THE DISTRIBUTION OF THE MAXIMUM OF PARTIAL SUMS OF INDEPENDENT RANDOM VARIABLES

MARK KAC and HARRY POLLARD

1. The problem. It has been shown [1] that if $X_{1},+X_{2}, \ldots$ are independent random variables each of density $(2 \pi)^{-\frac{1}{2}} e^{-\frac{x_{2}^{2}}{2}}$, and if $s_{k}=X_{1}+X_{2}+\ldots+X_{k}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\max _{k<n t}\left|s_{k}\right|<a \sqrt{ } n\right\}=\frac{4}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \exp \left\{-\frac{(2 j+1)^{2} \pi^{2} t}{8 a^{2}}\right\} \tag{1.1}
\end{equation*}
$$

This result, which can be generalized to random variables which need not be normally distributed [2], is closely connected with the theory of diffusion and Brownian motion. In fact the above limiting distribution is equal to

$$
\int_{-a}^{a} P(x, t) d x \text {, where } P(x, t) \text { is the fundamental solution of } P_{t}=\frac{1}{2} P_{x x}
$$

which becomes singular at $x=0$ as $t \rightarrow 0$ and which is subject to the condition $P(-a, t)=P(a, t)=0$, corresponding to absorbing barriers.

The connection between this problem and the theory of diffusion hinges on the fact that the second moments of the X_{j} are finite. It is therefore of interest to investigate analogous problems for random variables with an infinite second moment. For this purpose we have chosen the case in which the X_{j} have the same Cauchy density $\left[\pi\left(1+x^{2}\right)\right]^{-1}$. Our principal goal is the computation (§6) of the limiting distribution

$$
\begin{equation*}
p(a, t)=\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\max _{k<n t}\left|s_{k}\right|<a n\right\} \tag{1.2}
\end{equation*}
$$

where the s_{k} retain their preceding significance as the partial sums $X_{1}+X_{2}+$ $\ldots+X_{k}$.

The computation will be effected by a series of reductions which culminate in an integral equation of the Hilbert-Schmidt type. It unfortunately does not seem soluble in terms of known functions.

We are, nevertheless, able to compute the mean time of absorbtion for a Cauchy process $x(t)$. Define the random variable $T(a)$ as the greatest lower bound of those t 's for which

$$
\underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }}|x(\nu)|<a .
$$

$T(a)$ is thus the time during which $x(t)$ remains in the strip between $-a$ and $+a$ before it leaves that strip for the first time. It turns out that $E\{T(a)\} \equiv a$, and

[^0]\[

$$
\begin{equation*}
E\left\{T^{2}(a)\right\}=\frac{4}{\pi} a^{2}\left\{\frac{1}{2}+\frac{1}{1^{2}}-\frac{1}{3^{2}}+\frac{1}{5^{2}} \ldots\right\} \tag{1.3}
\end{equation*}
$$

\]

2. Existence of the distribution $p(a, t)$. Suppose then that the X_{j} are independent and Cauchy distributed with density $\left[\pi\left(1+x^{2}\right)\right]^{-1}$. Consider the space of all functions $x(t), t \geqslant 0, x(0)=0$, and for $0<t_{1}<t_{2}<\ldots<t_{n}$ assign to the set of $x(t)$ for which

$$
a_{1}<x\left(t_{1}\right)<b_{1}, \ldots, a_{n}<x\left(t_{n}\right)<b_{n}
$$

the measure
$\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} Q\left(x_{1}, t_{1}\right) Q\left(x_{2}-x_{1}, t_{2}-t_{1}\right) \ldots Q\left(x_{n}-x_{n-1}, t_{n}-t_{n-1}\right) d x_{1} \ldots d x_{n}$,
where

$$
Q(x, t)=\frac{1}{\pi} \frac{t}{x^{2}+t^{2}}
$$

It has been shown ([3], [4]) that when this measure is extended it has the property that almost every $x(t)$ has at most a denumerable number of discontinuities, all of the first kind (jump discontinuities). Also if a is fixed, almost all $x(\nu)$ are continuous at $\nu=a$. Consequently almost every $x(\nu)$ has the property

$$
\underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }}|x(\nu)|=\lim _{n \rightarrow \infty} \max _{k<n t}|x(k / n)|,
$$

and thus $\underset{\substack{\text { l.u.b. }}}{ }|x(\nu)|$ is a measurable function. Moreover,

