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SUBCOMPACT CARDINALS, TYPE OMISSION,

AND LADDER SYSTEMS

YAIR HAYUT ANDMENACHEM MAGIDOR

Abstract. We provide a model theoretical and tree property-like characterization of ë-Π11-

subcompactness and supercompactness. We explore the behavior of these combinatorial principles at

accessible cardinals.

§1. Introduction. The study of very large cardinals and their connections to
reflection principles in infinitary combinatorics is a fruitful area of research that
began with the work of Erdoős, Tarski, Keisler, Scott, and others [16]. Since Scott’s
work on measurable cardinals [24], large cardinal axioms are usually defined in
terms of the existence of certain elementary embeddings between transitive models
(see [8, 15]). The study of elementary embeddings brings to light relationships
between various large cardinals which are usually more difficult to derive using
purely combinatorial arguments. In this paperwewill focus on the ë-Π11-subcompact
cardinals, which were isolated by Neeman and Steel in [21]. These cardinals can be
viewed intuitively as a generalization of weak compactness to successor cardinals, or
more precisely to Pκκ

+. See [4] for the analogous definition of the weakly compact
filter and [23] for thredability. In [21], the terminology Π21-subcompact is used to
refer to what we denote by κ+-Π11-subcompact.
We will provide two characterizations of ë-Π11-subcompactness. The first one,

which is discussed in Section 3, is model theoretical in nature and uses a mixture
of compactness and type omission. This characterization is an strengthening of
Benda’s theorem from [1]. We modify Benda’s original argument in order to
remove the need of using infinitary logic and getting local equivalence. In [2],
Boney obtained a characterization ofmeasurable, supercompact, and huge cardinals
using similar ideas—a combination of compactness and type omission. The second
characterization, discussed in Section 4, is purely combinatorial, and can be viewed
as a strengthening of a local instance of the strong tree property, together with
inaccessibility, thus continuing the results of [14, 19, 27] and others.
The paper is organized as follows. In Section 2, we review some facts about

strong compactness and ë-Π11-subcompactness. In Sections 3 and 4, we provide
characterizations of ë-Π11-subcompactness. In Section 5, we investigate the analogue
of the combinatorial principles that were defined in Section 4 for ℵ2, and show that
the equivalence that holds at inaccessible cardinals consistently fails at ℵ2.
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1112 YAIR HAYUT ANDMENACHEMMAGIDOR

§2. Strong compactness and Π11-subcompactness. In this section we will address
some basic results regarding strongly compact and supercompact cardinals, as well
as their local versions. The results in this section are not due to us, and are scattered
through the literature.
Keisler and Tarski [17] defined a cardinal κ to be strongly compact cardinal if

every κ-complete filter can be extended to a κ-complete ultrafilter or equivalently if
every Lκ,κ-theory T has a model provided that every subset T

′ ⊆ T of size < κ has
a model.

Definition 2.1. We say that a theory T is < κ-satisfiable if every subset of T of
size < κ has a model. We say that a theory is satisfiable if it has a model.

Restricting the size of T we obtain (consistently) a non-trivial hierarchy.

Definition 2.2. Let κ ≤ ë be cardinals. We say that Lκ,κ-compactness for
languages of size ë holds if every theory T over a language of size ë which is
< κ-satisfiable is satisfiable.

Localizing the equivalence for strong compactness, we obtain:

Lemma2.3. The following are equivalent for uncountable cardinalsκ ≤ ë = ë<κ :

• Lκ,κ-compactness for languages of size ë holds.
• For every transitive model M of size ë which is closed under < κ-sequences there
are a transitive model N with <κN ⊆ N , an elementary embedding j : M → N
with critical point κ, and an element s ∈ N such that j ”M ⊆ s and |s |N < j(κ).

See [12] or [3] for a proof of this lemma. In the second clause, since |s |N ≥ |s |V ≥
ë, we get that j(κ) > ë.
The elementary embeddings which are obtained from strong compactness have

surprisingly weak implications in terms of reflecting properties. For example, the
least measurable cardinal can be strongly compact.
In order to obtain a stronger reflection we have to assume some form of normality.

Definition 2.4 (Reinhardt and Solovay). A cardinal κ is ë-supercompact if there
is a fine and normal measure on Pκë.

