (polynomial) rate (this is true for
R by a standard Fourier argument), and perhaps this is even true for random subgroups in any
nilpotent Lie group, Diophantine or not. This can be compared with the situation in SU(2),
where we expect (cf. Sarnak’s spectral gap conjecture) that every (as opposed to almost every)
k-tuple equidistribute with a good rate. In this case, in stark contrast with the nilpotent case,
we know by the work of the second-named author [Bre11, Corollary 1.11] that every k-tuple
satisfies a weak form of the Diophantine property.

5.4 Almost laws
In showing that there are non-Diophantine nilpotent and solvable Lie groups, we proved that
there are sequences of words wn on k-tuples which are not laws of G but behave like almost
laws in that, for every compact subset K of Gk, wn(K) → 1 very fast. We informally call such
words almost laws. If G is any algebraic group defined over Q, then picking a non-zero rational
point it is easy to see that an almost law cannot shrink every fixed compact set faster than
exponentially fast (in the length l(wn) of the word) for a general G, and faster than polynomially
fast if G is nilpotent. It may be of interest to observe that the well-known shrinking property
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of commutators near the identity in any Lie group G, implies that the sequence of iterated

commutators wn+1 = [wn, wn−1] shrink a fixed neighborhood of 1 at speed eC
√
l(wn). Note that

in [Tho13] a construction is given of a sequence of almost laws wn such that wn(Gk) → 1 for
every compact group G. We end with the following question, say for G = SU(2). Can one find a
sequence of words wn such that wn(Gk) ⊂ B(1, e−cl(wn)) for some c > 0 as l(wn) → +∞?
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Appendix A. The free Lie algebra viewed as an SLk-module

In this appendix we recall Witt’s formula for the dimension of the weight spaces of the free Lie
algebra on k generators. Then we use this formula to decompose the free nilpotent Lie algebra
on k generators and step s into irreducible SLk-modules for small values of k and s. We also
determine precisely for which values of k and s this decomposition is multiplicity-free. As we saw
in § 4, this is key to proving that nilpotent Lie groups in step at most 5 are Diophantine and to
build counter-examples in higher step.

A.1 Witt’s formula
Throughout the appendix, Fk denotes the free nilpotent Lie algebra on k generators over a

field K of characteristic zero (not necessarily R as in the rest of the paper). Let F [s]
k be the

subspace of elements of homogeneous degree s in Fk. The group SLk := SLk(K) acts naturally

on F [s]
k by linear substitution of the free variables. Let A be the diagonal subgroup of SLk. The

representation F [s]
k splits as a direct sum of weight spaces:

F [s]
k =

⊕
χ

V (χ)

where V (χ) is the weight space associated to χ ∈ A∗. The weights are multiplicative characters
on A. Given non-negative integers n1, . . . , nk, let `(n1, . . . , nk) be the dimension of the weight
space with weight

χ(n1,...,nk) : a 7→
∏
i

ani
i , (A1)

where a ∈ A is the diagonal matrix diag(a1, . . . , ak). We will often abbreviate χ(n1,...,nk) simply
by (n1, . . . , nk).

In 1937 Witt proved [Wit37, Satz 1] what is now known as the Poincaré–Birkhoff–Witt
Theorem about Lie algebras and their universal enveloping algebras. In his third theorem [Wit37,

Satz 3], he deduces from it two dimension formulas. The first gives the dimension of F [s]
k :

dimF [s]
k =

1

s

∑
d|s

µ(d)ks/d, (A2)
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where µ(d) is the Möbius function. By Möbius inversion, this formula is equivalent to∑
d|s

ddimF [d]
k = ks. (A3)

The second formula of Witt refines the first and gives the dimension of the homogeneous

components. It can be stated as follows.

Theorem A.1 (Witt’s character formula for the free Lie algebra). Let n1, . . . , nk be non-negative

integers. The dimension `(n1, . . . , nk) of the weight space with weight (n1, . . . , nk) for the SLk-

action on the subspace F [s]
k of commutators of order s in the free Lie algebra on k generators is

`(n1, . . . , nk) =
1

n

∑
d|gcd(n1,...,nk)

µ(d)
(nd )!

(n1
d )! · . . . · (nk

d )!
,

where n = n1 + · · ·+ nk.

In the above formula µ(d) is the Möbius function. By Möbius inversion, the formula is readily

seen to be equivalent to ∑
m|gcd(n1,...,nk)

1

m
`

(
n1

m
, . . . ,

nk
m

)
=

((
∑

i ni)− 1)!

n1! · . . . · nk!

for all choices of non-negative integers n1, . . . , nk.