$$
\begin{equation*}
\operatorname{Prob}\{\underset{0 \leqslant \nu \leqslant t}{\{1 . \mathrm{u} . \mathrm{b} .}|x(\nu)|<a\}=\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\max _{k \leq n t}|x(k / n)|<a\right\} \tag{2.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{Prob}\left\{\max _{k<n t}|x(k / n)|<a\right\}=\operatorname{Prob}\left\{\max _{k<n t}\left|s_{k}\right|<a n\right\} \tag{2.2}
\end{equation*}
$$

the existence of $p(a, t)$, as defined by (1.2) is established. To see that (2.2) is satisfied we write

$$
x\left(\frac{k}{n}\right)=\sum_{l=0}^{k-1}\left\{x\left(\frac{l+1}{n}\right)-x\left(\frac{l}{n}\right)\right\}
$$

and note that from the definition of the Cauchy measure it follows that the increments $x\left(\frac{l+1}{n}\right)-x\left(\frac{l}{n}\right)$ are independent and all have the density $Q\left(x, \frac{1}{n}\right)$. Thus, expressing both sides of (2.2) as multiple integrals we see that they are identical.
3. First reduction of the problem. We have
$\operatorname{Prob}\left\{\max _{1 \leqslant k \leqslant m}\left|s_{k}\right|<a n\right\}$

$$
=\left(\int_{-a}^{a}\right)^{m} Q\left(x_{1}, \tau\right) Q\left(x_{2}-x_{1}, \tau\right) \ldots Q\left(x_{m}-x_{m-1}, \tau\right) d x_{1} \ldots d x_{m}
$$

where $\tau=1 / n$. Now let

$$
\begin{equation*}
\varphi_{m}(x)=\left(\int_{-a}^{a}\right)^{m-1} Q\left(x_{1}, \tau\right) Q\left(x_{2}-x_{1}, \tau\right) \ldots Q\left(x-x_{m-1}, \tau\right) d x_{1} \ldots d x_{m-1} \tag{3.1}
\end{equation*}
$$

and

$$
\varphi_{0}(x)=Q(x, \tau)=\frac{1}{\pi} \frac{\tau}{x^{2}+\tau^{2}}=\frac{1}{\pi} \frac{n}{n^{2} x^{2}+1} ;
$$

note that

$$
\varphi_{m}(x)=\int_{-a}^{a} \varphi_{m-1}(y) \varphi(x-y ; \tau) d y .
$$

Furthermore let

$$
\psi_{\tau}(x)=\tau \sum_{m=0}^{\infty} e^{-m{ }^{s} \tau} \varphi_{m}(x), \quad \quad s>0
$$

We shall show that

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \int_{-a}^{a} \psi_{\tau}(x) d x=\int_{0}^{\infty} e^{-s t} \operatorname{Prob}\{\underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }}|x(\nu)|<a\} d t . \tag{3.2}
\end{equation*}
$$

Letting

$$
f_{\tau}(t)=\int_{-a}^{a} \varphi_{m}(x) d x \quad \quad m \tau<t \leqslant(m+1) \tau
$$

we see that $0<f_{\tau}(t) \leqslant 1$, and by (2.1), (2.2) that

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\max _{1 \leqslant k \leqslant m}\left|s_{k}\right|<a n\right\}=\lim _{\tau \rightarrow 0} f_{\tau}(t)=\operatorname{Prob}\left\{\operatorname{lim.b.~}_{0 \leqslant \nu \leqslant t}|x(\nu)|<a\right\}
$$

where m satisfies, of course, the inequality $n t-1 \leqslant m<n t$.
Thus

$$
\lim _{\tau \rightarrow 0} \int_{0}^{\infty} e^{-s t} f_{\tau}(t) d t=\int_{0}^{\infty} e^{-s t} \operatorname{Prob}\{\text { 1.u.b. }|x(\nu)|<a\} d t
$$

