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Motivated by microfluidic applications, we investigate drag reduction in laminar pressure-
driven flows in channels with streamwise-periodic superhydrophobic surfaces (SHSs)
contaminated with soluble surfactant. We develop a model in the long-wave and weak-
diffusion limit, where the streamwise SHS period is large compared with the channel
height and the Péclet number is large. Using asymptotic and numerical techniques, we
determine the influence of surfactant on drag reduction in terms of the relative strength
of advection, diffusion, Marangoni effects and bulk–surface exchange. In scenarios with
strong exchange, the drag reduction exhibits a complex dependence on the thickness of
the bulk-concentration boundary layer and surfactant strength. Strong Marangoni effects
immobilise the interface through a linear surfactant distribution, whereas weak Marangoni
effects yield a quasi-stagnant cap. The quasi-stagnant cap has an intricate structure with
an upstream slip region, followed by intermediate inner regions and a quasi-stagnant
region that is mediated by weak bulk diffusion. The quasi-stagnant region differs from the
immobile region of a classical stagnant cap, observed for instance in surfactant-laden air
bubbles in water, by displaying weak slip. As exchange weakens, the bulk and interface
decouple: the surfactant distribution is linear when the surfactant is strong, whilst it forms
a classical stagnant cap when the surfactant is weak. The asymptotic solutions offer
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closed-form predictions of drag reduction across much of the parameter space, providing
practical utility and enhancing understanding of surfactant dynamics in flows over SHSs.

Key words: Marangoni convection, drag reduction, microfluidics

1. Introduction
Superhydrophobic surfaces (SHSs) offer a promising avenue for decreasing drag in
laminar and turbulent flows (Lee et al. 2016; Park et al. 2021). Hydrophobic chemistry
and microscopic topography on the SHSs entrap gas bubbles that lubricate the flow and
decrease the wall-average shear stress compared with solid walls. This design presents
numerous opportunities for industrial and environmental applications, including enhanced
cooling (Lam et al. 2015) and reduced emissions (Xu et al. 2020). Consequently, SHSs
have attracted significant attention in the academic literature (Park et al. 2014; Schönecker
et al. 2014; Türk et al. 2014; Cheng et al. 2015; Seo & Mani 2018; Rastegari &
Akhavan 2019; Kirk et al. 2020; Landel et al. 2020; Tomlinson et al. 2023b). However,
recent investigations have highlighted potential challenges. Interfacial displacement and
deflection (Ng & Wang 2009; Teo & Khoo 2010), gas-phase flow dynamics (Game et al.
2017) and heat- and surfactant-induced Marangoni stresses (Peaudecerf et al. 2017; Kirk
et al. 2020) have been shown to impede the anticipated drag reduction. Consequently, in
certain applications, SHSs may not outperform solid walls. Motivated by these questions,
this study investigates drag reduction in a surfactant-contaminated flow confined between
a SHS and a solid wall. Specifically, we focus on the computationally challenging regime
of weak bulk molecular diffusion, a regime which has remained largely unexplored in prior
literature.

Surfactants have been measured in both artificial (Hourlier-Fargette et al. 2018;
Temprano-Coleto et al. 2023) and natural (Pereira et al. 2018; Frossard et al. 2019)
environments. When a liquid flow becomes contaminated with soluble surfactant, these
chemical compounds are transported throughout the flow, adsorbing onto interfaces and
desorbing into the bulk. The surfactant distribution within the bulk is regulated by the
bulk Péclet number (Pe), forming concentration boundary layers when Pe is large. As
the flow carries surfactant towards the downstream stagnation point of an interface, it
accumulates, forming a concentration gradient. Depending on factors such as the flow
properties, surfactant characteristics and geometry, the resulting adverse Marangoni force
can cause the theoretically shear-free interface to behave like a no-slip (or partially no-
slip) wall (Peaudecerf et al. 2017). Experimental support for this mechanism can be found
in studies by Kim & Hidrovo (2012), Bolognesi et al. (2014), Schäffel et al. (2016),
Peaudecerf et al. (2017), Song et al. (2018) and Temprano-Coleto et al. (2023).

Peaudecerf et al. (2017) and Landel et al. (2020) conducted numerical simulations of a
two-dimensional (2-D) channel flow featuring streamwise-periodic SHSs using COMSOL,
employing surfactant properties that are characteristic of sodium dodecylsulphate (SDS).
Temprano-Coleto et al. (2023) extended this methodology to encompass a three-
dimensional channel flow featuring streamwise- and spanwise-periodic SHSs, while
Sundin & Bagheri (2022) investigated 2-D channel flow laden with surfactants over
streamwise-periodic liquid-infused surfaces. In all of these configurations, numerical
simulations of the Navier–Stokes equations and advection–diffusion equations for bulk
and interfacial surfactant incurred substantial computational costs, particularly in the
high-Péclet-number regime, where bulk-concentration boundary layers can be extremely
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thin. To address these challenges of high Péclet number values, we develop a numerical
method based on Chebyshev collocation. This numerical method clusters nodes around
the bulk-concentration boundary layers, reducing computational demand compared with
numerical simulations. We complement numerical simulations with asymptotic analysis
that reveals the underlying flow structures and offers direct predictions of flow properties.

The distinction between strictly insoluble and very weakly soluble surfactant can be
subtle. In the former case, there is no exchange between bulk and interface and the amount
of surfactant present on a SHS plastron must be prescribed as an input parameter. In the
latter case, adsorption and desorption processes control bulk and interface exchange and
the amount of surfactant present on a SHS plastron is determined by coupled transport
processes on the interface and in the bulk. In many practical applications, diffusive
effects are weak, and might not be expected to influence the manner in which surfactant
compromises drag reduction. However, the surfactant flux between bulk and interface is
mediated by bulk diffusion, enabling it to play a central role in determining drag reduction,
even at very high Péclet numbers. In such circumstances, weak bulk diffusion can be
the cause of weak apparent solubility, even when adsorption and desorption processes
are very fast. Furthermore, while bulk diffusion cannot be neglected, interfacial diffusion
can be, but then adsorption and desorption must be accommodated by weak stretching or
compression of the interface. Taking these factors together, we will see how structures such
as the classical stagnant cap, of some prescribed size when surfactant is strictly insoluble,
must be replaced by a more mobile structure that we term a quasi-stagnant cap.

Scaling theories have been developed to analyse the slip length over SHSs and
liquid-infused surfaces with streamwise-periodic gratings (Landel et al. 2020; Sundin &
Bagheri 2022) and SHSs with streamwise- and spanwise-periodic gratings (Temprano-
Coleto et al. 2023). These theories typically assume small surfactant concentrations
and uniform shear stresses at the interface. For common surfactants such as SDS,
Temprano-Coleto et al. (2023) demonstrated a significant slip length when the grating
length exceeds a modified depletion length and a mobilisation length. The modified
depletion length depends on the depletion length (Manikantan & Squires 2020), the
height of the channel and the ratio of interfacial and bulk diffusivities. It characterises
the interfacial length above which interfacial diffusion is weak compared to bulk–interface
exchanges. The mobilisation length depends on the surfactant concentration and surfactant
properties through the Marangoni, Damköhler and Biot numbers, and the SHS geometry
(Temprano-Coleto et al. 2023). The mobilisation length being generally larger than the
modified depletion length, it is the key length scale above which an interface can display
significant slip. Landel et al. (2020), Temprano-Coleto et al. (2023) and Sundin & Bagheri
(2022) used numerical simulations to calibrate the empirical coefficients linked to the
bulk-concentration boundary-layer thickness. Unlike these prior studies, our asymptotic
approach to the problem bypasses the need for empirical coefficient fitting, extending the
slip-length scalings identified in previous studies (Landel et al. 2020; Temprano-Coleto
et al. 2023) and uncovering new drag reduction regimes for surfactant-contaminated SHSs.

Tomlinson et al. (2023a) developed an asymptotic theory for laminar channel flow
featuring streamwise- and spanwise-periodic grooves and then investigated the impact of
spatio–temporal fluctuations in surfactant concentration over the SHS (Tomlinson et al.
2024). Their theory assumed that the channel is long and bulk diffusion is strong enough to
eliminate cross-channel concentration gradients. They derived a spatiallyone-dimensional
(1-D) long-wave model that accommodated non-uniform shear stresses at the interface
and enabled an analysis of the soluble stagnant-cap regime at low bulk Péclet numbers.
The numerical simulations performed at moderate bulk Péclet number by Sundin &
Bagheri (2022) show adsorption at the upstream end of the stagnant cap, but they did
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not offer a scaling theory for this regime. Similar stagnant-cap scenarios, where there is
no adsorption at the upstream end of the interface, were studied by Baier & Hardt (2021)
and Mayer & Crowdy (2022) in the context of insoluble surfactant, with a linear and
nonlinear equation of state, respectively. These studies were extended to include protrusion
at the liquid–gas interface: Baier & Hardt (2022) found recirculating interfacial flows
for weak protrusions, which Rodriguez-Broadbent & Crowdy (2023) extended to larger
protrusions, deriving an effective slip length. Crowdy et al. (2023) investigated a linear
extensional flow between two fluids. Assuming that Pe is zero, they showed that solubility
and strong exchange with the bulk can reduce the length of the stagnant cap and make
the interface less immobile. We show how ‘remobilisation’ due to strong bulk–surface
exchange can also arise when Pe is large, revealing the coupling between the bulk-
concentration boundary layer and the underlying interface, which is particularly intricate
when Marangoni effects are weak.

Tomlinson et al. (2023a) delineated three key asymptotic regions of parameter space:
one dominated by Marangoni effects, with minimal drag reduction; and others dominated
by advection and diffusion, with significant drag reduction. They also identified when their
1-D long-wave model first breaks down due to 2-D effects. In this paper, we employ a
combination of asymptotic and numerical methods to investigate the impact of soluble
surfactant on a laminar pressure-driven channel flow confined between a streamwise-
periodic SHS and a solid wall. We assume that the period of the SHS is significantly
longer than the height of the channel and that the bulk and surface Péclet numbers are
large. To address the numerical challenges of these high-Péclet-number flows, we develop
asymptotic solutions for weak diffusion, which may offer insights into a broader range of
surfactant-contaminated flows than flows over SHSs. For example, numerical simulations
of flows involving soluble-surfactant-contaminated drops and bubbles exhibit velocity and
surfactant distributions reminiscent of stagnant caps at large but finite Pe (Oguz & Sadhal
1988; Tasoglu et al. 2008). However, the structure of these stagnant caps has only been
described in the insoluble limit (Harper 2004; Palaparthi et al. 2006).

Additionally, we construct asymptotic expressions for practical quantities such as the
slip length and drag reduction. These asymptotic expressions not only aid in understanding
the physics of surfactant-contaminated flows over SHSs but also facilitate the prediction
of the slip length and drag reduction in experiments.

In § 2, we formulate the 2-D problem. We non-dimensionalise the fluid and surfactant
equations in the long-wave limit and derive 1-D and 2-D long-wave models for bulk and
interfacial surfactant behaviour. The calculations underpinning drag reduction predictions
are laid out in appendices. In § 3, we present our main asymptotic and numerical findings.
We analyse the drag reduction and compare the predicted flow and surfactant fields with
results obtained from COMSOL simulations and experiments. In § 4, we illustrate the uses
of our study and discuss the key asymptotic results that may be generalisable to broader
surfactant-contaminated flows.