For the reader’s convenience, we reproduce Witt’s proof below following Serre’s treatment of

Witt’s first dimension formula (A3). See [Ser06, ch. 4] and also Hall’s book [Hal76, ch. 11.2] for

a different proof.

Proof. Let A be the free associative K-algebra on k generators (i.e. formal linear combinations

of non-commutative monomials in k letters). Let a(n1, . . . , nk) be the dimension of the subspace

of A generated by non-commutative monomials with the letter Xi occurring ni times.

By [Ser06, Theorem 4.2.1], the algebra A is isomorphic to the universal enveloping algebra

of the free Lie algebra. Pick a basis {Cj}j of the free Lie algebra on k generators X1, . . . , Xk

made of commutators Cj . By the Poincaré–Birkhoff–Witt Theorem, A has a basis consisting of

monomials of the form

Ce := C
ei1
i1
· . . . · Ceikik with i1 < i2 < · · · < ik.

We have deg(Ce) =
∑

j eijdij and degXi
(Ce) =

∑
j eijdCij

(Xi), where dCj (Xi) is the number of

occurrences of the letter Xi in the commutator Cj .

Formula (A3) will follow by counting a(n1, . . . , nk) in two ways. On the one hand it is clear

that

a(n1, . . . , nk) =
(
∑

i ni)!

n1! . . . nk!
.

On the other hand a(n1, . . . , nk) is also the number of families {ej} such that

ni =
∑
j

ejdCj (Xi)
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for each i = 1, . . . , k. Therefore a(n1, . . . , nk) is the coefficient of tn1
1 · . . . · t

nk
k in the formal power

series∏
j

(1 + t
dCj

(X1)

1 · . . . · t
dCj

(Xk)

k + t
2dCj

(X1)

1 · . . . · t
2dCj

(Xk)

k + · · ·+ t
mdCj

(X1)

1 · . . . · t
mdCj

(Xk)

k + . . .)

which is the same as ∏
j

1

1− t
dCj

(X1)

1 · . . . · t
dCj

(Xk)

k

.

Therefore we have the following identity:∏
j

1

1− t
dCj

(X1)

1 · . . . · t
dCj

(Xk)

k

=
∑

n1,...,nk

(
∑

i ni)!

n1! . . . nk!
tn1 · . . . · tnk

k =
1

1− (t1 + · · ·+ tk)
.

Using log 1/(1− u) =
∑

m (1/m)um, and taking logs we get∑
n1,...,nk,m

`(n1, . . . , nk)
1

m
(tn1

1 · . . . · t
nk
k )m =

∑
m

1

m
(t1 + · · ·+ tk)

m.

Identifying the coefficients of each term we finally obtain the desired formula:∑
m|gcd(n1,...,nk)

1

m
`

(
n1

m
, . . . ,

nk
m

)
=

((
∑

i ni)− 1)!

n1! · . . . · nk!
,

which, applying Möbius inversion, yields

`(n1, . . . , nk) =
∑

d|gcd(n1,...,nk)

µ(d)

d

((
∑

i ni/d)− 1)!

(n1/d)! · . . . · (nk/d)!
=

1

n

∑
d|gcd(n1,...,nk)

µ(d)
(n/d)!

(n1/d)! · . . . · (nk/d)!
.

2

A.2 Multiplicity-free theorem

Armed with Theorem A.1 we are now able to determine the decomposition of F [s]
k into simple

SLk-modules. For small values of k and s we can give a complete description of the irreducible
submodules, and for all values of k and s we determine when it is multiplicity-free.

Theorem A.2 (Multiplicity-free). Let F [s]
k be the subspace spanned by commutators of order s

in the free Lie algebra on k generators. Then F [s]
k is a multiplicity-free SLk-module if and only

if s 6 5 when k > 3, and if and only if s 6 6 when k = 2.

Recall that irreducible representations of SLk are parametrized by their highest weight.
If n1 > · · · > nk > 0 are non-negative integers, we denote by E(n1,...,nk) the irreducible
representation of SLk with highest weight (n1, . . . , nk). If ni+1 = ni+2 = · · · = nk = 0, we will
write E(n1,...,ni) for E(n1,...,ni,0,...,0).