On the other hand

$$
\begin{aligned}
& \int_{-a}^{a} \psi_{\tau}(x) d x=\frac{s \tau}{1-e^{-s t}} \int_{0}^{\infty} e^{-s t} f_{\tau}(t) d t \\
& \quad=\frac{s \tau}{1-e^{-s \tau}} \sum_{m=0}^{\infty} \int_{m \tau}^{(m+1) \tau} e^{-s t} d t \int_{-a}^{a} \varphi_{m}(x) d x
\end{aligned}
$$

and (3.2) follows.
Note also that the definitions of $\varphi_{m}(k)$ and $\psi_{\tau}(x)$ imply that

$$
\begin{equation*}
\frac{e^{s \tau}-1}{\tau} \psi_{\tau}(x)-e^{s \tau} Q(x, \tau)=\frac{1}{\tau}\left\{\int_{-a}^{a} \psi_{\tau}(y) Q(x-y, \tau) d y-\psi_{\tau}(x)\right\} . \tag{3.3}
\end{equation*}
$$

4. Passage to the limit. It follows from (3.1) that

$$
\begin{aligned}
0<\varphi_{m}(x) & <\left(\int_{-\infty}^{\infty}\right)^{m-1} Q\left(x_{1}, \tau\right) \ldots Q\left(x-x_{m-1}, \tau\right) d x_{1}, \ldots, d x_{m-1} \\
& =Q(x,(m+1) \tau)=\frac{1}{\pi} \frac{(m+1) \tau}{x^{2}+(m+1)^{2} \tau^{2}}
\end{aligned}
$$

and hence that

$$
0<\psi_{\tau}(x)<\frac{\tau}{\pi} \sum_{m=0}^{\infty} e^{-m s \tau} \frac{(m+1) \tau}{x^{2}+(m+1)^{2} \tau^{2}} .
$$

For $p>1$ define

$$
\|f\|=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d x\right)^{1 / p}
$$

Then

$$
\begin{aligned}
\left\|\psi_{\tau}(x)\right\| & <\frac{\tau}{\pi} \sum_{m=0}^{\infty} e^{-m s^{\tau}}(m+1) \tau\left\|\left[x^{2}+(m+1)^{2} \tau^{2}\right]^{-1}\right\| \\
& \leqslant A \tau^{1 / p} \sum_{m=0}^{\infty} \frac{e^{-m s \tau}}{(m+1)^{1-1 / p}}
\end{aligned}
$$

Since

$$
\sum_{m=0}^{n} \frac{1}{(m+1)^{1-1 / p}} \sim B n^{1 / p}
$$

$$
n \rightarrow \infty
$$

it follows by an Abelian argument that

$$
\sum_{m=0}^{\infty} \frac{e^{-m s \tau}}{(m+1)^{1-1 / p}} \sim C \tau^{-1 / p}, \quad \tau \rightarrow 0
$$

Hence

$$
\begin{equation*}
\left(\int_{-a}^{a}\left|\psi_{\tau}(x)\right|^{p} d x\right)^{1 / p} \leqslant\left\|\psi_{\tau}(x)\right\|<C(p, s), \tag{4.1}
\end{equation*}
$$

where C is independent of τ. By a theorem of Banach and Saks [5] a subsequence $\left\{\psi_{\tau_{k}}(x)\right\}$ can be chosen so that $\tau_{k} \rightarrow 0$ and

$$
\begin{equation*}
\stackrel{(p)}{\lim _{k \rightarrow \infty} . \lim } \frac{1}{k} \sum_{1}^{k} \psi_{\tau_{j}}(x)=\psi(x) \tag{4.2}
\end{equation*}
$$

in the sense of mean convergence in $L^{p}(-a, a)$. Strong convergence will be necessary to derive formula (5.2). From (3.2) we infer that

$$
\int_{-a}^{a} \psi(x) d x=\int_{0}^{\infty} e^{-s t} \operatorname{Prob}\{\underset{\substack{\text { l.u.b. } \\ 0 \leqslant v \leqslant t}}{ }|x(\nu)|<a\} d t
$$

and consequently we may concentrate on calculating $\int_{-a}^{a} \psi(x) d x$.
5. Introduction of the infinitesimal generator. We shall use the following lemma [6, 386]:

Lemma 5.1. If $g(x)$ and $g^{\prime}(x)$ belong to $L^{2}(-a, a)$ and $g(-a)=g(a)=0$, then

$$
\begin{equation*}
\underset{r \rightarrow 0}{\text { 1.i.m. }} \frac{1}{\tau}\left\{\frac{\tau}{\pi} \int_{-a}^{a} \frac{g(y)}{\tau^{2}+(x-y)^{2}} d y-g(x)\right\}=\frac{1}{\pi} \text { P.V. } \int_{-a}^{a} \frac{g^{\prime}(y)}{y-x} d y . \tag{5.1}
\end{equation*}
$$