2. Formulation

2.1. Governing equations of the 2-D model
We explore a steady 2-D laminar pressure-driven channel flow contaminated with soluble
surfactant, confined between a streamwise-periodic SHS and a solid wall (see figure 1).
The streamwise and wall-normal directions are represented by x̂ and ŷ coordinates
respectively, where hats indicate dimensional quantities. Assuming the fluid to be
incompressible and Newtonian, we define the velocity field û = (û(x̂, ŷ), v̂(x̂, ŷ)),
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Figure 1. A 2-D laminar pressure-driven channel flow transporting soluble surfactant confined between a
streamwise-periodic SHS and a solid wall. We position the origin of the Cartesian coordinate system, (x̂, ŷ), at
the centre of the liquid–gas interface. Each periodic cell has channel height 2Ĥ and period length 2P̂ . The SHS,
characterised by gas fraction φ, has an interface region of length 2φ P̂ and a solid region of length 2(1 − φ)P̂;
the area above these regions defines subdomains D̂1 and D̂2, respectively, as specified in (2.1).

pressure field p̂ = p̂(x̂, ŷ), bulk surfactant concentration ĉ = ĉ(x̂, ŷ) and interfacial
surfactant concentration Γ̂ = Γ̂ (x̂). Due to the periodicity of the SHS in the streamwise
direction, our analysis focuses on a single periodic cell with dimensions 2P̂ in length
and 2Ĥ in height. At ŷ = 0, there is a solid ridge of length 2(1 − φ)P̂ and a liquid–gas
interface, or plastron, of length 2φ P̂ , where φ is the gas fraction. The interface is assumed
to be flat. There is a solid boundary at ŷ = 2Ĥ . The periodic domain is partitioned into
two subdomains,

D̂1 = {x̂ ∈ [−φ P̂, φ P̂]} × {ŷ ∈ [0, 2Ĥ ]}, (2.1a)

D̂2 = {x̂ ∈ [φ P̂, (2 − φ)P̂]} × {ŷ ∈ [0, 2Ĥ ]}, (2.1b)

as illustrated in figure 1.
A comprehensive discussion of the equations governing fluid and surfactant behaviour

in a three-dimensional geometry featuring streamwise- and spanwise-periodic SHSs was
presented in Tomlinson et al. (2023a). Here, we provide a succinct overview of the model
for a streamwise-periodic SHS in two dimensions. Within domains D̂1 and D̂2, we have
Stokes equations with an advection–diffusion equation for bulk surfactant:

∇̂ · û = 0, μ̂∇̂2û − ∇̂ p̂ = 0, D̂∇̂2ĉ − û · ∇̂ĉ = 0, (2.2a–c)

where μ̂ is the dynamic viscosity and D̂ is the bulk diffusivity. Linearising the equation of
state, we assume σ̂x̂ = − ÂΓ̂x̂ , where σ̂ is the surface tension and Â is the surface activity.
For x̂ ∈ [−φ P̂, φ P̂] and ŷ = 0, we impose the tangential stress balance, no penetration,
linear adsorption–desorption kinetics and an advection–diffusion equation for interfacial
surfactant:

μ̂û ŷ − ÂΓ̂x̂ = 0, v̂ = 0, D̂ĉŷ − K̂aĉ + K̂d Γ̂ = 0,

D̂I Γ̂x̂ x̂ + K̂aĉ − K̂d Γ̂ − (ûΓ̂ )x̂ = 0, (2.3a–d)
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where D̂I is the interfacial diffusivity, K̂a is the adsorption rate and K̂d is the desorption
rate. At x̂ = ±φ P̂ and ŷ = 0, there is no interfacial flux of surfactant:

ûΓ̂ − D̂I Γ̂x̂ = 0. (2.4)

For x̂ ∈ [φ P̂, (2 − φ)P̂] and ŷ = 0, and likewise for x̂ ∈ [−φ P̂, (2 − φ)P̂] and ŷ = 2Ĥ ,
we impose no slip, no penetration and no bulk flux of surfactant:

û = 0, v̂ = 0, ĉŷ = 0. (2.5a–c)

For q̂ ≡ (û, p̂x̂ , ĉ), continuity and periodicity conditions on bulk quantities are given by

q̂((φ P̂)−, ŷ) = q̂((φ P̂)+, ŷ), q̂(−φ P̂, ŷ) = q̂((2 − φ)P̂, ŷ), (2.6)

where the superscript − (+) indicates evaluation in D̂1 (D̂2). The pressure field is
continuous across x = ±φ P̂ but is not periodic. Within D̂1, the bulk surfactant equations
and boundary conditions, (2.2c), (2.3c) and (2.5c), can be combined to give

d
dx̂

∫ 2Ĥ

0
(ûĉ − D̂ĉx̂ ) dŷ − (K̂d Γ̂ − K̂aĉ(x̂, 0)) = 0, (2.7)

which, combined with the interfacial surfactant equation (2.3d), leads to an expression for
the total flux of surfactant, K̂ , which must be uniform:∫ 2Ĥ

0
(ûĉ − D̂ĉx̂ ) dŷ + (û(x̂, 0)Γ̂ − D̂I Γ̂x̂ ) = K̂ . (2.8)

Integrating the interfacial surfactant equation (2.3d) over the plastron and utilising the
no-flux condition (2.4) yields a constraint on net adsorption and desorption:∫ φ P̂

−φ P̂
(K̂d Γ̂ − K̂aĉ(x̂, 0)) dx̂ = 0. (2.9)

Similarly, within D̂2, (2.3c) and (2.5c) can be combined to give∫ 2Ĥ

0
(ûĉ − D̂ĉx̂ ) dŷ = K̂ . (2.10)

From (2.2a), (2.3b) and (2.5b), it follows that the volume flux of fluid in D̂1 and D̂2, Q̂, is
also uniform, where

Q̂ =
∫ 2Ĥ

0
û dŷ. (2.11)

The fluxes Q̂ and K̂ are prescribed in this model.
The flow is driven in the streamwise direction by a cross-channel-averaged pressure

drop per period, � p̂ ≡ 〈 p̂〉(−φ P̂) − 〈 p̂〉((2 − φ)P̂) > 0, where 〈·〉 ≡ ∫ 2Ĥ
0 · dŷ/(2Ĥ). We

define the normalised drag reduction

DR = � p̂I − � p̂

� p̂I − � p̂U
, (2.12)

where � p̂ = � p̂I when the interface is immobilised due to surfactant (DR = 0) and � p̂ =
� p̂U when the interface is unaffected by surfactant (DR = 1). We aim to determine the
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dependence of DR on the dimensional parameters of the problem (φ, P̂ , Ĥ , μ̂, D̂, Â, D̂I ,
K̂a , K̂d , K̂ and Q̂) in the singular high-Péclet-number regime.

2.2. Non-dimensionalisation
We non-dimensionalise the governing equations (2.1)–(2.12) using Q̂/Ĥ for the velocity
scale, K̂/Q̂ for the bulk concentration scale and K̂a K̂/(K̂d Q̂) for the interfacial
concentration scale. We write

x = x̂

P̂
, y = ŷ

ε P̂
, u = û

Q̂/Ĥ
, v = v̂

ε Q̂/Ĥ
,

p = p̂

μ̂Q̂/(ε Ĥ2)
, c = ĉ

K̂/Q̂
, Γ = Γ̂

K̂a K̂/(K̂d Q̂)
, (2.13a–g)

where ε ≡ Ĥ/P̂ is the slenderness parameter. The subdomains (2.1) become

D1 = {x ∈ [−φ, φ]} × {y ∈ [0, 2]}, (2.14a)
D2 = {x ∈ [φ, 2 − φ]} × {y ∈ [0, 2]}. (2.14b)

In D1 and D2, the bulk equations (2.2) become

ux + vy = 0, ε2uxx + uyy − px = 0,

ε4vxx + ε2vyy − py = 0, (ε2cxx + cyy)/Pe − εucx − εvcy = 0, (2.15a–d)

with Pe = Q̂/D̂ the bulk Péclet number. For x ∈ [−φ, φ] and y = 0, the interface
conditions (2.3) give

uy − εMaΓx = 0, v = 0, cy − Da(c − Γ ) = 0,

ε2Γxx/PeI + Bi(c − Γ ) − ε(uΓ )x = 0, (2.16a–d)

with Ma = ÂK̂a K̂ Ĥ/(μ̂K̂d Q̂2) the Marangoni number, Da = K̂a Ĥ/D̂ the Damköhler
number, PeI = Q̂/D̂I the interfacial Péclet number and Bi = K̂d Ĥ2/Q̂ the Biot number.
At x = ±φ and y = 0, the no-flux condition (2.4) becomes

uΓ − εΓx/PeI = 0. (2.17)

For x ∈ [φ, 2 − φ] and y = 0 (and for x ∈ [−φ, 2 − φ] and y = 2), the solid boundary
conditions (2.5) give

u = 0, v = 0, cy = 0. (2.18a–d)

For q = (u, px , c), the matching conditions (2.6) become

q(φ−, y) = q(φ+, y), q(−φ, y) = q(2 − φ, y). (2.19a,b)

For x ∈ [−φ, 2 − φ], the surfactant-flux conditions (2.7)–(2.10) yield

d
dx

∫ 2

0

(
uc − εcx

Pe

)
dy − Da

εPe
(Γ − c(x, 0)) = 0 in D1, (2.20a)∫ 2

0

(
uc − εcx

Pe

)
dy + Da

BiPe

(
u(x, 0)Γ − εΓx

PeI

)
= 1 in D1, (2.20b)∫ φ

−φ

(Γ − c(x, 0)) dx = 0 in D1, (2.20c)
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0

(
uc − εcx

Pe

)
dy = 1 in D2, (2.20d)

and in D1 and D2, the volume-flux condition (2.11) gives∫ 2

0
u dy = 1. (2.21)

Finally, the drag reduction (2.12) becomes

DR = �pI − �p

�pI − �pU
, (2.22)

where �p ≡ 〈p〉(−φ) − 〈p〉(2 − φ) and 〈·〉 ≡ ∫ 2
0 · dy/2.

In the limit ε � 1, we proceed to solve the leading-order boundary-value problem
and flux constraints defined in (2.15)–(2.21) for u, v, p, c and Γ using asymptotic and
numerical methods. Subsequently, we evaluate the drag reduction (2.22) and investigate
its dependence on the seven dimensionless groups (ε, Pe, Ma, PeI , Bi, Da and φ)
that characterise the geometry, flow, liquid and surfactant. Moreover, full solutions of
(2.15)–(2.21) obtained as COMSOL simulations are presented in § 3.

2.3. The long-wave limit of the 2-D model at high Péclet numbers
We investigate distinguished limits of (2.15)–(2.21) to uncover different physical balances.
We assume that 1/Pe = O(ε), 1/PeI = O(ε), Bi = O(ε), Da = O(1) and Ma = O(1/ε)

as ε → 0, denoting this as the ‘2-D long-wave model’ in which streamwise and cross-
channel concentration gradients are comparable at leading order. We rescale 1/Pe = ε/P ,
1/PeI = ε/PI , Bi = εB and Ma = M /ε, assuming that P , PI , B and M remain O(1)

as ε → 0. We substitute the expansions

(u, v, p, c, Γ ) = (u0, v0, p0, c0, Γ0) + ε2(u1, v1, p1, c1, Γ1) + · · · (2.23)

into the governing equations (2.15)–(2.22) and take the leading-order approximation.
In D1 and D2, flow is driven by a streamwise pressure gradient, and wall-normal

diffusion is comparable to advection. The bulk equations (2.15) become

u0x + v0y = 0, u0yy − p0x = 0, p0y = 0, c0yy/P − u0c0x − v0c0y = 0.

(2.24a–d)

For x ∈ [−φ, φ] and y = 0, the interfacial flow is inhibited by the surfactant gradient and
exchange is comparable to advection. The interface conditions (2.16) yield

u0y − MΓ0x = 0, v0 = 0, c0y − Da(c0 − Γ0) = 0,

B(c0 − Γ0) − (u0Γ0)x = 0. (2.25a–d)

For x ∈ [φ, 2 − φ] and y = 0 (and for x ∈ [−φ, 2 − φ] and y = 2), the solid wall
boundary conditions (2.18) become

u0 = 0, v0 = 0, c0y = 0. (2.26a–c)

Short 2-D Stokes-flow regions arise at the junctions between D1 and D2. In the present
long-wave theory, in which surface diffusion appears at the next order, we impose the
no-flux condition (2.17) at x = ±φ and y = 0:

u0Γ0 = 0. (2.27)

Continuity of bulk concentration (2.19) between D1 and D2 requires

c0(φ
−, y) = c0(φ

+, y), c0(−φ, y) = c0(2 − φ, y). (2.28a,b)
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In § 3, comparison with COMSOL simulations will allow us to investigate the effect of
these Stokes-flow regions. Streamwise surfactant transport in the bulk and interface is
dominated by advection and exchange, so (2.20a) becomes

d
dx

∫ 2

0
u0c0 dy − Da

P
(Γ0 − c0(x, 0)) = 0 in D1, (2.29a)∫ 2

0
u0c0 dy + Da

BP
(u0(x, 0)Γ0) = 1 in D1, (2.29b)∫ φ

−φ

(Γ0 − c0(x, 0)) dx = 0 in D1, (2.29c)

∫ 2

0
u0c0 dy = 1 in D2. (2.29d)

In D1 and D2, the volume-flux condition (2.21) gives∫ 2

0
u0 dy = 1. (2.30)

The leading-order drag reduction (2.22) is given by

DR0 = �pI − �p0

�pI − �pU
. (2.31)

The leading-order pressure field simplifies to p0 = p0(x) using the wall-normal
equation (2.24c). The streamwise velocity field is driven by the pressure gradient p0x and
is inhibited by the surfactant gradient Γ0x . Using linear superposition, we can write

u0 = Ũ p0x + M ŪΓ0x in D1, u0 = Ŭ p0x in D2, (2.32a,b)

where Ũ ≡ y2/2 − 2, Ū ≡ y − 2 and Ŭ ≡ y2/2 − y are velocity contributions satisfying
the following boundary-value problems:

Ũyy = 1, subject to Ũy(0) = 0, Ũ (2) = 0; (2.33a−c)

Ūyy = 0, subject to Ūy(0) = 1, Ū (2) = 0; (2.34a−c)

Ŭyy = 1, subject to Ŭ (0) = 0, Ŭ (2) = 0. (2.35a−c)

Substituting (2.32) into (2.30), the volume flux constraint gives

Q̃ p0x + M Q̄Γ0x = 1 in D1, Q̆ p0x = 1 in D2, (2.36a,b)

where Q̃ ≡ −8/3, Q̄ ≡ −2 and Q̆ ≡ −2/3. Using the continuity equation (2.24a), the
wall-normal velocity field is forced by p0xx and Γ0xx , with velocity contributions that
complement those given in (2.32)–(2.34):

v0 = Ṽ p0xx + M V̄ Γ0xx in D1, v0 = 0 in D2, (2.37a,b)

where Ṽ ≡ −y3/6 + 2y and V̄ ≡ −y2/2 + 2y (so that Ṽy = −Ũ , Ṽ (0) = 0, V̄y = −Ū ,
V̄ (0) = 0). The no-penetration condition (2.26b) is satisfied, as v0(2) = Ṽ (2)p0xx +
M V̄ (2)Γ0xx = −Q̃ p0xx − M Q̄Γ0xx = 0, using the volume-flux condition (2.36a).