We also recall Weyl’s dimension formula for E(n1,...,nk), [FH91, Theorem 6.3]

dimE(n1,...,nk) =
∏

16i<j6k

ni − nj + j − i
j − i

. (A4)

From this formula we derive the following.
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Lemma A.3. Given k > s > 1 and n1 > · · · > ns non-negative integers such that s = n1+· · ·+ns,
the dimension of the irreducible SLk-module E(n1,...,nk) is the value at k of a polynomial of degree
s and coefficients in Q.

Proof. Split the product in s factors Fi :=
∏k
j=i+1 (ni − nj + j − i)/(j − i) for i = 1, . . . , s. Each

such Fi is in fact the product of a rational number independent of k (the product of the factors
arising when i+ 1 < j 6 s and the denominators of the fraction when j = s+ 1, . . . , s+ni) with
(k + 1) · . . . · (k + ni). So each Fi is a polynomial of degree ni in k with coefficients in Q. The
claim follows. 2

Since the only weights (n1, . . . , nk) that can occur in F [s]
k,s are such that n1 + · · · + nk = s,

we obtain the following.

Corollary A.4. If k > s, the dimension of every irreducible SLk-module occurring in F [s]
k,s is a

polynomial of degree s in k.

If V is a finite-dimensional SLk-module and (n1, . . . , nk) is its highest weight, then the
irreducible SLk-module E(n1,...,nk) with highest weight (n1, . . . , nk) occurs as a submodule of
V . Since the dimensions of the weight spaces of each irreducible SLk-module are known, or at
least can be computed, we have a procedure to decompose the original module V into a direct
sum of irreducible submodules.

The dimension of the weight space of weight (u1, . . . , uk) in the irreducible representation
with highest weight (n1, . . . , nk) can be determined by counting Young tableaux. Recall that
to each irreducible SLk-module E(n1,...,nk), n1 > · · · > nk > 0, is associated the Young diagram
λ := (n1, . . . , nk), with ni boxes in the ith row. A semi-standard tableau of shape λ is a filling
of the Young diagram λ with positive integers (one in each box) in such a way that the rows are
non-decreasing and the columns strictly increasing.

We have the following (see e.g. Fulton and Harris [FH91, p. 224]).

Theorem A.5. Given a Young diagram λ := (n1, . . . , nk), the dimension of the weight space of
weight (u1, . . . , uk) in Eλ is the number of semi-standard tableaux of shape λ filled with integers
i ∈ {1, . . . , k} such that each i occurs ui times.

We now turn to the proof of Theorem A.2 and start by analyzing the case when s > 7.

Lemma A.6. If s > 7 and k > 2, then F [s]
k is not multiplicity-free.

Proof. If a weight χ(n1,...,nk) occurs non-trivially in F [s]
k , then

∑
ni = s. Using Theorem A.1, we

compute easily `(s, 0, . . . , 0) = 0 and `(s − 1, 1, 0, . . . , 0) = 1. It follows that the highest weight

occurring in F [s]
k is (s− 1, 1, 0, . . . , 0) and it occurs with multiplicity one.

Again using Theorem A.1 one computes `(s−2, 2, 0, . . . , 0). If s is odd, then this is (s− 1)/2,
and if s is even, then it is s/2− 1. As s > 7, this is at least 3. However, counting the number of
associated Young diagrams, one sees that the dimension of the weight space (s − 2, 2, 0, . . . , 0)
in both E(s−1,1) and E(s−2,2) is 1. Therefore, it must be that E(s−2,2) occurs with multiplicity at

least 2 in F [s]
k . 2

The rest of this subsection is devoted to the study of the cases s = 2 to s = 6. In each case,

we can work out the decomposition of F [s]
k into irreducible modules using Theorem A.1. We

discovered a posteriori that this decomposition had been computed already by R. Thrall in 1942
for each s up to s = 10, see [Thr42, pp. 387, 388].
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Case s = 2. Here F [2]
k is always irreducible and coincides with E(1,1). Indeed the highest weight

of F [2]
k is (1, 1, 0, . . . , 0) and comparing dimensions, we conclude that only E(1,1) occurs as a

submodule of F [2]
k .

Case s = 3. In this case
∑

i ni = 3, we see that the only possible values for the ni are (1, 1, 1, 0,
. . . , 0) and (2, 1, 0, . . . , 0) and arbitrary permutations of such. Using Theorem A.1 we compute

`(1, 1, 1, 0, . . . , 0) = 2 and `(2, 1, 0 . . . , 0) = 1. Since the highest weight of F [3]
k is (2, 1, 0, . . . , 0),

this implies that the irreducible representation E(2,1) with highest weight (2, 1, 0, . . . , 0) occurs
as a sub-representation. However, by Weyl’s dimension formula (A4) we have

dimE(2,1) =
(k − 1)k(k + 1)

3
=

1

3
(k3 − k).