Now let $g(x)$ be any function satisfying the conditions of the lemma. Multiply both sides of (3.3) by $g(x)$ and integrate from $-a$ to a to obtain

$$
\begin{array}{r}
\frac{e^{s \tau}-1}{\tau} \int_{-a}^{a} \psi_{\tau}(x) g(x) d x-e^{s \tau} \int_{-a}^{a} Q(x, \tau) g(x) d x \\
\\
=\int_{-a}^{a} \psi_{\tau}(y) h_{\tau}(y) d y
\end{array}
$$

where

$$
h_{\tau}(x)=\frac{1}{\tau}\left\{\frac{\tau}{\pi} \int_{-a}^{a} \frac{g(y) d y}{\tau^{2}+(y-x)^{2}}-g(x)\right\} .
$$

Letting $\tau \rightarrow 0$, through the sequence τ_{k}, we infer from (4.2) with $p=2$ and. our lemma that

$$
\begin{equation*}
s \int_{-a}^{a} \psi(x) g(x) d x-g(0)=\int_{-a}^{a} \psi(y) h(y) d y \tag{5.2}
\end{equation*}
$$

where

$$
h(x)=\frac{1}{\pi} \mathrm{P} . \mathrm{V} . \int_{-a}^{a} \frac{g^{\prime}(y)}{y-x} d y
$$

It is on the equation (5.2) that we shall base our determination of $p(a, t)$.
6. Solution of the problem. For the sake of simplicity we assume that $a=1$. Let m be odd and set

$$
\begin{equation*}
g(x)=\sin m(\arccos x)-m \sqrt{1-x^{2}} \tag{6.1}
\end{equation*}
$$

It is easy to verify that $g(x)$ satisfies the conditions of Lemma 5.1. Moreover it is known $[7,8]$ that

$$
\begin{equation*}
\text { P.V. } \int_{-1}^{1} \frac{\cos m(\arccos y)}{\left(1-y^{2}\right)^{1 / 2}} \frac{d y}{y-x}=\frac{\pi}{m} \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { P.V. } \quad \int_{-1}^{1} \frac{y}{\left(1-y^{2}\right)^{1 / 2}} \frac{d y}{y-x}=\pi \tag{6.3}
\end{equation*}
$$

Substituting (6.1) in (5.2), and using (6.2) and (6.3), we get after a rearrangement

$$
\begin{array}{r}
\frac{s}{m} \int_{-1}^{1} \psi(x) \sin m(\arccos x) d x+\int_{-1}^{1} \frac{\psi(x) \sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} d x \tag{6.4}\\
=\int_{-1}^{1} \psi(x)\left\{1+s\left(1-x^{2}\right)^{1 / 2}\right\} d x-1+\frac{\sin m \pi / 2}{m}
\end{array}
$$

The functions

$$
\left(\frac{2}{\pi}\right)^{1 / 2} \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 4}}
$$

form an orthonormal set on $(-1,1)$ and since $\psi \in L^{p}(-1,1)$ for every $p>1$ we see that

$$
\frac{\psi(x)}{\left(1-x^{2}\right)^{1 / 4}} \in L^{2}
$$

and, in particular

$$
\lim _{m \rightarrow 0} \int_{-1}^{1} \psi(x) \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} d x=0
$$

Also

$$
\lim _{m \rightarrow 0} \frac{1}{m} \int_{-1}^{1} \psi(x) \sin m(\arccos x) d x=0,
$$

and consequently it follows from (6.4) that

$$
\int_{-1}^{1} \psi(x)\left\{1+s\left(1-x^{2}\right)^{1 / 2}\right\} d x=1
$$

Thus for odd m
(6.5) $\frac{s}{m} \int_{-1}^{1} \psi(x) \sin m(\arccos x) d x+\int_{-1}^{1} \psi(x) \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} d x$

$$
=\frac{\sin m \pi / 2}{m},
$$

and since $\psi(x)$ is even we have also
(6.6) $\frac{s}{m} \int_{-1}^{1} \psi(x) \sin m(\arccos x) d x+\int_{-1}^{1} \psi(x) \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} d x$

$$
=0=\frac{\sin m \pi / 2}{m}
$$

for even m. It follows from (6.5) and (6.6) that

$$
s \int_{-1}^{1} \psi(x) \sum_{m=1}^{n} \frac{\sin m(\arccos x) \sin m(\arccos y)}{m} d x
$$