We substitute (2.32) and (2.37) into the bulk and interfacial surfactant equations
(2.24)–(2.29) to derive the 2-D long-wave model. To facilitate its numerical computation,
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Coefficient Name Definition Physical interpretation

α Bulk diffusion coefficient
1

εPe
≡ D̂ P̂

Q̂ Ĥ

Bulk diffusion
Bulk advection

β Partition coefficient
Da

BiPe
≡ K̂a

Ĥ K̂d

Adsorption
Desorption

γ Surfactant strength
εMaDa

BiPe
≡ ÂĤ K̂ K̂ 2

a

μ̂K̂ 2
d P̂ Q̂2

Marangoni effects
Interfacial advection

δ Interfacial diffusion coefficient
Da

εBiPePeI
≡ D̂I K̂a P̂

Ĥ2 K̂d Q̂

Interfacial diffusion
Interfacial advection

ν Exchange strength
Da
εPe

≡ K̂a P̂

Q̂

Adsorption
Bulk advection

Table 1. A summary of the transport coefficients in the 2-D long-wave model, (2.38)–(2.42), with their
definition and physical interpretation. The transport coefficients α, β, γ , δ and ν are written in terms of Pe, Da,
Bi, Ma, PeI and ε defined in § 2.2. Compared with the three-dimensional transport coefficients in Tomlinson
et al. (2023a), α3D ∝ ε2α, β3D ∝ β, γ3D ∝ γ , δ3D ∝ ε2δ and ν3D ∝ ε2ν.

we retain O(ε2) bulk and interfacial streamwise diffusion operators to make the problem
more elliptic, simplifying the continuity conditions and smoothing the flow between D1
and D2, later seeking the limit in which these effects are weak. The bulk surfactant
equation (2.24c) gives

α(ε2c0xx + c0yy) −
(

3
4

− 3y2

16

)
c0x

−γ

β

(
− 1

2
+ y − 3y2

8

)
Γ0x c0x − γ

β

(
y

2
− y2

2
+ y3

8

)
Γ0xx c0y = 0 in D1,

(2.38a)

α(ε2c0xx + c0yy) −
(

3y

2
− 3y2

4

)
c0x = 0 in D2,

(2.38b)
where α, β and γ are given in table 1. This table defines the five primary parameter
combinations that we use below and gives their physical interpretation. For x ∈ [−φ, φ]
and y = 0, the boundary condition specifying continuity of surfactant flux and the
interfacial surfactant equation (2.25c,d) become

c0y − ν

α
(c0 − Γ0) = 0, ν(c0 − Γ0) − 3

4
βΓ0x + 1

2
γ (Γ0xΓ0)x + ε2δΓ0xx = 0,

(2.39a,b)

where ν and δ are given in table 1. At x = ±φ and y = 0, no flux of interfacial surfactant
(2.27) gives

3
4
βΓ0 − 1

2
γΓ0xΓ0 − ε2δΓ0x = 0. (2.40)

For x ∈ [φ, 2 − φ] and y = 0 (and for x ∈ [−φ, 2 − φ] and y = 2), no flux of bulk
surfactant (2.26c) becomes

c0y = 0. (2.41)
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The surfactant-flux conditions (2.29a,b,d) become

d
dx

∫ 2

0

((
3
4

− 3y2

16

)
c0 + γ

β

(
− 1

2
+ y − 3y2

8

)
Γ0x c0 − ε2αc0x

)
dy

−ν(Γ0 − c0(x, 0)) = 0 in D1,
(2.42a)∫ 2

0

((
3
4

− 3y2

16

)
c0 + γ

β

(
− 1

2
+ y − 3y2

8

)
Γ0x c0 − ε2αc0x

)
dy

+3
4
βΓ0 − 1

2
γΓ0xΓ0 − ε2δΓ0x = 1 in D1,

(2.42b)∫ 2

0

((
3y

2
− 3y2

4

)
c0 − ε2αc0x

)
dy = 1 in D2,

(2.42c)

and in D1 ∪D2, the volume-flux condition (2.30) becomes

Q̃ p0x + (γ /β)Q̄Γ0x = 1 in D1, Q̆ p0x = 1 in D2. (2.43a,b)

To summarise, the seven-parameter Stokes-flow system (2.15)–(2.21) involving five
variables (û, v̂, p̂, ĉ, Γ̂ ) has been reduced to the seven-parameter long-wave system
(2.38)–(2.42) involving two variables (ĉ, Γ̂ ). Further, by neglecting streamwise diffusion
in the bulk, −ε2αc0x , and at the interface, −ε2δΓ0x , the system reduces to a five-parameter
system (α, β, γ , ν, φ). This long-wave model disregards short (but passive) inner regions
associated with the small parameters ε and δ.

The numerical solution of (2.38)–(2.42) (Appendix A) is generally less expensive
(in terms of memory and runtime) than COMSOL simulations. The numerical method
iteratively solves linearised bulk- and interfacial-concentration problems until convergence
is achieved. Convergence in the nonlinear problem can be slow, necessitating small
tolerances. Accurate resolution of singularities at x = ±φ is essential to achieving
convergence; accordingly, we employ domain decomposition and Chebyshev collocation
techniques that cluster nodes around y = 0, 2 and x = −φ, φ, 2 − φ. Once c0 and Γ0 are
determined, u0 and v0 can be calculated using (2.32) and (2.37), respectively.

Following Tomlinson et al. (2023a), we express the leading-order drag reduction
(DR0) in terms of the transport parameters and geometry (β, γ and φ) as follows.
When the interface is unaffected by surfactant, �pU = −2φ/Q̃ − 2(1 − φ)/Q̆. When the
interface is immobilised by surfactant, �pI = −2/Q̆. Between these two limits, �p0 =
−2φ/Q̃ − 2(1 − φ)/Q̆ + γ Q̄�Γ0/(β Q̃), where �Γ0 = Γ0(φ) − Γ0(−φ). Substituting
these expressions into (2.31) gives the leading-order drag reduction as

DR0 = 1 − γ�Γ0

3φβ
. (2.44)

When evaluated using COMSOL, we write DR0 = DRN S . An alternative measure used
commonly in the SHS literature is the effective slip length, λ0, which can be evaluated
from DR0 using (Tomlinson et al. 2023a)

λ0 = DR0(�pI − �pU )

�pI [�pU DR0 + �pI (1 − DR0)] . (2.45)
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(a) (b)
log (γ)

log (α) log (α)

DR0 ~ α2/3/γ DR0 ~ 1/γ DR0 ~ ɛ2α/γ

γ ~ ɛ2α γ ~ ɛ2δ

1 – DR0 ~

γ/ɛ2α 

1 – DR0 ~ γ1 – DR0 ~

γ 3/5/α1/10  

M2D

DR0 ~ 1/γ

1 – DR0 ~ γ 1 – DR0 ~ γ
1 – DR0 ~

γ/ɛ2δ

DR0 ~ 1/γ DR0 ~

ɛ2δ/γ

M1D
EM2D

E

A2D
E A1D

E D1D
E

M1D
E

A2D

M1D

A1D D1D

M1D

γ ~ α1/6 γ ~ 1

α ~ 1/ɛ2 δ ~ 1/ɛ2

Strong cross-channel

diffusion log (γ)
Strong cross-channel

diffusion

Weak cross-channel

diffusion

Weak cross-channel

diffusion

Figure 2. Maps of (α, γ )-parameter space for ε � 1, using parameters given in table 1, showing the
magnitude of drag reduction (DR0) across different asymptotic regions. Existing predictions from the 1-D
long-wave model of Tomlinson et al. (2023a) are combined with predictions derived in Appendix C from
the 2-D long-wave model for (a) strong exchange and (b) weak exchange. The Marangoni-dominated region
(M) incorporates subregions M1D , M1D

E , M2D and M2D
E , for which DR0 � 1; the advection-dominated region

(A) incorporates subregions A1D , A1D
E , A2D and A2D

E , for which 1 − DR0 � 1; and the diffusion-dominated
region (D) incorporates subregions D1D and D1D

E , for which 1 − DR0 � 1. Here it is assumed that α ∼ δ

and β ∼ 1.

Before presenting the results of the 2-D long-wave model, it is helpful to recall key features
of the problem at low Péclet numbers, when a 1-D description applies.

2.4. The 1-D long-wave model
Figure 2 shows maps of (α, γ )-parameter space, illustrating how the present 2-D model
relates to existing 1-D results. In the strong-cross-channel-diffusion limit, for which α �
1 (with ε2α = O(1) and ε2δ = O(1)), cross-channel concentration gradients are small.
Expanding the bulk and interfacial concentration fields

c0 = c̄0(x) + c̄1(x, y)/α + · · · , Γ0 = Γ̄0(x) + Γ̄1(x)/α + · · · , (2.46)

equations (2.38)–(2.42) reduce to the ‘1-D long-wave model’, given by

c̄0x − 2ε2αc̄0xx − ν(Γ̄0 − c̄0) = 0 in D1, (2.47a)
3
4
βΓ̄0x − 1

2
γ (Γ̄0x Γ̄0)x − ε2δΓ̄0xx + ν(Γ̄0 − c̄0) = 0 in D1, (2.47b)

c̄0 − 2ε2αc̄0x + 3
4
βΓ̄0 − 1

2
γ Γ̄0x Γ̄0 − ε2δΓ̄0x = 1 in D1, (2.47c)

c̄0 − 2ε2αc̄0x = 1 in D2. (2.47d)
The system in (2.47) is solved subject to continuity of bulk surfactant, continuity of bulk-
surfactant flux and no flux of interfacial surfactant:

c̄0(φ
−) = c̄0(φ

+), (2.48a)

c̄0(−φ) = c̄0(2 − φ), (2.48b)

c̄0(φ
−) − 2ε2αc̄0x (φ

−) = c̄0(φ
+) − 2ε2αc̄0x (φ

+), (2.48c)

c̄0(−φ) − 2ε2αc̄0x (−φ) = c̄0(2 − φ) − 2ε2αc̄0x (2 − φ), (2.48d)
3
4
βΓ̄0(±φ) − 1

2
γ Γ̄0(±φ)Γ̄0x (±φ) − ε2δΓ̄0x (±φ) = 0. (2.48e)
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The system of ordinary differential equations in (2.47)–(2.48) can be solved numerically
using the method outlined in Appendix A of Tomlinson et al. (2023). The drag reduction
can be evaluated using (2.44). As illustrated in figure 2, the 1-D long-wave model
(2.47)–(2.48) exhibits multiple asymptotic regimes in the (α, γ )-parameter space, which
provides useful context for the results to follow. We highlight regions dominated by
Marangoni effects (M), interfacial advection (A) and interfacial diffusion (D); a subscript
E denotes cases in which Γ0(x) and c0(x, 0) can be out of equilibrium. We summarise
key asymptotic results from Tomlinson et al. (2023a) that apply in the strong-exchange
(c̄0 ≈ Γ̄0, large ν) and weak-exchange (c̄0 �= Γ̄0, small ν) limits in Appendix B, in regions
labelled with superscript 1D. We now proceed to investigate the emergence of 2-D flow
structures as bulk diffusion weakens, i.e. for α small (� 1) or at intermediate values ∼ 1.

3. Results
In § 3.1, we investigate the leading-order drag reduction (DR0), interfacial and bulk
surfactant concentrations (Γ0 and c0), as well as the streamwise and wall-normal velocity
components (u0 and v0), for strong bulk–surface exchange (ν = 100). We vary the bulk
diffusion (α) and surfactant strength (γ ), exploring both strong- and weak-cross-channel-
diffusion regimes by solving the 2-D long-wave model (2.38)–(2.42). We focus primarily
on the weak-cross-channel-diffusion regime (α = δ � 1), as the strong-cross-channel-
diffusion regime (§ 2.4) was addressed in Tomlinson et al. (2023a). For simplicity,
we constrain the partition coefficient (β) and interfacial diffusion (δ), assuming that
α = δ, β = 1 and φ = 0.5 throughout. However, asymptotic solutions are derived in
Appendix C for generic variables α, β, δ and φ, which we use to validate numerical
simulations and identify dominant physical mechanisms. In § 3.2, we consider the weak-
exchange limit (ν = 0.01). As illustrated in figure 2, in both strong- and weak-exchange
limits, we identify regions of parameter space dominated by Marangoni effects (M),
advection (A) and diffusion (D). Additionally, we compare numerical solutions of
the 2-D long-wave model (2.38)–(2.42) with numerical solutions of the Stokes and
advection–diffusion equations (2.15)–(2.21) in the weak-cross-channel-diffusion limit.