Equivalently, κ is ë-supercompact if there is an elementary embedding j : V →
M , with critical point κ, such thatM is transitive, ë < j(κ), and j ” ë ∈M .
In contrast to the situation with strong compactness, if κ is 2κ-supercompact,

then there are many measurable cardinals below it. Let us take a closer look at this
case.

Definition 2.5 (Jensen). A cardinal κ is ë-subcompact if for every A ⊆ H (ë),
there are κ̄, ë̄, and Ā ⊆ H (ë̄), and an elementary embedding:

j : 〈H (ë̄),∈, Ā〉 → 〈H (ë),∈ A〉,

with crit j = κ̄, j(κ̄) = κ.

A cardinal κ is subcompact if it is κ+-subcompact. In the context of GCH, one can
easily verify that if κ is κ+-supercompact, then there aremany subcompact cardinals
below it. In the innermodel context, a cardinalκ is subcompact in an extendermodel
L[E], if and only if there are stationarily many α < κ+, such that Eα 6= ∅ (using
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SUBCOMPACT CARDINALS, TYPE OMISSION, AND LADDER SYSTEMS 1113

the Jensen–Friedman indexing; see [23]). Jensen’s definition follows a result of the
second author [19], in which he proved that a cardinal κ is supercompact, if and
only if it is ë-subcompact for all ë ≥ κ.
The least subcompact cardinal is not measurable. Indeed, similarly to Woodin

cardinals, subcompactness of κ does not provide an elementary embedding with
critical point κ, but rather just many elementary embeddings that reach up to κ.

Definition 2.6. Let κ ≤ ë be cardinals. κ is ë-Π11-subcompact if for every A ⊆
H (ë) and every Π11-statement Φ such that 〈H (ë),∈, A〉 |= Φ, there are:

(1) a pair of cardinals κ̄ ≤ ë̄ < κ,
(2) a subset Ā ⊆ H (ë̄) such that 〈H (ë̄),∈ Ā〉 |= Φ, and
(3) an elementary embedding:

j : 〈H (ë̄),∈, Ā〉 → 〈H (ë),∈, A〉,

with critical point κ̄ and j(κ̄) = κ.

A cardinal κ is κ-Π11-subcompact if and only if κ is weakly compact. Cardinals κ
which are κ+-Π11-subcompact are called Π

2
1-subcompact cardinals in [21].

The next lemma characterizes ë-Π11-subcompact cardinals in terms of elementary
embeddings with a fixed critical point. First, let us consider a definition due to
Schanker [22].

Definition 2.7 (Schanker). A cardinalκ is è-nearly supercompact if for allA ⊆ è,
there is a transitive modelM of ZFC–, such thatA, è, κ ∈M ,M<κ ⊆M , and there
is an elementary embedding j : M → N , N is transitive, crit j = κ, and j ” è ∈ N ,
and è < j(κ).

Schanker was interested in the case in which è is small (relative to 2κ). In this case,
he proved that a è-nearly supercompact cardinal might not be even measurable (see
also [5]). The following lemma is implicit in [4]. For the completeness of this paper,
we provide a proof.

Lemma 2.8. The following are equivalent for κ < ë regular:

(1) κ is ë-Π11-subcompact.
(2) For every transitive model M of size |H (ë)|, such that <κM ⊆M , there is a
transitive model N, <κN ⊆ N , and an elementary embedding j : M → N with
critical point κ such that j ”M ∈ N and ë < j(κ).

(3) κ is |H (ë)|-nearly supercompact.

Proof. (2) =⇒ (3) is clear, as the witnessing models for nearly supercompact-
ness can be of minimal size. The implication (3) =⇒ (2) follows from the fact
that for è = |H (ë)|, è<κ = è. Then, using Hauser’s trick [11], one can obtain
an elementary embedding that respects a bijection between M and è. Namely,
let M be as in (2) and let M̄ be a model with the same universe as M and an
additional function symbol f which we interpret as a bijection between è and M.
Note thatM satisfies the assertion that for every x of size < κ, there is y, such that
y = f ”x. Apply the elementary embedding and using the nearly supercompactness
hypothesis, we obtain a model N̄ with a function symbol that we denote by j(f),
and moreover j ”M = j(f) ”(j ” è) ∈ N̄ . Reducing the language by removing the
function symbol of j, we obtain the result.

https://doi.org/10.1017/jsl.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.11