Since this coincides with dimF [3]
k by Witt’s first formula (A3), we conclude that F [3]

k is the
irreducible SLk module,

F [3]
k = E(2,1).

Case s = 4. Since
∑

i ni = 4, we see that the only possible values for the ni are (1, 1, 1, 1, 0 . . . , 0)
and (2, 1, 1, 0, . . . , 0), (2, 2, 0, . . . , 0) and (3, 1, 0, . . . , 0) arbitrary permutations of such. Using
Theorem A.1 we compute `(1, 1, 1, 1, 0, . . . , 0) = 6, `(2, 1, 1, 0 . . . , 0) = 3, `(2, 2, 0, . . . , 0) = 1, and
`(3, 1, 0, . . . , 0) = 1.

The highest weight of F [4]
k is (3, 1, 0, . . . , 0), so F [4]

k contains E(3,1). Now F [4]
k 	 E

(3,1) has

highest weight (2, 1, 1, 0, . . . , 0), so contains E(2,1,1). By the dimension formula,

dimE(3,1) = 1
8(k − 1)k(k + 1)(k + 2) = 3C4

k+2,

dimE(2,1,1) = 1
8(k − 2)(k − 1)k(k + 1).

Since they sum up to dimF [4]
k = 1/4(k4 − k2) we conclude that

F [4]
k = E(3,1) ⊕ E(2,1,1).

If k = 2, then the second term is zero, and F [4]
2 is irreducible. However, if k > 3, then both

terms are non-zero and non-isomorphic, so F [4]
k is not irreducible and its irreducible submodules

have multiplicity 1.
In fact E(2,1,1) is isomorphic to Λ2(Λ2(Kk)), which is the space of metabelian brackets, i.e.

generated by the brackets [[Xi, Xj ], [Xk, Xl]]. Those with distinct letters contribute for half of
the weight space with weight type (1, 1, 1, 1, 0, . . . , 0).

Case s = 5. Since
∑

i ni = 5, the only possible values for the ni are (4, 1, 0, . . . , 0), (3, 2, 0, . . . , 0),
(3, 1, 1, 0, . . . , 0), (2, 2, 1, 0, . . . , 0), (2, 1, 1, 1, 0, . . . , 0) and (1, 1, 1, 1, 1, 0 . . . , 0) and arbitrary
permutations of such. Using Theorem A.1 we obtain `(4, 1) = 1, `(3, 2) = 2, `(3, 1, 1) = 4,
`(2, 2, 1) = 6, `(2, 1, 1, 1) = 12 and `(1, 1, 1, 1, 1) = 24.

In order to decompose F [5]
k into irreducibles, we first determine the dimensions of the weight

spaces of the irreducible representations of SLk whose highest weight are in each of the above
six families of weights. This is done by counting Young diagrams (or by using the sage command
symmetrica.kostka tafel(5)) and we obtain Table A.1.
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Table A.1. Dimensions of weight spaces of positive weight in the irreducible representations
of SLk of norm 5.

Module

Weight E(4,1) E(3,2) E(3,1,1) E(2,2,1) E(2,1,1,1) E(1,1,1,1,1)

A = (4, 1) 1
B = (3, 2) 1 1
C = (3, 1, 1) 2 1 1
D = (2, 2, 1) 2 2 1 1
E = (2, 1, 1, 1) 3 3 3 2 1
F = (1, 1, 1, 1, 1) 4 5 6 5 4 1

Comparing this data with the values for ` written above, we conclude that F [5]
k is the direct

sum of one copy of each one of the above six irreducible modules, except E(1,1,1,1,1):

F [5]
k = E(4,1) ⊕ E(3,2) ⊕ E(3,1,1) ⊕ E(2,2,1) ⊕ E(2,1,1,1).

If k > 4, then all 5 irreducible submodules are non-zero and pairwise non-isomorphic.
If k = 3, the last module is zero but the others are pairwise non-isomorphic:

F [5]
3 = E(4,1) ⊕ E(3,2) ⊕ E(3,1,1) ⊕ E(2,2,1).

If k = 2, then the last three modules are zero and we get

F [5]
2 = E(4,1) ⊕ E(3,2).

We conclude that the following holds.

Lemma A.7. In step s = 5 the SLk-module F [5]
k is multiplicity-free for all k > 2.