3.1. Strong exchange
Figure 3 summarises the surfactant concentration profiles and drag reduction in the strong-
exchange limit, computed using the 2-D long-wave model, (2.38)–(2.42). For large values
of γ , with strong Marangoni effect, the interface is almost immobilised (figure 3a,b),
the Γ0 profile is almost linear and the bulk surfactant concentration transitions from
a 2-D (figure 3a) to a 1-D (figure 3b) distribution as α increases. Surfactant adsorbs
onto the interface across the upper half of the plastron and desorbs from it in the
lower half. In contrast, for small γ with weaker Marangoni effects, interfacial surfactant
accumulates near the downstream end of the plastron, lengthening the adsorption region
and compressing the desorption region (figure 3f ).

Figure 3(c–e) illustrates the variation of DR0 with α and γ . In the present strong-
exchange limit, drag reduction decreases as α decreases and the bulk concentration
becomes more 2-D. Reduced bulk diffusion promotes the formation of bulk-concentration
boundary layers, while slowing fluxes between the bulk and interface. We characterise
this transition by comparing the established large-α asymptotes (in regions M1D and
D1D of the (α, γ ) plane; see (B1), (B2)) with new small-α limits (derived below) in
regions M2D and A2D . We use these limits to characterise the immobilisation of the
interface as γ increases, highlighting in particular the transition from region A2D to region
M2D for small α. The central asymptotic subregions M1D and A1D for 1 � α � 1/ε2 in
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Figure 3. The leading-order drag reduction (DR0), bulk (c0) and interfacial (Γ0) surfactant concentration
fields for β = 1, ε = 0.1, ν = 100 and φ = 0.5, computed using (2.38)–(2.42) when bulk–surface exchange
is strong. In the Marangoni-dominated (M) region, the SHS is no-slip (DR0 � 1), and in the advection-
dominated (A) and diffusion-dominated (D) regions, the interface is shear-free (DR0 ≈ 1). Fields c0, Γ0, 〈c0〉
and c0(x, 0) are plotted in (a) M2D and (b) M1D . (c) Contours of DR0, (d) plots of DR0 for different γ and
(e) plots of DR0 for different α, where (c,d,e) are compared with asymptotic predictions (B1b) in M1D , (B2b)
in D1D , (C22b) in M2D and (3.2b) in A2D . The dashed line in (e) represents the largest γ for which Γ0(−φ) = 0
when α � 1. Fields c0, Γ0, 〈c0〉 and c0(x, 0) are plotted in (f ) A2D (notice the quasi-stagnant-cap profile) and
(g) D1D , where x = x0 is plotted using (C55).
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α 3/8

γ 1/5
α 3/10

Figure 4. Schematics of the asymptotic structure of the bulk-concentration boundary layer. Weak diffusion
ensures that c0 is approximately uniform in the core of the channel, varying primarily in a thin concentration
boundary layer near the SHS. Blue (pink) regions illustrate regions where surfactant is drawn from (released
into) the bulk onto (from) the interface. (a) The bulk-concentration boundary layer when Marangoni effects are
strong (region M2D) and the surfactant distribution almost immobilises the entire interface. (b) The bulk-
concentration boundary layer when Marangoni effects are weak (region A2D), creating a slip region with
low surfactant concentration upstream of a quasi-stagnant region in which interfacial surfactant accumulates.
Details of each asymptotic region are provided in Appendix C.

figure 2(a), which formally provide a bridge between the 1-D and 2-D long-wave models,
are smoothed out by transitional effects associated with the nominally small geometric
parameter ε taking the value 0.1 in figure 3. We now discuss these new regions, starting
with M2D .

Region M2D (figures 2a and 3a) emerges when α � 1 and γ is large. In this region,
Marangoni effects dominate, with weak bulk diffusion resulting in a bulk-concentration
boundary layer near y = 0. We provide a scaling argument for DR0 as follows, with a
detailed derivation given in Appendix C.1 and a schematic of the asymptotic structure
in figure 4(a). At the interface, Γ0 is in equilibrium with c0, and the interface is nearly
immobile, exhibiting a linear surfactant distribution with a slope of size 1/γ . The bulk
concentration is close to unity, and Γ0 < 1 (Γ0 > 1) in the upstream (downstream) half of
the plastron, leading to adsorption (desorption). Perturbations to the bulk-concentration
boundary layer are driven by the linear surface concentration distribution, giving the
boundary layer a self-similar structure. The thickness of the boundary layer is α1/3 � 1
(characteristic of a shear flow), resulting in fluxes of size αc0y ∼ α2/3 onto and off
the interface. Adsorption and desorption are accommodated by weak stretching and
compression of the interface, generating smaller contributions to Γ0 of size α2/3/γ 2 and
to DR0 of size α2/3/γ , using (2.44). The constraint α � 1 ensures that the boundary layer
is thin and we require γ � 1 and α2/3 � γ for the correction to Γ0 to be small (although a
more precise condition will emerge below). The leading-order surfactant distribution and
drag reduction are given by

c0(x, 0) ≈ Γ0 ≈ 1 + 3β

2γ

(
x − φ

5

)
, DR0 ≈ m1α

2/3φ5/3

γ
, (3.1a,b)

where the coefficient m1 ≈ 0.79 is given explicitly in Appendix C.1. The range of validity
of the leading-order solution in (3.1) is extended from γ � 1 to γ ∼ 1 in (C22), where the
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extension must be evaluated numerically. Therefore, we give the simpler formula above,
but compare (C22) with numerical results from the 2-D long-wave model at small α in
figure 3(c–e), which capture numerical results successfully. In particular, decreasing γ

leads to a steepening of the interfacial surfactant gradient until Γ0 approaches zero at the
upstream contact line. This transition provides a lower bound on region M2D , namely
Γ0(−φ) = 0 when γ = 9φβ/5 (see vertical dashed lines in figure 3e). Hence, we plot
asymptotic predictions up to this limit in figure 3(e).

When α � 1 and γ is sufficiently small, we transition into region A2D (figures 2a
and 3f ), where advection dominates Marangoni effects at the interface, while interacting
with a strongly coupled bulk-concentration boundary layer. We distinguish two primary
regions along the interface: (i) a slip region, x ∈ [−φ, x0) (for some x0), at the upstream
end of the interface, where Marangoni effects are weak and surfactant adsorbs from the
bulk; and (ii) a quasi-stagnant region, x ∈ (x0, φ], at the downstream end of the interface,
where surfactant gradients decelerate the interface through Marangoni effects without
completely immobilising the interface (in contrast with a classic stagnant cap), while
desorbing the accumulated surfactant. We now provide a scaling argument for DR0 that
is supported by a detailed derivation in Appendix C.2; a schematic of the asymptotic
structure is given in figure 4(b). In the slip region, of length x0 + φ = O(1), c0 varies
by O(1) across a boundary-layer thickness y ∼ α1/2, yielding a flux per unit length of size
αc0y ∼ α1/2 onto the interface. This allows Γ0 to grow along the slip region from zero to
O(α1/2). Although c0 is effectively zero at the interface at leading order, it is coupled to
Γ0 through an O(α1/2) correction. The slip region therefore delivers an interfacial flux of
size O(α1/2) at x ≈ x0, which is carried through short regions across which the interface
decelerates rapidly at the leading edge of the quasi-stagnant region (i.e. at x ≈ x0). The
sizes of the short regions are indicated in figure 4(b). Across the quasi-stagnant region, of
length L = φ − x0 (to be determined), Γ0 is approximately linear with a slope of size 1/γ ,
setting c0 and Γ0 to be of size L/γ . In the bulk, diffusion balances shear-flow transport
over a vertical length y ∼ (αL)1/3 and therefore αc0y ∼ (αL)2/3/γ . Integrated over L , this
accommodates the O(α1/2) interfacial flux, resulting in L ∼ γ 3/5/α1/10. Consequently,
the drag reduction arising from the surfactant adsorbed and desorbed in the slip and
quasi-stagnant regions is proportional to DR0 ∼ γ�Γ ∼ L .

In Appendix C.2, we present a more detailed analysis showing that

c0(x, 0) ≈ Γ0 ≈

⎧⎪⎪⎨
⎪⎪⎩

4(α(x + φ))1/2
√

3πβ
for x ∈ [−φ, x0),

3β

2γ
(x − x0) for x ∈ (x0, φ],

DR0 = 1 − a1γ
3/5

α1/10 ,

u0(x, 0) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3/4 for x ∈ [−φ, x0),

3
4

[
G

(
x − x0

γα1/2

)]−1

for x ≈ x0,

3α2/3C ′(0)

5β

(
(x − x0)

2/3 − (φ − x0)
5/3

x − x0

)
for x ∈ (x0, φ].

(3.2a–c)

The coefficient a1 = (−5λ/(6C ′(0)))3/5/(2φ) in (3.2b) where λ= (16(x0 + φ)/

(3πβ2))1/2; C ′(0) ≈ −0.92 in (3.2c) is given explicitly in Appendix C.2; the function
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0.8
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u0 (x, 1)

u0 (x, 0)

u0 (x, 1)

(3.2)

Figure 5. The leading-order streamwise velocity field (u0) and surfactant concentration fields (c0 and Γ0)
for β = 1, ν = 100, ε = 0.1 and φ = 0.5 evaluated using (2.38)–(2.42) (lines) and COMSOL simulations
(2.15)–(2.21) (symbols), when bulk–surface exchange is strong. (a,c) Plots of c0 and u0, respectively, for α =
0.1 and γ = 1, when the flow is in the Marangoni-dominated region with weak cross-channel diffusion (M2D).
(b,d) Plots of c0 and u0, respectively, for α = 0.1 and γ = 0.1, when the flow is in the advection-dominated
region with weak cross-channel diffusion (A2D), where x = x0 is plotted using (C55).

G in (3.2c) is given implicitly in (C41). The length of the quasi-stagnant cap is

L = φ − x0 = 2φa1γ
3/5

α1/10 . (3.3)

In (3.2), x ∈ [−φ, x0), x ≈ x0 and x ∈ (x0, φ] are shorthand for the slip, deceleration
and quasi-stagnant regions shown in figure 4(b); the leading-order approximations in
(3.2) match together as explained in Appendix C. Equation (3.2c) highlights the role of
interfacial compression in the quasi-stagnant region, accommodating desorption.

Asymptotes for DR0, c0(x, 0) and Γ0 in figure 3(c–f ) are evaluated numerically for a
given α and γ and capture the behaviour exhibited by the numerical simulations of the 2-D
long-wave model. Increasing γ from low values causes lengthening of the quasi-stagnant
region, pushing x0 towards the upstream contact line and reducing DR0. Figure 3(e) shows
how (3.2b) applies almost until x0 approaches −φ. For small α, c0(−φ, 0) ≈ Γ0(−φ) ≈ 0
for γ � 1, causing the c0 field to develop a singular first derivative at the upstream contact
point. This concentration-gradient singularity significantly impacts the numerical solution
(in terms of both the required resolution and run time) of the 2-D long-wave model and
COMSOL simulations (below).

Further insight into the M2D and A2D solutions is provided in figure 5, which compares
u0, c0 and Γ0 computed using the 2-D long-wave model, (2.38)–(2.42), with the Stokes
and advection–diffusion equations in COMSOL, (2.15)–(2.21), with the same parameters
as the examples shown in figure 3(a, f ). For the solution in the M2D region, u0 exhibits
a slight deviation from no slip at the liquid–gas interface (figure 5c), generating a weak
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vertical flow towards the interface. The concentration profiles in the two simulations match
well (figure 5a), with the leading-order drag reduction predicted from the 2-D long-wave
model, DR0 = 0.106, in close agreement with the COMSOL simulations, DRN S = 0.109.
For the solution in the region A2D , depicted in figure 5(b,d), the liquid–gas interface
is nearly shear-free and u0 ≈ 3/4 in the slip region, where the interfacial surfactant
concentration is low, before falling towards zero across the quasi-stagnant region, where
the gradient of Γ0 is large. The asymptotic predictions (3.2c) capture respectively the slight
decrease of the slip velocity in the deceleration region and then the rapid fall towards zero
across the quasi-stagnant region; the shift parameter in (C41) was chosen as X0 = 0.5 to
minimise the error against the COMSOL simulations.

Figure 5 illustrates the distinction between a classical stagnant cap of a strictly insoluble
surfactant, for which u0 vanishes abruptly in the cap region where Γ0 has a large gradient,
and the present quasi-stagnant-cap structure, where desorption of the soluble surfactant in
the bulk boundary layer is mediated by molecular diffusion, and which leads to a small
but non-zero slip velocity (3.2c) across the quasi-stagnant-cap region. The predictions for
the drag reduction and concentration field from the 2-D long-wave model and numerical
simulations in COMSOL agree, with DR0 = 0.745 and DRN S = 0.747. Both methods
capture weak interfacial stretching (allowing adsorption) in the slip region (u0x > 0 for
x ∈ [−φ, x0] in figure 5d) and stronger compression (allowing desorption) in the quasi-
stagnant region (u0x < 0 for x ∈ [x0, φ] in figure 5d). There are discrepancies in u0 at
both the upstream and downstream contact lines. At the upstream contact line, the 2-D
long-wave theory does not capture the Stokes-flow region, where u0 transitions sharply
from zero to the slip velocity. At the downstream contact line, the retention of weak
streamwise diffusion in the 2-D long-wave model leads to a small but non-zero value
of u0, ensuring zero surfactant flux. In contrast, the small-α asymptotic solution, which
neglects streamwise diffusion, correctly predicts that the slip velocity vanishes at the
contact line. Since the small-α solution represents a limiting case of the 2-D long-wave
model as streamwise diffusion vanishes, the two solutions align in the limit ε → 0, where
the 2-D long-wave model’s prediction for u0(φ, 0) also tends to zero at the downstream
edge. Further features of the surface velocity profile at the tip of the quasi-stagnant region,
which explain the dramatic thickening of the boundary layer in figures 3(f ) and 4(b), are
discussed in Appendix C.2.