$$
\begin{equation*}
+\sum_{m=1}^{n} \sin m(\arccos y) \int_{-1}^{1} \psi(x) \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} \mathrm{~d} x \tag{6.7}
\end{equation*}
$$

$$
=\sum_{m=1}^{n} \frac{\sin m(\arccos 0) \sin m(\arccos y)}{m}
$$

Now, for fixed x,

$$
\begin{aligned}
& \text { 1.i.m. }{ }_{n \rightarrow \infty}^{(2)} \sum_{m=1}^{n} \frac{\sin m(\arccos x) \sin m(\operatorname{arc} \cos y)}{m}=K(x, y) \\
& ==\sum_{m=1}^{\infty} \frac{\sin m(\arccos x) \sin m(\operatorname{arc} \cos y)}{m} \\
& ==\frac{1}{4} \log \frac{1-x y+\left[\left(1-x^{2}\right)\left(1-y^{2}\right)\right]^{1 / 2}}{1-x y-\left[\left(1-x^{2}\right)\left(1-y^{2}\right)\right]^{1 / 2}}
\end{aligned}
$$

$$
\underset{n \rightarrow \infty}{\text { 1.i.m. }} \sum_{m=1}^{n} \frac{\sin m(\arccos 0) \sin m(\arccos y)}{m}=K(0, y) \text {, }
$$

and since $\psi(x)\left(1-x^{2}\right)^{-\frac{1}{2}} \in L^{2}$

$$
\text { 1.i.m. }{ }_{n \rightarrow \infty}^{(2)} \sum_{m=1}^{n} \sin m(\arccos y) \int_{-1}^{1} \psi(x) \frac{\sin m(\arccos x)}{\left(1-x^{2}\right)^{1 / 2}} d x=\frac{\pi}{2} \psi(y) .
$$

Thus letting $n \rightarrow \infty$ in (6.7) we obtain

[^1]\[

$$
\begin{equation*}
s \int_{-1}^{1} K(x, y) \psi(x) d x+\frac{\pi}{2} \psi(y)=K(0, y) . \tag{6.8}
\end{equation*}
$$

\]

Consider the kernel

$$
K(x, y)=\sum_{m=1}^{\infty} \frac{\sin m(\arccos x) \sin m(\arccos y)}{m}
$$

It is symmetric and

$$
\int_{-1}^{1} \int_{-1}^{1} K^{2}(x, y) d x d y<\infty .
$$

It is clearly positive definite, and hence its eigenfunctions $g_{j}(x)$ form a complete set. It also follows almost at once that the eigenfunctions $g_{j}(x)$ are continuous. Multiplying (6.8) by $g_{j}(y)$ and integrating we obtain

$$
\int_{-1}^{1} \psi(x) g_{j}(x) d x=\frac{g_{j}(0)}{s+\pi / 2 \lambda_{j}},
$$

where λ_{j} is the eigenvalue of $K(x, y)$ which corresponds to the normalized eigenfunction $g_{j}(y)$. Thus

$$
\psi(x) \sim \sum_{j=1}^{\infty} \frac{g_{j}(0)}{s+\pi / 2 \lambda_{j}} g_{j}(x)
$$

and consequently

$$
\int_{-1}^{1} \psi(x) d x=\sum_{j=1}^{\infty} \frac{g_{j}(0)}{s+\pi / 2 \lambda_{j}} \int_{-1}^{1} g_{j}(x) d x .
$$

For the general values of a the result is

$$
\int_{-a}^{a} \psi(x) d x=\frac{1}{a} \sum_{j=1}^{\infty} \frac{1}{s+\pi / 2 a \lambda_{j}} g_{j}(0) \int_{-a}^{a} g_{j}(x / a) d x,
$$

where the g_{j} and λ_{j} retain their previous meanings. The last series is a Stieltjes transform, and consequently an iterated Laplace transform [10, 334]. Hence we can invert the series term by term to obtain

$$
\begin{equation*}
p(a, t)=\frac{1}{a} \sum_{j=1}^{\infty} e^{-\pi t / 2 a \lambda_{j}} g_{j}(0) \int_{-a}^{a} g_{j}(x / a) d x \tag{6.9}
\end{equation*}
$$