Case s = 6. Since
∑

i ni = 6, we see that the only possible values for the ni are A := (5, 1, 0, . . . , 0),
B := (4, 2, 0, . . . , 0), C := (4, 1, 1, 0, . . . , 0), D := (3, 3, 0, . . . , 0), E := (3, 2, 1, 0, . . . , 0), F := (3,
1, 1, 1, 0, . . . , 0), G := (2, 2, 2, 0, . . . , 0), H := (2, 2, 1, 1, 0, . . . , 0), I := (2, 1, 1, 1, 1, 0, . . . , 0), and
J := (1, 1, 1, 1, 1, 1, 0 . . . , 0) and arbitrary permutations of such. We can then compute values of
` by Theorem A.1 and obtain the following: `(A) = 1, `(B) = 2, `(C) := 5, `(D) = 3, `(E) = 10,
`(F ) = 20, `(G) = 14, `(H) = 30, `(I) = 60, `(J) = 120.

In order to decompose F [6]
k into irreducibles, we first determine the dimensions of the weight

spaces of the irreducible representations of SLk whose highest weight are in each of the above
ten families of weights A to J . This is done by counting Young diagrams exactly as we did in
the step 5 case. Doing this counting (or using the sage command symmetrica.kostka tafel(6))
we obtain the numbers given in Table A.2.

Comparing this data with the values for ` written above, we conclude that F [6]
k is the direct

sum of the following irreducible modules:

F [6]
k = E(5,1) ⊕ E(4,2) ⊕ (E(4,1,1))2 ⊕ E(3,3) ⊕ (E(3,2,1))3 ⊕ E(3,1,1,1) ⊕ (E(2,2,1,1))2 ⊕ E(2,1,1,1,1).

Note that EG and EJ do not occur as a submodule. If k > 5, then all terms are non-zero.
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Table A.2. Dimensions of weight spaces of positive weight in the irreducible representations
of SLk labeled EA to EJ .

Module

Weight EA EB EC ED EE EF EG EH EI EJ

A = (5, 1) 1
B = (4, 2) 1 1
C = (4, 1, 1) 2 1 1
D = (3, 3) 1 1 0 1
E = (3, 2, 1) 2 2 1 1 1
F = (3, 1, 1, 1) 3 3 3 1 2 1
G = (2, 2, 2) 2 3 1 1 2 0 1
H = (2, 2, 1, 1) 3 4 3 2 4 1 1 1
I = (2, 1, 1, 1, 1) 4 6 6 3 8 4 2 3 1
J = (1, 1, 1, 1, 1, 1) 5 9 10 5 16 10 5 9 5 1

Note that the submodules corresponding to weights involving more than k variables do not
occur. Taking this remark into account we find the following.

If k = 4,

F [6]
4 = E(5,1) ⊕ E(4,2) ⊕ (E(4,1,1))2 ⊕ E(3,3) ⊕ (E(3,2,1))3 ⊕ E(3,1,1,1) ⊕ (E(2,2,1,1))2.

If k = 3,

F [6]
3 = E(5,1) ⊕ E(4,2) ⊕ (E(4,1,1))2 ⊕ E(3,3) ⊕ (E(3,2,1))3.

If k = 2,

F [6]
2 = E(5,1) ⊕ E(4,2) ⊕ E(3,3).

We may then conclude that the following holds.

Lemma A.8. In step s = 6, when k > 3, then some irreducible SLk-submodule of F [6]
k appears

with multiplicity > 2. If k = 2, then F [6]
2 is multiplicity-free.

This completes the proof of Theorem A.2.

A.3 The free metabelian Lie algebra
In order to prove Theorems 4.5 and 4.7, we need to describe the submodule structure of the free
metabelian Lie algebra, i.e. the quotient Fk/Mk, where Mk := D2(Fk) is the second term of
the derived series of Fk.

Lemma A.9. Let M[s]
k be the homogeneous component of degree s > 2 of Mk. Then

F [s]
k /M

[s]
k ' E

(s−1,1).

Moreover, E(s−1,1) does not occur in the decomposition of M[s]
k into irreducible submodules.