3.2. Weak exchange
When bulk–surface exchange is weak (ν = 0.01), 2-D effects are again prevalent in bulk-
concentration profiles at small α (figure 6). However, the impact of bulk boundary layers
on the drag reduction is more modest than in the strong-exchange limit, in that they
have less of an effect on the leading-order drag reduction. Solutions at large γ again
have approximately linear interfacial surfactant profiles that immobilise the interface
(figure 6a,b). These profiles are almost decoupled from the bulk. They act as a weak
sink/source combination driving adsorption/desorption. Solutions with weak Marangoni
effects (small γ ) show the formation of a more classical stagnant cap at small α (figure 6f ),
which is smoothed by streamwise diffusion as α = δ increases (figure 6g).

Figure 6(c–e) illustrates the dependency of DR0 on α and γ , evaluated against existing
limits M1D

E and D1D
E (see (B4), (B5)) for large α and introducing new limits M2D

E and
A2D

E at small α. Importantly, weak coupling between the bulk and the interface suppresses
the dependence of DR0 on α in the limit of very small bulk diffusivity, making the drag-
reduction contours horizontal in figure 6(c) for α → 0.
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Figure 6. The leading-order drag reduction (DR0), bulk (c0) and interfacial (Γ0) surfactant concentration
fields for β = 1, ε = 0.1, ν = 0.01 and φ = 0.5, computed using (2.38)–(2.42) when bulk–surface exchange is
weak. In the Marangoni-dominated (ME ) region, the SHS is mostly no slip (DR0 � 1), and in the advection-
dominated (AE ) and diffusion-dominated (DE ) regions, the interface is mostly shear-free (DR0 ≈ 1). Fields
c0, Γ0, 〈c0〉 and c0(x, 0) are plotted in (a) M2D

E and (b) M1D
E . (c) Contours of DR0, (d) plots of DR0 for

different γ and (e) plots of DR0 for different α, where (c,d,e) are compared to (B4b) in M1D
E , (B5b) in D1D

E ,
(B4b) in M2D

E and (3.4b) in A2D
E . The dashed line in (e) represents the largest γ for which Γ0(−φ) = 0 when

α � 1. Fields c0, Γ0, 〈c0〉 and c0(x, 0) are plotted in (f ) A2D
E (notice the classical stagnant-cap profile) and

(g) D1D
E (where streamwise diffusion has smoothed the stagnant cap), where x = x0 is plotted using (C62).
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The following scaling argument applies to region A2D
E (figures 2b and 6f ), where

Marangoni effects and bulk diffusion are weak. Here, the interfacial concentration is
approximated by the classical distribution for nearly insoluble surfactant, which is close
to zero along the interface except at the downstream end where it forms a stagnant cap of
length L and slope 1/γ . Thus, Γ0 is of magnitude L/γ , and its integral over the whole
interface is O(L2/γ ), while the bulk concentration remains close to unity. The surfactant
flux-balance constraint (2.29c), which matches net absorption to net desorption over the
interface, therefore requires L2/γ = O(1), implying that Γ0 is O(γ −1/2) and DR0 is
O(γ 1/2). This scaling argument, which mirrors the 1-D case, is supported by asymptotic
calculations in Appendix C.3, which yield

c0 ≈ 1, Γ0 ≈
⎧⎨
⎩

0 for x ∈ [−φ, x0],
3β

2γ
(x − x0) for x ∈ [x0, φ], DR0 ≈ 1 −

(
2γ

3φβ

)1/2

,

(3.4a–c)

where φ − x0 = (8φγ/(3β))1/2 is the length of the stagnant cap. Bulk diffusion has a
higher-order effect, influencing exchange via adsorption and desorption, and hence weak
stretching and compression of the interface. In figure 6(c–f ), dashed black asymptotes
for c0, Γ0 and DR0 match those results from the 2-D long-wave model, almost up
to γ = 3βφ/2 in figure 6(e) (see vertical dashed lines), which denotes the conditions
where the stagnant cap reaches x = −φ and the slip region of this nonlinear distribution
vanishes. The disappearance of the stagnant-cap distribution with increasing γ is linked
to a rapid decrease in DR0, owing to the loss of the slip region. The same rapid
transition is recovered if we approach region A2D from region M2D

E , using (B4b), i.e. for
decreasing γ .

A comparison between the solutions evaluated using the 2-D long-wave model,
(2.38)–(2.42), and COMSOL simulations is given in figure 7, focusing on the examples
discussed in figure 6(a, f ). Figure 7(a,c) shows c0, Γ0 and u0 in region M2D

E . The slip
velocity is approximately zero for both symbols and lines, as the interfacial surfactant
gradient effectively immobilises the interface. The 2-D long-wave model predicts DR0 =
0.027, while the numerical simulations yield DRN S = 0.056 (due to the 4 % difference
in �Γ0 shown in figure 7a). Figure 7(b,d) depicts stagnant-cap solutions in region A2D

E .
The upstream end of the liquid–gas interface (x ∈ [−φ, x0]) is shear-free, resulting in
a slip velocity u0 = 3/4 (substituting Γ0x = 0 into (2.32a), (2.36a), u0 = Ũ p0x , where
Ũ (0) = −2 and p0x = −3/8). Conversely, the downstream end of the liquid–gas interface
(x ∈ [x0, φ]) does not exhibit slip, leading to a near-zero streamwise velocity at the
downstream stagnation point. The transitional and downstream regions induce a strong
wall-normal flow that drives bulk surfactant into the core of the channel. We find DR0 =
0.650 and DRN S = 0.662, demonstrating agreement between the predictions of the 2-D
long-wave model and COMSOL simulations, validating the model’s accuracy under a
wide range of conditions.

3.3. Comparison with experiments
To facilitate comparison with experiments, in table 2, we convert DR0 to slip lengths
(λe) using the non-dimensionalisation in Temprano-Coleto et al. (2023). Temprano-Coleto
et al. (2023) proposed that for microchannel applications, λe ∼ (φ/ε)2/L2

m (using our
notation), where φ/ε = φ P̂/Ĥ is half the length of the liquid–gas interface divided by
the channel height, L2

m = (n̂ R̂T̂ K̂ 2
a ĉ0)/(D̂μ̂K̂ 2

d ) is the squared mobilisation length and
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Figure 7. The leading-order streamwise velocity field (u0) and surfactant concentration fields (c0 and Γ0)
for β = 1, ν = 0.01, ε = 0.1 and φ = 0.5 evaluated using (2.38)–(2.42) (lines) and COMSOL simulations
(2.15)–(2.21) (symbols) when bulk–surface exchange is weak. (a,c) Plots of c0 and u0, respectively, for α = 0.1
and γ = 1, when the flow is in the Marangoni-dominated region with weak cross-channel diffusion (M2D

E ).
(b,d) Plots of c0 and u0, respectively, for α = 0.1 and γ = 0.1, when the flow is in the advection-dominated
region with weak cross-channel diffusion (A2D

E ) and x = x0 is plotted using (C62).

λe ∼ (φ/ε)λ0 in (2.45). The slip-length formulae in Landel et al. (2020) and Sundin &
Bagheri (2022) have the same dependencies in this limit. We find that, in all regimes, the
slip length shares the same dependence on 1/L2

m , with quadratic dependence on φ/ε only
when 1 � α � 1/ε2 and γ � 1 (region M1D). However, when α � 1 and γ � α1/6, λe
has a stronger (8/3 power) dependence on φ/ε (region M2D), and when α � 1/ε2 and
γ � ε2α, we find a weaker (linear) dependence (region M1D). The remaining asymptotic
solutions for DR0 are summarised in figure 2. When 1 − DR0 � 1, the slip length
simplifies to λe = (�pI − �pU )/(ε�pI �pU ) (A1D and A2D). Hence, outside of the
specific microchannel applications considered in Temprano-Coleto et al. (2023), whose
predictions agree with those in region M1D (as discussed below), we have found new
parameters in regions M2D that influence surfactant impairment of SHS drag reduction.
As diffusion weakens, the deviation between the drag-reduction predictions in M1D and
M2D will increase.

For laboratory experimental studies documented in the literature, we can use our
2-D long-wave model to estimate surfactant effects via the drag reduction, employing
parameters typical of microchannel applications in laminar flows. Estimates for these
parameters, based on the surfactant SDS, using models and experimental data from
Temprano-Coleto et al. (2023), are given in table 3. The remaining parameters P̂ , Q̂, Ĥ
and K̂ vary across experiments. Peaudecerf et al. (2017) use α ≈ 1 and 4.7 × 101 � γ �
2.9 × 104 (at the M1D/M2D boundary; figure 2) and Temprano-Coleto et al. (2023) use
α ≈ 25 and 10−1 � γ � 3.7 × 102 (at the A1D/M1D boundary; figure 2). Qualitatively,
all of these studies report surfactant effects, which is consistent with their location in the
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M2D(α � 1) M1D(1 � α � 1/ε2) M1D and M1D
E (α � 1/ε2)

Drag-reduction scaling
φ5/3α2/3

γ
= φ5/3 P̂5/3 Ĥ1/3 Q̂1/3

L̂2
m D̂1/3

φ

γ
= φ P̂ Ĥ Q̂

L̂2
m D̂

ε2α

γ
= Ĥ2

L̂2
m

Slip-length scaling
b1/3(φ/ε)8/3

L2
m

b(φ/ε)2

L2
m

φ/ε

L2
m

Table 2. Summary of the leading-order drag reduction (DR0) scaling in regions M2D , M1D and M1D
E

and the corresponding leading-order slip length (λe) scaling using the non-dimensionalisation in Temprano-
Coleto et al. (2023), in terms of the mobilisation length Lm . Hats denote dimensional quantities.
The drag reduction is converted to the slip length using (2.45) for DR0 � 1 and λe ∼ (φ/ε)λ0, where
L̂2

m = (n̂ R̂T̂ Ĥ2 K̂ 2
a ĉ0)/(D̂μ̂K̂ 2

d ), φ/ε = φ P̂/Ĥ , Lm = L̂m/Ĥ and b = Q̂/D̂.

Quantity Symbol Units Value

Adsorption rate K̂a m s−1 3.4 × 10−4

Desorption rate K̂d s −1 0.75

Surface activity Â J mol−1 4913.6

Dynamic viscosity μ̂ kg m−1 s−1 8.9 × 10−4

Surface diffusivity D̂ m 2 s−1 7 × 10−10

Bulk diffusivity D̂I m 2 s−1 7 × 10−10

Table 3. A summary of the parameters in the dimensional problem, (2.1)–(2.12), with their values based on
the surfactant SDS, models and experimental data from Temprano-Coleto et al. (2023).

non-dimensional parameter space. All of these studies operate within the strong-exchange
regime for the values of K̂a and K̂d given in table 3. However, as K̂a and K̂d are merely
estimates based on fitting to microchannel experiments, weak exchange could be achieved,
for instance, when K̂a = 3.4 × 10−8 m s−1 and K̂d = 7.5 × 10−5 s−1. Quantitatively, we
compare predicted values of slip velocity using our theoretical model with experimental
results in table 4. Using the experimental parameters from Temprano-Coleto et al. (2023),
where α ≈ 25 and ε ≈ 0.002, we confirm 1 � α � 1/ε2 and they are within the regime
M1D . From (B1b), we calculate DR0, convert to λe using table 2 and then to uI c/uclean

I c
following Temprano-Coleto et al. (2023). Agreement is observed across φ/ε = 253, 418
and 587, which is remarkable as our theory does not include any fitting parameters.
The deviation from Temprano-Coleto et al. (2023) at φ/ε = 762 could be attributed to
experimental error, which is consistent with the expected behaviour of increasing slip with
grating length.

4. Discussion
In this study, we develop a long-wave theory to analyse the behaviour of a 2-D
laminar pressure-driven channel flow contaminated with soluble surfactant. The channel
is bounded by a SHS with streamwise-periodic grooves and a solid wall. We linearise
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φ/ε = 253 φ/ε = 418 φ/ε = 587 φ/ε = 762

Peaudecerf et al. (2017) — — 0.1410 —

Temprano-Coleto et al. (2023) 0.0661 0.1187 0.1903 0.1450

Current 0.0610 0.1164 0.1859 0.2716

Table 4. A comparison between the slip velocity normalised by the clean (surfactant-free) value, uI c/uclean
I c ,

predicted using the current model (2.38)–(2.42), and experimental data from Peaudecerf et al. (2017) and
Temprano-Coleto et al. (2023).The parameter φ/ε is half the length of the liquid–gas interface divided by the
channel height.

the equation of state and adsorption–desorption kinetics, solving Stokes and advection–
diffusion equations in the long-wave limit. Our investigation focuses primarily on
regimes where concentration gradients in the streamwise and cross-channel directions are
comparable. By numerically solving the 2-D long-wave model, we delineate asymptotic
regions within the parameter space. Under conditions of strong cross-channel diffusion,
our findings align with the 1-D results in Tomlinson et al. (2023a). Conversely, when
cross-channel diffusion is weak, we reveal new regions of the parameter space, where the
drag reduction exhibits a non-trivial dependence on the thickness of the bulk-concentration
boundary layer and surfactant strength (discussed below). We derive asymptotic solutions
for the boundary-layer problem, validating them against both the numerical solution
of the 2-D long-wave model (2.38)–(2.42) and the full Stokes and advection–diffusion
equations (2.15)–(2.21) in COMSOL. These complementary methodologies, ranging
from asymptotic solutions to long-wave numerical simulations, give physical insight for
applications where numerical simulations can be computationally prohibitive.