1114 YAIR HAYUT ANDMENACHEMMAGIDOR

Let us show that (1) implies (2). Let κ be ë-Π11-subcompact and let M witness
that (2) is false. This means thatM is transitive,M<κ ⊆M , |M | = |H (ë)|, and for
every transitive model N and embedding j : M → N , either j is not elementary or
j ”M /∈ N . Since we may assume that the model N has size |H (ë)| (by taking an
elementary substructure), this statement can be coded as a Π11-statement on H (ë),
using some predicate A in order to code the modelM and its elementary diagram.
Applying (1), and Definition 2.6, we obtain cardinals κ̄ and ë̄ below κ and

a predicate Ā on H (ë̄) that codes some transitive model M̄ . We also obtain an
elementary embedding j̃ : 〈H (ë),∈ Ā〉 → 〈H (ë),∈, A〉. By unwrapping the code A
forM, we conclude that j̃ codes an elementary embedding j : M̄ →M . Recall that
κ is strongly inaccessible and ë̄ < κ, so |H (ë̄)| = |M̄ | < κ. SinceM is closed under
sequences of size< κ, j ” M̄ ∈M . Let us take an elementary substructure ofM that
contains j ” M̄ , {j ” M̄} as elements of size |H (ë̄)| and closed under< κ̄-sequences.
The transitive collapse of this model is coded by some subset of H (ë̄) witnessing
that the above Π11-statement fails in H (ë̄).
Let us prove that (2) implies (1). Let us assume that (2) holds, and let us show that

κ is ë-Π11-subcompact. LetΦbe aΠ
1
1-statement that holds in themodel 〈H (ë),∈, A〉.

Applying the hypothesis, there is an elementary embedding with critical point κ
between some transitive model M ⊇ H (ë) ∪ {A,H (ë)} and a transitive model N
such that j ”M ∈ N and ë < j(κ).
Since N is closed under basic operations on sets, j ”H (ë) = j(H (ë)) ∩ j ”M ∈

N . By taking the transitive collapse of j ”H (ë) inside N, we conclude that
H (ë), A ∈ N .
Working in N, the following hold:

N |= “〈H (ë),∈, A〉 |= Φ”.

Let us note that the model N does not contain all subsets of H (ë), which means
that in general the truth value of second-order formulas would not be absolute
between N and V. So, the validity of the formula ΦN uses the fact that Φ is a Π11-
statement. InN, there is an elementary embedding k = j ↾ H (ë) from the structure
〈H (ë),∈, A〉 to 〈j(H (ë)),∈, j(A)〉 with critical point κ and k(κ) = j(κ) > ë.
Thus, by elementarity of j, the same holds in M: there are κ̄, ë̄ < κ, Ā ⊆ H (ë̄),
and an elementary embedding k̄ : 〈H (ë̄),∈, Ā〉 → 〈H (ë),∈, A〉. Moreover, we have
〈H (ë̄),∈, Ā〉 |= Φ. ⊣

By starting with a more well-behaved model M, the ë-Π11-subcompactness of κ
yields a better closure properties for the target model N, than what is stated in
Lemma 2.8(2).

Lemma 2.9. Let κ be ë-Π11-subcompact. Let M be a transitive model such that:

(1) |M | = |H (ë)| and M is closed under < ë-sequences.
(2) Pκë, ë ∈M .
(3) M is the transitive collapse of some elementary submodel ofH (÷), for some ÷.
(4) M has definable Skolem functions.
(5) M contains a function symbol g which is evaluated as a bijection between ë
and M.

Then, one can get j : M → N such that N is closed under < ë-sequences, crit j = κ,
and j ”M ∈ N .
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Proof. Let j : M → N be as in Lemma 2.8. Since ë ∈M , j ” ë ∈ N .
Let us use the seed hull, as in [9],

X{j ” ë} := {j(f)(j ” ë) | f ∈M, f : Pκë→M}.