Proof. From the set {x1 < · · · < xk}, construct a Hall family P for the free Lie algebra Fk (see
Serre [Ser06, Part I, ch. IV, § 5] for definitions). Denote by Ps the elements of P of homogeneous
degree s, and

P ′s = {[xi1 , [xi2 , . . . [xis−1 , xis ] . . .]] : i1 > i2 > · · · > is−1; is > is−1}.
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All other elements of Ps belong to Mk. Hence these elements span F [s]
k modulo M[s]

k . In fact

they form a basis of F [s]
k /M

[s]
k . Indeed, the SLk-module F [s]

k has highest weight (s − 1, 1) with

highest weight vector [x1, [x1, [. . . , [x1, x2] . . .] ∈ P ′s. So and so F [s]
k /M

[s]
k contains E(s−1,1) as an

irreducible submodule. However, one verifies that the cardinality of P ′s is precisely the number
of Young tableaux of shape (s− 1, 1). Hence it is the dimension of E(s−1,1). This proves the first
part of the lemma. Finally we already observed in the proof of Lemma A.6 that E(s−1,1) has

multiplicity one in F [s]
k . 2

Corollary A.10. The free metabelian Lie algebra on k generators Fk/Mk is multiplicity-free
as an SLk-module.

A.4 Klyachko’s theorem and the Kraskiewicz–Weyman formula
In 1973, Klyachko determined exactly which irreducible modules appear in the homogeneous

component F [s]
k of degree s of the free Lie algebra over k generators Fk,s.

Theorem A.11 (Klyachko’s theorem [Klj74]). Let k > 2, s > 1. The irreducible SLk-module

Eλ associated to the Young diagram λ appears as a submodule of F [s]
k if and only if λ has s

boxes, at most k rows and is not one of the following diagrams: a diagram with just one column
λ = (1, . . . , 1), or just one row λ = (s, 0, . . . , 0), or the two diagrams λ = (2, 2) and λ = (2, 2, 2).

We refer the reader to [Reu93] and [KS06] for two different proofs of Klyachko’s theorem.
This beautiful result falls short of providing a description of the multiplicities of irreducible

SLk-submodules of F [s]
k . Theorem A.12 below does just that.

Recall that if λ = (λ1, . . . , λr) is a Young diagram with total number of boxes s, a standard
tableau of shape λ is a filling of λ with {1, . . . , s} having increasing rows and increasing columns.
For a standard tableau T of shape λ, with total number of boxes s, a descent is an index i in {0,
. . . , s−1} such that i+1 is located in a lower row than i in T . We denote by D(T ) ⊂ {1, . . . , s−1}
the set of descents of T and define the major index of T as

maj(T ) =
∑

i∈D(T )

i.

The following theorem is due to Kraskiewicz and Weyman [KW01] (see also [Reu93, Corollary
8.10]).

Theorem A.12 (Kraskiewicz–Weyman formula). Let k > 2, s> 1. The multiplicity of the Young

diagram λ in the decomposition of F [s]
k into irreducible SLk-submodules is equal to the number

of standard tableaux of shape λ with major index congruent to i mod s, where i is any fixed
integer coprime to s. In particular, this number does not depend on the choice of i.

Although it is not obvious, one can recover Theorem A.11 from Theorem A.12, see [Joh07].
Theorem A.12 allows us to show the following result about multiplicity of a specific Young

diagram in the SLk-module F [s]
k . This is needed in the proof of Theorem 5.6 only.

Corollary A.13. For s > 6, k > s− 2, the Young diagram (2, 2, 1, . . . , 1) with a total number

of s boxes occurs with multiplicity in F [s]
k .

Proof. For T a standard tableau with s boxes we denote by T ∗ its conjugate, namely the new
tableau whose ith column is the ith row of T . Note that T∗ is also standard and that the set of
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descents of T ∗ is just the complement in {1, . . . , s− 1} of the set of descents of T . So we have

maj(T ) =
s(s− 1)

2
−maj(T ∗). (A5)

If s is odd, applying the Kraskiewicz–Weyman formula with i = 1, we see that it suffices to find
two different standard tableaux of shape (s−2, 2) with major index congruent to s(s− 1)/2−1 =
−1 mod s. The major index of a standard tableau T of shape (s − 2, 2) is equal to x + y − 2,
where x and y are the entries of the lower row of T . Taking the two standard tableaux with
respective lower rows (2, s− 1) and (3, s− 2), we get what we want.

If s = 2t is even, then (A5) and the Kraskiewicz–Weyman formula with i = −1 show
that we just have to find two different standard tableaux of shape (s − 2, 2) with major index
congruent to t+ 1 mod s. For that, we take the two standard tableaux with lower rows (2, t+ 1)
or (3, t). 2

Remark A.14. Note that when s is not congruent to 2 modulo 4, both 1 and s(s− 1)/2 − 1

are prime to s, so that, by (A5), the multiplicity of a Young diagram λ is F [s]
k is equal to the

multiplicity of the transpose diagram λ∗.
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