We have explored how the interfacial concentration (Γ0), bulk concentration (c0) and
leading-order drag reduction (DR0) are influenced by bulk diffusion (α), surface advection
(β), surfactant strength (γ ), interfacial diffusion (δ) and bulk–surface exchange (ν)
(figures 3 and 6); the dimensionless parameters α, β, γ , δ and ν are given in table 1.
In cases where cross-channel diffusion dominates, we recover the Marangoni-dominated
(M1D and M1D

E ), advection-dominated (A1D and A1D
E ) and diffusion-dominated (D1D

and D1D
E ) regions identified in Tomlinson et al. (2023a) (see figure 2). However, under

weak cross-channel diffusion, we reveal new subregions dominated by Marangoni effects
(M2D and M2D

E ) and advection (A2D and A2D
E ). In these regions, a concentration boundary

layer forms in the bulk, influencing the drag reduction when bulk–surface exchange is
strong. When Marangoni effects dominate, the interface is immobilised and the surfactant
distribution along it is approximately linear. The asymptotic solutions for DR0 are
summarised in figure 2.

When both bulk diffusion and Marangoni effects are weak, part of the interface is
shear-free and the surfactant distribution forms either what we call a quasi-stagnant cap
(when bulk–interface exchange is strong) or a classical stagnant cap (when exchange is
weak). The classical stagnant cap for an insoluble surfactant-contaminated SHS has been
described in Baier & Hardt (2021) and Mayer & Crowdy (2022). The quasi-stagnant
cap has received much less attention and has a particularly intricate structure, illustrated
in figure 4(b). Surface stretching and compression accommodate weak adsorption from,
and desorption to, the bulk across thin concentration boundary layers, ‘remobilising’ the
interface (analogous to a mechanism described by Crowdy et al. (2023) at low Pe –
and so without the involvement of bulk boundary layers – for a linear extensional
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flow). The upstream ‘slip’ region has a bulk-concentration boundary layer of thickness
O(α1/2), which is to be expected above an almost fully mobile interface. Weak stretching
draws surfactant from the bulk to the interface via diffusive adsorption. The slip region
transitions abruptly to a quasi-stagnant region, which grows to a thickness O(γ 1/5α3/10).
This differs from a classical stagnant cap (of a fully insoluble surfactant) in having weak
surface compression at a rate that balances diffusive desorption. The transition from the
mobile to the quasi-immobile interface takes place across two nested regions at the tip
of the quasi-stagnant cap: a short deceleration region, where the surface velocity falls
abruptly, displacing the bulk boundary layer upwards towards the core; and a slightly
longer transition region, across which shear in the boundary layer balances weakening
surface advection (figure 4b). Shear then dominates in the bulk-concentration boundary
layer along the quasi-stagnant region.

It is likely that the physical balances arising in these regions may emerge in other flow
configurations involving soluble surfactant transport near confined interfaces at high Péclet
numbers, such as the cap forming at the rear of a rising drop or bubble. For example,
computations by Oguz & Sadhal (1988) and Tasoglu et al. (2008) revealed quasi-stagnant
caps at large but finite Pe. Interfacial flux balances between diffusion-limited adsorption
(slip) and desorption (stagnant region) were given by Harper (2004) and Palaparthi et al.
(2006), treating the size of the cap as a parameter. Here, we determine the size of the
cap by solving the bulk-concentration boundary layer, which leads (for example) to the
interfacial surfactant concentration being of size β/(γ 2/5α1/10) in the A2D regime.

In summary, our study compares asymptotic and numerical solutions for a 2-D laminar
pressure-driven channel flow, confined by a streamwise-periodic SHS and a solid wall,
and contaminated with soluble surfactant. While numerical solutions demand significant
computational resources, our asymptotic solutions provide a cost-effective alternative,
particularly in regimes at high Péclet numbers where accurate numerical solutions of very
thin boundary layers are computationally very demanding. These asymptotic solutions
offer accurate predictions devoid of empirical fitting coefficients and provide physical
insights into the mechanisms governing drag reduction across a large part of the parameter
space, including in particular high-Péclet-number flow regimes.

Funding. We acknowledge support from CBET–EPSRC (EPSRC Ref. EP/T030739/1, NSF no. 2054894),
as well as partial support from ARO MURI W911NF-17-1-0306. F. T-C. acknowledges support from a
Distinguished Postdoctoral Fellowship from the Andlinger Center for Energy and the Environment. For the
purpose of open access, the authors have applied a Creative Commons Attribution (CCBY) licence to any
Author Accepted Manuscript version arising.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Numerical solutions for weak cross-channel diffusion
The numerical solution to (2.38)–(2.42) can be divided into two subroutines, employing
Chebyshev collocation techniques as outlined by Trefethen (2000). First, given Γ old

0 , we
evaluate cnew

0 in D1 and D2. The subdomains of the periodic cell are mapped to the 2-D
canonical Chebyshev collocation domain, Dn = {ξ ∈ [−1, 1]} × {η ∈ [−1, 1]}, using the
transformations

(ξ1, ξ2, η) = ((x + φ)/φ − 1, (x − φ)/(1 − φ) − 1, y − 1) . (A1)

We then discretise using N = (Nξ + 1) × (Nη + 1) nodes in each subdomain, at points

(ξ1, i , ξ2, i , η j ) = (cos(iπ/Nξ ), cos(iπ/Nξ ), cos( jπ/Nη)), (A2)
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where i = 0, 1, . . . , Nξ and j = 0, 1, . . . , Nη. Continuity boundary conditions (2.28)
are enforced on cnew

0 at i = 0 and Nξ , supplemented with continuity of bulk diffusive
surfactant flux between subdomains:

cnew
0, 1 = cnew

0, 2 ,
∂cnew

0, 1

∂ξ1
= ∂cnew

0, 2

∂ξ2
. (A3a,b)

Boundary conditions (2.39)–(2.41) are enforced at j = 0 and Nη, ensuring continuity of
surfactant flux at the liquid–gas interface, no flux of surfactant at the solid wall in D1 and
no flux of surfactant at the solid walls in D2. Discretising the bulk surfactant equation
(2.38) in conservative form in domains D1 and D2 and incorporating the discretised
matching conditions (represented by M12 and M21) gives(

A1 M12
M21 A2

)(cnew
0, 1

cnew
0, 2

)
=
(

f 1
0

)
, (A4)

where f 1 is the forcing due to the interfacial surfactant concentration Γ old
0 in (2.39a).

Second, given a cnew
0 , we evaluate Γ new

0 for x ∈ [−φ, φ] and y = 0. The liquid–
gas interface is mapped to the 1-D canonical Chebyshev collocation domain,
Di = {ξ ∈ [−1, 1]}, using ξ1 in (A1), discretised using Nξ + 1 nodes at points ξ1, i in
(A2). Discretising the interfacial surfactant equation (2.39b) for x ∈ [−φ, φ] and y = 0
and incorporating the discretised no-flux conditions (2.40) results in

B(Γ old
0 )Γ new

0 = g, (A5)

where g is the forcing due to the bulk surfactant concentration cnew
0 in (2.39b).

Therefore, to evaluate DR0 for a given α, β, γ , δ, ε, ν and φ, we choose an initial guess
based on the 1-D long-wave model discussed in § 2.4. The initial guess can be substituted
into the forcing f 1 in the bulk-concentration subroutine and the linear system inverted to
calculate cnew

0 . The bulk concentration can then be substituted into the forcing g in the
interfacial concentration subroutine and the linear system inverted to calculate Γ new

0 . We
then set Γ old

0 = Γ new
0 and repeat the above steps. This procedure of updating c0 and Γ 0 is

then continued until convergence is achieved for both the bulk and interfacial concentration
fields.

Appendix B. Key results of the 1-D long-wave model
Here we outline key limits of the 1-D long-wave model, (2.47) and (2.48), exploiting
analogous findings as in Tomlinson et al. (2023a). For strong exchange, with α � 1
and γ � max(1, ε2α), a region dominated by Marangoni effects (M1D; figure 2a) is
characterised by the immobilisation of the liquid–gas interface. The surfactant distribution
and drag reduction are given by

c̄0 ≈ Γ̄0 ≈ 1 + 3β

2γ

(
x − φ(E + 1)

(E − 1)

)
, DR0 ≈ 2

γ

(
ε2(2α + δ) + φ(E + 1)

(E − 1)

)
,

(B1a,b)

where E ≡ exp((1 − φ)/(ε2α)). Thus, DR0 ≈ 2φ/γ for 1 � α � 1/ε2 and DR0 ≈
2ε2(2α + δ)/γ for α � 1/ε2. Region M1D transitions into a diffusion-dominated region
(D1D; figure 2a) when α � 1/ε2 and γ ∼ ε2α, and into an advection-dominated region
(A1D; figure 2a) when 1 � α � 1/ε2 and γ ∼ 1. For γ � ε2α and α � 1/ε2 (region
D1D),
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c̄0 ≈ Γ̄0 ≈ 4α + 2δ(1 − φ)

α(4 + 3βφ) + 2δ(1 − φ)
, DR0 ≈ 1 − γ (1 − φ)

ε2(α(4 + 3βφ) + 2δ(1 − φ))
,

(B2a,b)

and for γ � 1 and 1 � α � 1/ε2 (region A1D),

c̄0 ≈ Γ̄0 ≈ 4
3β + 4

+ 3β

3β + 4
exp

(
(4 + 3β)(x − φ)

4ε2(2α + δ)

)
, DR0 ≈ 1 − γ

φ(3β + 4)
.

(B3a,b)

The onset of 2-D effects in the 1-D long-wave model was estimated in Tomlinson et al.
(2023a) to arise via the emergence of shear dispersion, where α ∼ 1 and γ � 1 or α ∼ 1/γ

and γ � 1. We refine such estimates by solving the 2-D long-wave model, which reveals
regions M2D and A2D shown in figure 2(a).

A similar picture emerges when bulk–surface exchange is weak. A region dominated
by Marangoni effects (M1D

E ; figure 2b) arises for δ � 1 and γ � max(1, ε2α). Here, c̄0
decouples from Γ̄0 and is approximately equal to its background value (i.e. c̄0 ≈ 1). The
surface concentration Γ̄0 varies around this value to fulfil the net adsorption–desorption
condition, (2.29), decreasing the drag reduction compared with the strong-exchange
problem:

c̄0 ≈ 1, Γ̄0 ≈ 1 + 3βx

2γ
+ O(ε2), DR0 ≈ 2ε2δ

γ
. (B4a–c)

The region M1D
E transitions to a diffusion-dominated region (D1D

E ; figure 2b) when
γ ∼ ε2δ and δ � 1/ε2 and an advection-dominated region (A1D

E ; figure 2b) when γ ∼ 1
and 1 � δ � 1/ε2. For γ � ε2δ and δ � 1/ε2 (region D1D

E ),

c̄0 ≈ 1, Γ̄0 ≈ 1 + 3βx

4ε2δ
, DR0 ≈ 1 − γ

2ε2δ
, (B5a–c)

and for γ � 1 and 1 � δ � 1/ε2 (region A1D
E ),

c̄0 ≈ 1, Γ̄0 ≈
⎧⎨
⎩

0 for x ∈ [−φ, x0],
3β

2γ
(x − x0) for x ∈ [x0, φ], DR0 ≈ 1 −

(
2γ

3φβ

)1/2

,

(B6a–c)

where x0 = φ − (8φγ/(3β))1/2 gives the length of the stagnant cap.

Appendix C. Asymptotic solutions for weak cross-channel diffusion
We derive asymptotic solutions to the 2-D long-wave model, (2.38)–(2.42), when bulk
diffusive effects are weak and confined to a boundary layer along y = 0. In this limit,
streamwise diffusion terms do not appear at leading order, which means that we do not
resolve inner regions around x = −φ, φ and 2 − φ. First, we consider the strong-exchange
regime, where Marangoni effects (Appendix C.1; figure 4a) and advection (Appendix C.2;
figure 4b) dominate. Second, we consider the weak-exchange regime (Appendix C.3).
Throughout, we assume β = O(1) and φ = O(1).