Hamkins proves that Xs ≺ N for every set of seeds s, and in particular j : M → Xs
is elementary. Hamkins’ proof is done in the context of an elementary embedding
from V to some class, but it goes without change to our case, under the assumption
thatM has definable Skolem functions.
Let ð : X{j ” ë} → N ′ be the transitive collapse, so k = ð ◦ j : M → N ′ is an

elementary embedding. In order to show that critk = κ, let us notice that all ordinals
up to ë belong toX{j ” ë}, so crit ð

–1 ≥ ë. Themain point is to verify thatN ′ is closed
under < ë-sequences. Let {yi | i < i⋆} ⊆ N ′, i⋆ < ë. Then, by the definition of N

′,
for each i, there is a function fi ∈M such that yi = ð(j(fi)(j ” ë)). By the closure
ofM, Ef = 〈fi | i < i⋆〉 ∈M .

Let us look at k( Ef) ∈ N ′. Since k is elementary N ′ satisfies enough set theory.
Since k ” ë = ð(j ” ë) ∈ N ′, we conclude that

k( Ef) ”(k ” ë ∩ k(i⋆)) = {k(fi) | i < i⋆} ∈ N ′.

Therefore, A = {k(fi)(k ” ë) | i < i⋆} ∈ N ′. Applying ð–1 and using the fact that
crit ð–1 ≥ ë, we get

ð–1(A) = {j(fi)(j ” ë) | i < i⋆}.

Applying ð again the result follows. ⊣

Of course, Lemma 2.9(3) can be replaced with the assertion thatM satisfies some
weak version of set theory.
It is interesting to compare the relationship between Lemmas 2.3 and 2.8 to

the relationship between the strongly compact and the supercompact elementary
embeddings. This comparison points to a possible normality assumption that
should be added to the local Lκ,κ-compactness characterization in order to get
a model theoretical characterization of ë-Π11-subcompactness. Following Benda [1],
we suggest to use type omission as a possible candidate for this additional hypothesis
in the next section.

§3. Type omission and Π11-subcompactness. We will use the following definition
of a club, due to Jech [14, Section 3].

Definition 3.1. Let κ be a regular cardinal and let X be a set. A set C ⊆ PκX =
{x ⊆ X | |x| < κ} is a club if:

• for every x ∈ PκX there is y ∈ C , x ⊆ y and
• for every increasing sequence 〈xi | i < i⋆〉, i⋆ < κ, xi ∈ C ,

⋃

xi ∈ C .

By a theorem ofMenas, every club contains a club of the formCF where F : X →
PκX and CF = {x ∈ PκX |

⋃

(F ”x) ⊆ x} (see [13, Proposition 4.6]).

Definition 3.2. Let κ ≤ ë be cardinals and let L be a logic extending first-order
logic. We say that κ-L-compactness with type omission for languages of sizeë holds
if for every L-theory T and L-type p such that for club many T ′ ∪ p′ ∈ Pκ(T ∪ p)
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1116 YAIR HAYUT ANDMENACHEMMAGIDOR

there is a model of T ′ that omits p′, then there is a model that realizes the theory T
and omits the type p.

We remark that omitting larger types is easier while realizing larger theories is
more difficult. In particular, any omitable type has a non-omitable subtype (e.g., the
empty subtype is non-omitable). Thus, the restriction of the pairs of sub-theory and
sub-type to some club is somewhat natural.
Benda proved [1] that compactness of type omission over Lκ,κ over arbitrary

languages is equivalent to supercompactness. We give a different argument that
provides a local equivalence and use only first-order types and theories, with no
infinitary quantifiers and connectors.

Theorem 3.3. Let κ ≤ ë = ë<κ be cardinals, κ regular, and uncountable. The
following are equivalent:

(1) For every transitive model M of size ë, <κM ⊆M , there is a transitive model N
and an elementary embedding j : M → N such that crit j = κ, ë < j(κ), and
j ”M ∈ N .

(2) κ-Lκ,κ-compactness with type omission for languages of size ë holds.
(3) κ-Lù,ù-compactness with type omission for languages of size ë holds.

1

Proof. Clearly (2) =⇒ (3).
Let us show that (1) =⇒ (2). Let T, p be as in the assumptions of (2). Let C be

a club in Pκ(T ∪ p) such that for every T ′ ∪ p′ ∈ C there is a model for T ′ that
omits p′. Let us apply Lemma 2.8 for some< κ-closed transitive modelM ≺ H (÷)
for ÷ sufficiently large, |M | = ë, and T, p,C ∈M . By applying Menas’ lemma
in M, we obtain a function F ∈M , F : T ∪ p → Pκ(T ∪ p) such that CF ⊆ C .
Using the hypothesis, we obtain an elementary embedding j : M → N where N
is transitive and j ”M ∈ N . Thus, j(T ) ∩ j ”M = j ”T, j(p) ∩ j ”M = j ”p,
and j(C ) ∩ j ”M = j ”C are in N. Since X = (j ”T ) ∪ (j ”p) =