This is the Cauchy analogue of formula (1.1). Although we are unable to reduce (6.9) to a more explicit form we can draw significant conclusions about the mean time before absorption in a Cauchy process. If we define $T(a)$ as the greatest lower bound of those t 's for which

$$
\underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }}|x(\nu)|<a
$$

we see that

$$
p(t, a)=\operatorname{Prob}\{\underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }}|x(\nu)|<a\}=\operatorname{Prob}\{T(a)>t\}=1-\sigma(t)
$$

Consequently,

$$
\begin{gathered}
\int_{0}^{\infty} t^{k} p(t, a) d t=\int_{0}^{\infty} t^{k} \operatorname{Prob}\{T(a)>t\} d t \\
=\int_{0}^{\infty} t^{k}(1-\sigma(t)) d t=\frac{1}{k+1} \int_{0}^{\infty} t^{k+1} d \sigma(t)=\frac{1}{k+1} E\left\{T^{k+1}(a)\right\} .
\end{gathered}
$$

In particular,

$$
E\{T(a)\}=\int_{0}^{\infty} p(t, a) d t
$$

and

$$
E\left\{T^{2}(a)\right\}=2 \int_{0}^{\infty} t p(t, a) d t
$$

From (6.9) we get

$$
\int_{0}^{\infty} p(t, a) d t=\frac{2 a}{\pi} \sum_{j=1}^{\infty} \lambda_{j} g_{j}(0) \int_{-1}^{1} g_{j}(x) d x=\frac{2 a}{\pi} \int_{-1}^{1} K(0, x) d x=a .
$$

Likewise, formula (1.3) for $E\left\{T^{2}(a)\right\}$ can be obtained in terms of the iterated kernel $K^{(2)}(0, x)$. Calculation of higher moments of $T(a)$ involves, of course, higher iterates of the kernel K.

Only slight modifications of the theory are needed in order to calculate

$$
p(a, b, t)=\operatorname{Prob}\{-b<\underset{0 \leqslant \nu \leqslant t}{\text { g.l.b. }} x(\nu) \leqslant \underset{0 \leqslant \nu \leqslant t}{\text { l.u.b. }} x(\nu)<a\} .
$$

Defining $T(a, b, t)$ in a way analogous to $T(a, t)$ it is then easy to show that

$$
E\{T(a, b, t)\}=\sqrt{a b}
$$

In the Gaussian case $\sqrt{a b}$ is to be replaced by $a b$.
Finally, let us mention that from (6.8) we can determine the behaviour of $\psi(y)$ for y near 0 . In fact, since $\psi \in L^{2}, s \int_{-1}^{1} K(x, y) \psi(x) d x$ is bounded for all y and it follows that

$$
\psi(y) \sim \frac{2}{\pi} K(0, y) \sim \frac{1}{\pi} \log \frac{1}{|y|}+\text { const } .
$$

References

11] L. Bachelier, Les lois des grands nombres du calcul des probabilités (Paris, GauthierVillars), 1937.
[2] P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc., vol. 52 (1946), 292-302.
[3] P. Lévy, Sur les intégrales dont les éléments sont des variables aléatoires indépendantes, Annali delle Universita Toscane, Pisa (2) 3 (1934), 337-366.
[4] J. L. Doob, Regularity properties of certain families of chance variables, Trans Amer. Math. Soc., vol. 47 (1940), 455-486.
[5] S. Banach and S. Saks, Sur la convergence forte dans les champs L^{p}, Stud. Math., vol. 2 (1930), 51-57.
[6] E. Hille, Functional Analysis and Semigroups, Amer. Soc. Coll. Publ. 1948.
[7] G. Hamel, Integralgleichungen (Berlin, 1937), 145-148.
[8] E. Reissner, Solution of a class of singular integral equations, Bull. Amer. Math. Soc., vol. 51 (1945), 920-922.
[9] M. Kac, On the distributions of certain Wiener functionals, Trans. Amer. Math. Soc., vol. 68 (1949), 1-13.
[10] D. V. Widder, The Laplace Transform (Princeton, 1940).
[11] H. Söhngen, Lösung einer Integralgleichung in der Tragflugeltheorie, Math. Zeit., vol. 45 (1939), 245-264.

Cornell University

[^0]: Received March 11, 1949. Kac's part of the work was done on an ONR project.

[^1]: *This kernel is known to aerodynamicists under the name of the "Betz Kernel". See e.g. Söhngen [11].