Assuming that c0 ≈ 1 in the core of the channel, we anticipate that the transport
equations (2.38) for the bulk surfactant involve a diffusive boundary layer near y = 0. The
diffusive boundary layer is made up of components over the interface and ridge, which are
governed by
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αc0yy −
(

3
4

+ γ

β

(
−1

2
+ y

)
Γ0x

)
c0x − γ

β

(
y

2
− y2

2

)
Γ0xx c0y = 0 in D1, (C1a)

αc0yy − 3yc0x/2 = 0 in D2, (C1b)
where we have assumed y � 1 and have neglected second-order (third-order) terms in
O(y2) (O(y3)) in the streamwise (wall-normal) velocity. For x ∈ [−φ, φ] and y = 0, the
bulk–interface flux condition and the interfacial transport equation for the surfactant in
(2.39) give

αc0y = ν(c0 − Γ0) = β

[ (
3
4

− γ

2β
Γ0x

)
Γ0

]
x
. (C2)

At x = ±φ and y = 0, the no-surfactant-flux conditions at the stagnation points (2.40)
become (

3
4

− γ

2β
Γ0x

)
Γ0 = 0. (C3)

For x ∈ [φ, 2 − φ] and y = 0, the no-flux condition at the solid wall (2.41) gives

c0y = 0. (C4)

For x ∈ [−φ, 2 − φ] and y → 1 (shorthand for y values in the core of the channel, far
outside the boundary layer along y = 0), the core condition is

c0 → 1. (C5)

The boundary-layer equations (C1)–(C5) can be integrated across the boundary layer to
derive excess-surfactant-flux conditions. The total flux constraint (2.42b,c) is satisfied at
leading order in the core of the channel, implying that

β

(
3
4

− γ

2β
Γ0x

)
Γ0 +

∫ 1

0

(
3
4

+ γ

β

(
−1

2
+ y

)
Γ0x

)
(c0 − 1) dy = 0 in D1, (C6a)∫ φ

−φ

c0y dx =
∫ φ

−φ

(c0 − Γ0) dx = 0 in D1, (C6b)

∫ 1

0

3
2

y (c0 − 1) dy = 0 in D2, (C6c)

provided c0 → 1 sufficiently quickly where the boundary layer meets the core flow.
Equation (C6b) is derived by integrating (C2) and using (C3). The condition in (C6a)
indicates that the extra surfactant flux carried by the flow at the interface balances the
flux deficit in the boundary layer (where c0 � 1), which happens over the upstream part of
the interface. Conversely, over the downstream part of the interface, the reduced interfacial
surfactant flux is compensated by a surplus of bulk surfactant in the boundary layer (where
c0 � 1). This can be seen in the boundary-layer profiles at small α values, as depicted
in figures 3(a, f ) and 6(a, f ). The condition in (C6b) specifies that the total amounts of
surfactant adsorbed and desorbed along the interface must match, with continuity between
the bulk diffusive flux (first integral) and the adsorption–desorption flux (second integral).
Motivated by the simulations and scaling arguments provided in § 3.1, we propose the
asymptotic structures for regions M2D and A2D outlined in figure 4 and derive asymptotic
solutions of the surfactant distributions in the following subsections for the different
regions in the parameter space where boundary layers exist.
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C.1. Strong Marangoni effect and strong bulk–surface exchange: region M2D

We first consider the boundary-layer equations, (C1)–(C6), in the limit where bulk
diffusion is weak and bulk–surface exchange is strong, i.e. α � 1 and ν large. Suppose
the interfacial surfactant gradient leads to a significant adverse Marangoni effect,
immobilising the interface. Surfactant adsorbs onto the interface along its upstream part
and desorbs along the downstream part. Motivated by the scaling arguments given in
§ 3.1, we set

Γ0 = M1 + 3βx

2γ
− α2/3G(x) + · · · , c0 = C(x, Y ), (C7a,b)

where y = α1/3Y balances advection and diffusion in the bulk-surfactant equation (C1)
and M1 is a constant to be determined. Substituting (C7) into (C1)–(C6), (C1) becomes,
at leading order,

CY Y − 3Y Cx/2 = 0. (C8)

For x ∈ [−φ, φ] and Y = 0, we enforce Γ0 = c0 as bulk–surface exchange is strong, so
that (C2) becomes

CY − γ

2

[
Gx

(
3βx

2γ
+ M1

)]
x
= 0. (C9)

At x = ±φ and Y = 0, the no-flux conditions (C3) at the stagnation points are

Gx = 0, (C10)

and for x ∈ [φ, 2 − φ] and Y = 0, the no-flux condition (C4) at the solid wall is

CY = 0. (C11)

In the bulk of the periodic domain, for x ∈ [−φ, 2 − φ] and Y → ∞, the core condition
(C5) becomes

C → 1. (C12)

The excess-surfactant-flux conditions (C6) reduce to∫ ∞

0

3Y

2
(C − 1) dY + Gx

2

(
3βx

2
+ γ M1

)
= 0 in D1, (C13a)∫ ∞

0

3Y

2
(C − 1) dY = 0 in D2. (C13b)

We construct a similarity solution to (C8)–(C13), assuming that the length of
the interface is long compared with the boundary-layer thickness, and that there is
no interaction between adjacent plastrons. The bulk concentration is split into two
contributions that grow from the leading edge of the plastron:

C = 1 −
(

1 − M1 + 3βφ

2γ

)
F(η) + 3β

2γ
(x + φ)H(η) (C14)

for some functions F and H depending on the similarity variable η = Y/(x + φ)1/3. The
function F captures the response of the bulk field to the sudden drop in concentration
along Y = 0 at x = −φ; H captures the response to the linear profile of Γ0 in x > −φ.
Substituting (C14) into (C8)–(C12) leads to the boundary-value problems
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Fηη + η2 Fη/2 = 0, F(0) = 1, F(∞) = 0, (C15a−c)

Hηη + η2 Hη/2 − 3ηH/2 = 0, H(0) = 1, H(∞) = 0, (C16a−c)

which have solutions

F =
Γ

(
1
3
, η3/6

)

Γ

(
1
3

) , H =
(4 + η3)Γ

(
1
3
, η3/6

)
− 62/3η exp(−η3/6)

4Γ

(
1
3

) . (C17a,b)

Here Γ (z) is the gamma function and Γ (s, z) is the upper incomplete gamma function.
We then use the surfactant-flux conditions (C13) to calculate the response of the interfacial
concentration field to the bulk field (C14):

γ Gx

2

(
3βx

2γ
+ M1

)
= 3

2
(x + φ)2/3

(
1 − M1 + 3βφ

2γ

) ∫ ∞

0
ηF dη

− 9β

4γ
(x + φ)5/3

∫ ∞

0
ηH dη. (C18)

The total flux of surfactant must be continuous between domains. The no-flux condition
(C10) at x = φ requires that

M1 = 1 + 3βφ

2γ

(∫ ∞

0
ηF dη − 2

∫ ∞

0
ηH dη

)/ ∫ ∞

0
ηF dη = 1 − 3βφ

10γ
. (C19)

Integrating the total-flux condition (C18) across the plastron reveals that

�G =
∫ φ

−φ

{
27βφ

10γ
(x + φ)2/3

∫ ∞

0
ηF dη

− 9β

4γ
(x + φ)5/3

∫ ∞

0
ηH dη

}/ [
γ

2

(
1 + 3β

2γ

(
x − φ

5

))]
dx . (C20)

Hence, in region M2D , substituting (C7) into (2.44), the leading-order interfacial
concentration and drag reduction are given by

Γ0 = 1 + 3β

2γ

(
x − φ

5

)
+ · · · , DR0 = γα2/3�G

3φβ
. (C21a,b)

The leading-order interfacial surfactant distribution Γ0 in region M2D is a linear profile
with mean value close to 1, as found numerically (see figure 5a). This approximation
requires Γ0 > 0 at x = −φ, so that γ > 9βφ/5. For γ � 1, (C21) reduces to

�G = 81β(2φ)8/3

50γ 2

∫ ∞

0
ηF dη − 27β(2φ)8/3

16γ 2

∫ ∞

0
ηH dη ≡ �J

γ 2 , (C22)

Γ0 = 1 + 3β

2γ

(
x − φ

5

)
+ · · · , DR0 = α2/3�J (β, φ)

3φβγ
≡ m1α

2/3φ5/3

γ
, (C23a,b)

where m1 = 81(3/2)2/3/(50Γ (1/3)) ≈ 0.79, as in (3.1). This expression for the leading-
order drag reduction (C23b) assumes strong Marangoni effects (γ � 1), weak diffusion
(α � 1) and strong bulk–surface exchange, and shows how drag reduction in this limit
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arises from differences between the two self-similar components F and H of the bulk-
concentration field. As mentioned previously, this asymptotic prediction agrees with the
numerical simulations in the M2D region shown in figure 3(a,c–e).

C.2. Weak Marangoni effect and strong bulk–surface exchange: region A2D

We now consider the boundary-layer equations (C1)–(C6) when γ � 1 and α � 1. Weak
Marangoni effects imply that the interface cannot support any stress over most of its
length. Consequently, there exists a slip flow along most of the plastron, characterised
by a slip velocity in (C1a) close to 3/4. A short transition region, mediated by surface
diffusion, exists between a no-slip and a slip flow at the upstream contact line, but this is
disregarded here. Surfactant adsorbs onto the interface in the slip region (in −φ < x < x0,
say) and accumulates (and desorbs) in a region at the downstream end of the plastron
(in x0 < x < φ). Across this ‘quasi-stagnant’ region, the surface velocity smoothly
decreases to zero at the downstream contact line. Motivated by simulations and the scaling
arguments given in § 3.1, we propose the asymptotic structure illustrated in figure 4(b),
in which ‘deceleration’ and ‘transition’ regions are nested at the tip of the quasi-
stagnant region over length scales indicated. The formal requirement that the deceleration,
transition and quasi-stagnant layers are nested (γα1/2 � γ 3/4α1/8 � γ 3/5/α1/10 � 1) is
γ � α−3/2. We now discuss these regions in turn.

C.2.1. The slip region (−φ < x < x0)
In the slip region, surfactant adsorbs onto the interface, causing the interface to carry a
spatially growing component of the overall flux. Consequently, the bulk advective flux
falls with x . Here, we set

Γ0 = α1/2G(x), c0 = C(x, Y ), (C24a,b)

where y = α1/2Y balances advection and diffusion in the bulk-transport equation (C1).
When we substitute (C24) into (C1)–(C6), the bulk-transport equation (C1) in D1 becomes

CY Y − 3Cx/4 = 0. (C25)

At the interface α1/2G(x) = C(x, 0) in the strong-exchange limit and the flux condition
(C2) reduces to

CY (x, 0) = 3βGx/4. (C26)

The no-flux condition at the upstream stagnation point (C3) is

G(−φ) = 0. (C27)

For x ∈ [−φ, x0] and Y → ∞, the core condition (C5) is

C → 1. (C28)

We construct a similarity solution to (C25)–(C28) by expanding the surfactant fields for
α � 1 as

C(x, Y ) = C0(η) + (α(x + φ))1/2C1(η) + · · · , G(x) = (x + φ)1/2C1(0), (C29a,b)

with the similarity variable given by η = Y/(φ + x)1/2. Substituting (C29) into
(C25)–(C28) yields the boundary-value problems

1010 A58-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.339


Journal of Fluid Mechanics

C ′′
0 + 3ηC ′

0/8 = 0, C0(0) = 0, C0(∞) = 1, (C30a–c)

C ′′
1 + 3ηC ′

1/8 − 3C1/8 = 0, 3βC1(0) = 8C ′
0(0), C1(∞) = 0. (C31a–c)

These are solved by

C0 = erf(
√

3η/4), C1 = 4ierfc(
√

3η/4)/(
√

3β), (C32a,b)

where erf(z) is the error function, erfc(z) is the complementary error function and
ierfc(z) ≡ e−z2

/
√

π − z erfc(z) is the integrated complementary error function. We find
that the interfacial concentration field in the slip region is given by

Γ0 = 4
β

(
α(x + φ)

3π

)1/2

+ · · · , (C33)

contributing to (3.2a). The interfacial surfactant distribution Γ0 in region A2D is a
nonlinear boundary-layer profile scaling as α1/2x1/2 in the slip region of the interface (up
to x0), as found numerically (see figure 5b). There is a large vertical concentration gradient
across the boundary layer. Adsorption of surfactant onto the interface is accommodated by
the horizontal gradient of the advective flux βu0Γ0 ∼ 3βΓ0/4. Marangoni effects remain
subdominant, so the slip flow is uniform to this order, but the concentration rises with x to
accommodate the adsorbed material. The total flux adsorbed across the slip region, up to
the location x = x0 (to be determined), is given by∫ x0

−φ

c0y(x, 0) dx =
(

9α(x0 + φ)

3π

)1/2

+ · · · , (C34)

which is subdominant to the flux in the core. The slip region terminates abruptly, meeting
a very short deceleration region near x = x0 nested at the start of the quasi-stagnant region
(figure 4b).

C.2.2. Deceleration region (x − x0 = O(γ α1/2))
In the deceleration region (figure 4b), u0(x, 0) varies by O(1) over a short horizontal
scale �x and Γ0 ∼ α1/2 (where ∼ denotes ‘scales like’), based on continuity with
the slip region. Thus, �x ∼ γα1/2 for γΓ0x to vary by O(1) in (C2). Bulk diffusion
balances advection by u0 over a vertical length scale y ∼ (α�x)1/2 ∼ γ 1/2α3/4 using (C1).
Diffusion therefore influences the concentration field near the interface, while advection
dominates transport in the upper part of the boundary layer. At the downstream limit of
this region, u0 falls towards zero, with Γ0x ≈ 3β/(2γ ). The deceleration region is too short
for there to be appreciable desorption so flux conservation requires that u0 ∼ α1/2/Γ0 ∼
α1/2γ /(x − x0) at the outlet of the region. We write the interfacial flux as

u0(x, 0)Γ0 = 3
β

(
α(x0 + φ)

3π

)1/2

≡ 3α1/2

4
λ, where λ= 4

β

(
x0 + φ

3π

)1/2

,

(C35a,b)

as u0 = 3/4 + · · · and Γ0 is (C33) in the slip region. We then rescale, using

x = x0 + γα1/2 X, y = γ 1/2α3/4Y, Γ0 = α1/2λG(X), c0 = α1/2λC(X, Y ).