⋃

j ”C ∈ N ,
|C | = ë < j(κ), and X is closed under j(F ), we conclude that (j ”T ) ∪ (j ”p) ∈
j(CF ) ⊆ j(C ).
So, inN there is amodelA for the theory j ”T that omits the type j ”p. Although

the language for the theory and the type is the value under j of the original language
andmight containmore symbols, the symbols that appear in j ”T and j ”p are only
the j-images of the original symbols. Therefore, by applying j–1 on those symbols
we conclude that A is isomorphic to a model for T that omits p.
Let us now consider (3) =⇒ (1). LetM be a transitive model of size ë which is

closed under < κ-sequences. We would like to find an elementary embedding with
critical point κ and a model N such that j ”M ∈ N and ë < j(κ). Similarly to the
proof of Lemma 2.3, we define a language that contains for every x ∈M a constant
cx as well as two additional constants d, s . We intend d to be the critical point κ and
s to be the set j ”M .
The theoryT contains the statement “d is an ordinal below cκ,” and the statement

“cα ∈ d” for all α < κ. We also include in T the assertions “cx ∈ s” for all x ∈M
and “|s | < cκ” (namely, that there is an injection from s to a bounded ordinal below
cκ). Finally, we include in T the full Lù,ù-elementary diagram ofM.

1The above formulation was obtained in response to a private communication with Boney. In the
previous version of this paper, there was an additional well-foundedness hypothesis.
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We would also like to define a type that will be omitted. There are two offending
objects that we would like to omit from our model: either witnesses for s 6= j ”M
or critical points below κ. The type p is going to handle both cases. p(x) is going to
be the type of an element which is either in s but not cz for any z ∈M , or below d
but not in s. Namely,

p(x) = {“x ∈ s ∪ d”} ∪ {“x 6= cz” | z ∈M}.

We would like to show that indeed on a club in Pκ(T ∪ p), there is a model for
the sub-theory that omits the sub-type. Let è be a sufficiently large regular cardinal,
M,T, p ∈ H (è).
Let us fix a well order of H (è), ≤è . Pick some enumeration e of T and p and

let C ′ be the club of all elementary substructures Y ≺ 〈H (è),∈,≤è〉 that contains
M,T, p, e and satisfy Y ∩ κ ∈ κ. Let Hull denote the Skolem hull function in the
structure 〈H (è),∈,≤è ,M,T, p, e〉, defined using the well order ≤è . So Y ∈ C ′ iff
Y = Hull(A) for some A, |A| < κ, and Y ∩ κ ∈ κ.
Let us assume moreover that the map x 7→ cx is definable in H (è). Each such

modelY would be closed under sub-formulas, so if a formula ϕ inT or in p contains
the constant cx as a sub-formula and e(ϕ) ∈ Y then x ∈ Y . Thus, for any element
x ∈M the constant cx appears as a sub-formula of a formula in Y ∩ (T ∪ p), if
and only if x belongs to Y ∩M .
Let T ′ ∪ p′ ∈ C iff T ′ ∪ p′ ∈ Pκ(T

′ ∪ p′), Hull(T ′ ∪ p′) = Y ∈ C ′, and Y ∩
(T ∪ p) = T ′ ∪ p′. One can easily describe a function f : (T ∪ p)<ù → Pκ(T ∪ p)
such that C consists of all elements which are closed under f, so in particular C is a
club.
Let us consider T ′ ∪ p′ in C and let X ≺M be a corresponding elementary

submodel, X = Hull(T ′ ∪ p′) ∩M . We claim that the model M itself with the
evaluations cMa = a for every a ∈ X , dM = X ∩ κ, and sM = X realizes T ′ while
omitting p′. First, dM is an ordinal below cMκ .Moreover, by the closure assumption,
if a constant ca appears in T

′ then a ∈ X . In particular, this model satisfies that
whenever ca ∈ s appears in T

′ then a ∈ X . Since M is < κ closed, there is some
bijection between X and an ordinal below κ inM. The other assertions in T ′ follow
similarly.
Let us consider p′. IfM does not omit p′ then there is some element x ∈M such

that x ∈ X ∪ dM , x 6= cMz for every z such that the formula “x 6= cz” belongs to p
′.