(C36a–d)
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Substituting (C36) into (C1)–(C6), the bulk-surfactant equation (C1) in D1 is given by

CY Y −
(

3
4

− λ

2β
G X

)
CX − λY

2β
G X X CY = 0, (C37)

neglecting terms of O(α3/4). We have G(X) = C(X, 0) in the strong-exchange limit and
the interfacial-surfactant equation (C2) simplifies to[

G

(
3
4

− λ

2β
G X

)]
X

= 0. (C38)

Integrating (C38) and matching it to the slip region, where G → 1 for X → −∞, gives

3
4

G − λ

2β
GG X = 3

4
, (C39)

which can be solved directly to give

G + log(G − 1) = (3β/(2λ))(X − X0) (C40)

for some X0 (as in Jensen & Halpern (1998), for example). Substituting G into (C35a),
we compare u0(x, 0) with the COMSOL simulations in figure 5(d), showing how u0 falls
steeply from 3/4. The core condition (C5) becomes

C → ∞ as Y → ∞. (C41)

Equations (C37)–(C41) constitute a nonlinear boundary-layer problem that describes
the abrupt ejection of bulk concentration towards the core of the channel in figure 3(f ).
We only consider the downstream limit of (C37)–(C41) here. The upstream condition on
C is provided from the near-wall component of the concentration in the slip region, which
grows in amplitude with Y in (C32). The downstream limit has self-similar form:

G ≈ 3β

2λ
(X − X0) + · · · , C ≈ 3β

2λ
(X − X0)Ĉ(η) + · · · , (C42a,b)

where the similarity variable is given by η = Y/(X − X0) for some X0 and Ĉ
satisfies Ĉηη = (λ/2β)Ĉ , which has solutions exp[±√

λ/2βη]. Concentration contours
are constant along lines Y = √

2β/λ(X − X0), representing ejection of bulk surfactant
away from the interface. Expressed in terms of the original variables using (C36), the
downstream limit (C42) of this region yields

Γ0 ≈ 3β

2γ
(x − x0), u0(x, 0) ≈ λα1/2γ

2β(x − x0)
for γα1/2 � x − x0 � γ 3/4α1/8,

(C43a,b)

which delivers an interfacial advective flux 3λα1/2/4 into a very short transition region
near x = x0. Surface diffusion is a subdominant effect in this region provided ε2 �
γ /α1/2. The leading-order interfacial concentration profile in the deceleration region,
(C43a), contributes to the second part of (3.2a) (for x0 � x) and (C43b) explains the steep
fall in surface velocity in figure 5(d) at the end of the slip region; the incident boundary
layer of thickness α1/2 is thickened to α1/2/u0 as u0 diminishes (see the arrow in figure 3f ).
The surface velocity in this regime, computed using (C35) with Γ0 evaluated using (C39),
is shown in figure 5(d).
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C.2.3. Transition region (x − x0 = O(γ 3/4α1/8))
In the transition region, there is a balance in the bulk between vertical diffusion, advection
by u0 (which is O(1)) and advection by shear (which is affected by viscous and
Marangoni effects). Hence, over a horizontal length scale �x , α/y2 ∼ u0/�x ∼ y/�x ;
thus y ∼ u0 ∼ (α�x)1/3. Matching u0 to the deceleration region requires u0 ∼ α1/2γ /�x ,
implying �x ∼ γ 3/4α1/8 and y ∼ u0 ∼ γ 1/4α3/8. The interfacial concentration is linear
at leading order (Γ0 ≈ 3β(x − x0)/(2γ )) with a correction of size u0�x/γ ∼ α1/2. The
bulk concentration is set by the dominant interfacial concentration and is O(�x/γ ) ∼
α1/8/γ 1/4. The region is again too short for there to be appreciable desorption, so the
interfacial flux is still O(α1/2). To provide a bridge between the deceleration region and the
quasi-stagnant region further downstream, we reintroduce shear 3Y/2 to the bulk transport
equation, using the scaling

x = x0 + α1/8γ 3/4 X, y = α3/8γ 1/4Y,

Γ0 = 3β

2γ
(x − x0) + α1/2G(X), c0 = α1/8

γ 1/4 C(X, Y ). (C44a–d)

Substituting (C44) into (C1)–(C6), the bulk transport equation (C1) in D1 simplifies to

CY Y +
(

G X

2β
− 3Y

2

)
CX − G X X

2β
Y CY = 0. (C45)

Again C(X, 0) = G(X) and the interfacial transport equation (C2) becomes

−
[

3β X

4
G X

]
X

= 0. (C46)

Using (C46), there is no exchange of surfactant with the bulk to leading order. Integrating
(C46) in X and matching to the deceleration region, XG X → λ as X → −∞. This can
be integrated in X to give G = −λ log X + A1 for some constant A1, which we substitute
into (C45), to obtain

CY Y − λ

2β

(
1
X

CX − Y CY

X2

)
− 3

2
Y CX = 0. (C47)

This linear boundary-layer problem bridges the scalings Y ∼ X for X � 1 and Y ∼ X1/3

for X � 1, but we do not solve the full problem here. Expressed in terms of original
variables using (C44), the downstream limit of the transition region demonstrates that

Γ0 ≈ 3β(x − x0)

2γ
, u0(x, 0) ≈ λα1/2γ

2β(x − x0)
for γ 3/4α1/8 � x − x0 � 1. (C48a,b)

Note that the interfacial concentration profile in this subregion, (C48a), remains linear and
exactly the same as in the deceleration region, see (C48a), by continuity. Over this part of
the interface, the interfacial flux is dominated by advection: u0(x, 0)Γ0 ≈ 3λα1/2/4. This
flux is delivered to the rest of the interface, in the last region that we call the quasi-stagnant
region for x0 < x < φ. The drag reduction can only be determined once the interfacial
concentration profile across the whole interface is determined.

C.2.4. The quasi-stagnant region (x0 < x < φ)
In the quasi-stagnant region, compression of the almost immobile interface promotes
desorption, returning surfactant to the bulk. Therefore, the interfacial flux of surfactant
decreases and the bulk flux increases with x . Following the scaling arguments and
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numerical simulations outlined in § 3.1, we write

Γ0 = 3β

2γ
(x − x0) + · · · , c0 = 3β

2γ
(x − x0)C(η) + · · · , (C49a,b)

where the similarity variable η = y/(α(x − x0))
1/3 is obtained by balancing advection

and diffusion in the bulk-transport equation (C1). Substituting (C49) into (C1)–(C6), the
bulk-surfactant equation (C1) in D1 simplifies to

Cηη + η2Cη/2 − 3ηC/2 = 0, C(0) = 1, C(∞) = 0. (C50a–c)

Equation (C50) is the same as (C16), whose solution is given in (C17b). At the interface
x ∈ [x0, φ] and Y = 0, the interfacial-surfactant equation (C2) becomes

β [u0(x, 0)(x − x0)]x = (α(x − x0))
2/3C ′(0). (C51)

Integrating (C51) and applying the no-flux condition u0(φ, 0) = 0 gives

βu0(x, 0) = −3α2/3C ′(0)

5

(
(φ − x0)

5/3

x − x0
− (x − x0)

2/3
)

, (C52)

where C ′(0) = −35/3/(24/3Γ (1/3)) ≈ −0.92. This profile successfully captures the
COMSOL prediction in figure 5(d). In figure 5(d), the small discrepancy between the
asymptotic results (C35), (C52) and the 2-D long-wave model arises from the retention of
surface diffusion in its numerical approximation. Matching (C52) to the surface velocity
in the transition region (C48) yields

5λγ = −6α1/6C ′(0)(φ − x0)
5/3. (C53)

The constants λ and x0 have to be evaluated numerically for given α, β, γ and φ using
(C35) and (C53). Thus, in the quasi-stagnant region of A2D , the interfacial concentration
is given by

Γ0 ≈ 3β

2γ
(x − x0) = 3β

2γ

(
x − φ +

( −5λγ
6α1/6C ′(0)

)3/5
)

, (C54)

using (C53). As anticipated, the leading-order interfacial surfactant concentration (C54)
obtained in the quasi-stagnant-cap region is linear and equal to the profiles obtained in
the two previous short subregions: the deceleration (Appendix C.2.2) and the transition
regions (Appendix C.2.3). This linear profile agrees with our numerical results in region
A2D for the quasi-stagnant part of the interface, i.e. for x0 < x < φ, as depicted in
figure 5(b). Only now can we substitute (C54) into (2.44), to obtain the leading-order
drag reduction in region A2D , which is given by

DR0 = 1 − 1
2φ

( −5λ
6C ′(0)

)3/5
γ 3/5

α1/10 ≡ 1 − a1γ
3/5

α1/10 , (C55)

as in (3.2b). Equations (C54) and (C55) show how bulk diffusion, captured in the
non-dimensional coefficient α1/10, has a weak but non-zero influence on the interfacial
surfactant profile that determines DR0. The solution is valid as long as the layers are
nested (γ � α−3/2) and x0 > −φ, such that 1 − DR0 < 1. In order to determine x0, λ and
a1, we solve (C35) and (C53) numerically to get λ and x0 for given α, β, γ and φ, from
which we can evaluate a1 = (−5λ/(6C ′(0)))3/5/(2φ) and therefore DR0.

In summary, to acquire the solution in the quasi-stagnant region, where the surfactant
gradient decelerates the flow towards the downstream stagnation point, (C54)–(C55),
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we have resolved a nested asymptotic structure which includes deceleration
(Appendix C.2.2) and transition (Appendix C.2.3) regions. The nested asymptotic
structure has been matched to a slip region at the upstream end of the plastron (Appendix
C.2.1), where the surfactant gradient has a weak effect on the flow and slips from the
upstream stagnation point. These four asymptotic regions are detailed in figure 4(b), which
we used to describe and explain the numerical solution that we see in figure 3(f ). Using the
expressions for u0(x, 0) and λ in the quasi-stagnant and slip regions, (C52) and (C35b),
respectively, the surfactant desorbed across the quasi-stagnant region is given by∫ φ

x0

c0y(x, 0) dx = −
(

9α(x0 + φ)

3π

)1/2

+ · · · , (C56)

which matches the total amount of surfactant adsorbed in the slip region in (C34), as
required by the conservation of surfactant.

C.3. Weak Marangoni effect and weak bulk–surface exchange: region A2D
E

In region A2D
E , we simplify the boundary-layer equations (C1)–(C6), where bulk diffusion

and bulk–surface exchange are weak compared with Marangoni effects and advection, i.e.
α � 1 and small ν. In this regime, there is a one-way coupling of the bulk concentration
onto the interfacial concentration, with c0 ≈ 1 everywhere, and the interfacial surfactant
distribution is in the classical stagnant-cap regime (He et al. 1991), with a streamwise-
averaged concentration imposed by the bulk concentration that is approximately equal to
1. Here, the surfactant gradient generated by the flow renders the downstream end of the
interface no slip and the upstream end of the interface shear-free. We expand the surfactant
field as follows:

c0 = 1 + αC1(x, y) + · · · , Γ0 = G0(x) + αG1(x) + · · · , (C57a,b)

and substitute (C57) into (C1)–(C6). In the interfacial surfactant equation (C2), there is no
flux of bulk surfactant onto the interface, such that c0y = 0. For x ∈ [−φ, φ] and y = 0,
we have

3β

4
G0 − γ

2
G0x G0 = 0, (C58)

at leading order, and where we used the no flux of interfacial surfactant condition (C3).
The surfactant flux condition (C6b) in D1 with c0 ∼ 1 reduces to∫ φ

−φ

G0 dx = 2φ. (C59)

A piecewise linear solution to the nonlinear ordinary differential equation (C58) exists for
2φ > 4γ /3β, such that in A2D

E the interfacial-surfactant distribution is given by

G0 =
{

0 for − φ < x < x0,
3β
2γ

(x − x0) for x0 < x < φ.
(C60)

This piecewise linear stagnant-cap profile for the interfacial surfactant concentration
agrees with our numerical results shown in figure 7(b). We evaluate x0 using the
no-net-flux condition (C59), such that

x0 = φ −
(

8φγ

3β

)1/2

, (C61)
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where x0 > −φ to ensure existence of the no-surfactant part of the profile in (C60). Hence,
for 2φ > 4γ /3β, the leading-order drag reduction calculated by substituting (C60) into
(2.44) is given by

DR0 = 1 −
(

2γ

3φβ

)1/2

. (C62)

This solution for the A2D
E region, already given in (3.4c), is equivalent to that in region

A1D
E in the strong-cross-channel-diffusion problem (Tomlinson et al. 2023a). It agrees

with numerical results shown in figure 6.
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