By the definition of dM , dM ⊆ X . By the closure ofY “x 6= cz” appears in p
′ if and

only if z ∈ X , which is what we need.
Now, we may apply the hypothesis of the lemma and obtain a model N for T

that omits p. As in the proof of Lemma 2.3, the embedding j : M → N which is
defined by j(z) = cNz is an elementary embedding with critical point κ. By the type
omission, sN = j ”M .
We are not done yet, since N might be ill founded.2

Claim 3.4. Let κ ≤ ë be cardinals. Let us assume that for any transitive M with
M<κ ⊆M and |M | ≤ ë, there is amodelN and an elementary embedding j : M → N ,

2In the previous version of this paper, we added the hypothesis that the theory T includes the Lù1 ,ù1 -
formula stating that the membership relation is well founded.
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1118 YAIR HAYUT ANDMENACHEMMAGIDOR

with j ”M ∈ N , crit j = κ, and j(κ) > ë. Then, for any suchM, we can get the same
conclusion with N being transitive.

Proof. LetM be amodel, satisfying the hypothesis of the claim. LetM ′ ≺ H (÷)
(÷ large enough) be a larger model (soM ⊆M ′), closed under< κ-sequences, such
thatM ∈M ′, ë+ 1 ⊆M ′, and |M ′| = ë. Let M̄ ′ be the transitive collapse ofM ′.
SinceM is transitive,M ∈ M̄ ′.
Let j : M̄ ′ → N ′ be as in the hypothesis of the claim. Note that j ↾M : M →

j(M ) is a member of N ′, as the intersection of j ” M̄ ′ and j(M ).
First, note that j ” ë = j(ë) ∩ j ” M̄ ′ ∈ N ′. Since N ′ can compute the transitive

collapse of j ” ë, we conclude that OrdN
′

⊇ ë+ 1. Similarly, since <κë ⊆ M̄ ′, we
have <κë ∈ N ′. Since j ”M ∈ N ′, we conclude that j ” ë<κ ∈ N ′ as well.
LetF : ë<ù →M be a function such thatF ↾ ë is a bijection between ë andM, and

F codes the Skolem functions ofM, so for every a ⊆ ë non-empty, F ”[a<ù] ≺M .

SinceM is closed under < κ sequences and |M |N
′

= ë < j(κ), we conclude that
j ”M ∈ j(M ) and in particular there is some ä < j(ë) such j(F )(ä) = j ”M . Let
us consider the following subset of N ′:

Ñ = j(F ) ”(j ”(ë<κ) ∪ {ä}).

By the properties of F, j ”M ⊆ Ñ andN ′ |= Ñ ≺ j(M ). SinceN ′ ∈ V , V |= Ñ ≺
j(M ) (see [10]).
Let us claim that Ñ is well founded. If not, then there is anù-sequence of elements

an ∈ Ñ such that an+1 ∈
N ′

an. Each an is of the form F (j(bn), ä) where b ∈ ë
<κ.

Using the regularity of κ, there is c ∈ j ” ë<κ ⊆ N ′ such that c codes theù-sequence
〈j(bn) | n < ù〉. So, this sequence is amember ofN

′. But this is absurd, as this would
imply that the sequence 〈an | n < ù〉 is a member ofN

′, violating the fact thatN ′ |=
Axiom of Foundation.
So, we conclude that Ñ is well founded and for every x ∈M , j(x) ∈ Ñ . Let

ð : Ñ → N be the transitive collapse and let k : M → N be k(x) = ð(j(x)) for
x ∈M . It is straight-forward to verify that k is an elementary embedding, crit k = κ,
and k(κ) > ë. Moreover, k ”M = ð(j ”M ) ∈ N . ⊣

This concludes the proof of Theorem 3.3. ⊣

Corollary 3.5. For κ ≤ ë, κ is ë-Π11-subcompact if and only if compactness for
Lκ,κ with type omission holds for languages of size |H (ë)|.

Quantifying ë out, we obtain a characterization for supercompactness. The first
equivalence is due to Benda:

Corollary 3.6. The following are equivalent:

• κ is supercompact.
• κ-Lκ,κ-compactness with type omission.
• κ-Lù,ù-compactness with type omission.

§4. Ladder systems and trees. The following concept, isolated by Jech [14] (under
the name (κ, ë)-mess), generalizes the notion of a κ-tree to two-cardinal context and
is suitable for the investigation of strongly compact and supercompact cardinals.
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Recall that, for a cardinal ñ, we denote by PñX the set of all subsets of X of size
< ñ. In particular, for ñ′ < ñ, Pñ′X ⊆ PñX .
Note that we do not assume that ñ is regular. A set E ⊂ PñX is a club if for every

x ∈ PñX there is y ∈ E such that x ⊆ y and E is closed under increasing unions of
length < cf ñ.

Definition 4.1 (Jech). A Pκë-tree is a function T = 〈Tx | x ∈ Pκë〉 such that:

• For every x ∈ Pκë, Tx ⊆
x2, non-empty.

• For x ⊆ y ∈ Pκë and ç ∈ Ty , ç ↾ x ∈ Tx .
• For every x ∈ Pκë, |Tx | < κ.

We call Tx the x-th level of T . A branch through T is a function ç : ë→ 2 such
that ç ↾ x ∈ Tx for all x ∈ Pκë. If κ is inaccessible, then the third requirement holds
trivially. In [14, Section 2], Jech showed that κ is strongly compact if and only
if every Pκë-tree has a branch and κ is inaccessible. Removing the inaccessibility
assumption, this property is called the Strong Tree Property, and it is known to
consistently hold at accessible cardinals (see, for example, [7, 26]).

Definition 4.2. Let T be a Pκë tree. A set L is a ladder system on T if the
following holds:

(1) L ⊆
⋃

x∈Pκë
Tx .

(2) For club many levels x, L ∩ Tx 6= ∅.
(3) If ç ∈ L ∩ Tx and cf(|x ∩ κ|) > ù then there is a clubEç ⊆ P|x∩κ|x such that

{ç ↾ y | y ∈ Eç} ⊆ L.

Let ñ ≤ κ be a regular cardinal.
A cofinal branch b through T meets the ladder system Lñ-cofinally if for every

x ∈ Pñë there is z ⊇ x such that b ↾ z ∈ L.
A cofinal branch b through T meets the ladder system Lñ-club often if for club

many x ∈ Pñë, b ↾ x ∈ L.

Intuitively, a ladder system consists of a collection of “good nodes” in the tree
whichwewould like the branch to go through, similarly to the Ineffable TreeProperty
(ITP) [27]. Unlike ITP, we weaken our requirement by making sure that the set of
good nodes is very rich—below any node in a level of uncountable cofinality (in
some sense) there are club many restrictions which are good as well.

Definition 4.3. Let ñ ≤ κ < ì be cardinals. We say that ladder system catching
property at ñ-clubs (at ñ-cofinal sets) for Pκì trees holds, if for every Pκì-tree T
and a ladder system L there is a cofinal branch b of T that meets the ladder system
L on a ñ-club (on a ñ-cofinal set).
We abbreviate this property by LSCP(Pκë, ñ-clubs) or LSCP(Pκë, ñ-cofinally),

respectively.

Theorem 4.4. Let κ ≤ ì = ì<κ be cardinals and κ is inaccessible. The following
are equivalent:

(1) κ-Lù,ù-compactness with type omission for languages of size ì.
(2) LSCP(Pκì, κ-clubs).
(3) LSCP(Pκì, κ-cofinal).
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Proof. (2) =⇒ (3) is trivial.
Let us show that (3) =⇒ (1). Recall that (1) is the statement: for every first-

order theory T over a language of size ì and a type p(x), if for club many T ′ ∪ p′ ∈
Pκ(T ∪ p) there is a modelM that satisfies T ′ and omits p′ then there is a model of
T that omits p.
Indeed, let us assume that T is a first-order theory over a relational language L

with ì many symbols and p is a type. We will assume that T is Henkenized (for
every sentence of the form ø := ∃xϕ(x, r), where r is a sequence of constants, there
is a constant cϕ,r such that c is a witness to the formula ø if and only if ø holds).
So, finding a model for T that omits the type p is the same as finding a consistent
complete extension, T̃ , in which for every constant c there is φ(x) ∈ p(x) such that
¬φ(c) ∈ T̃ . Let us assume that there are club many T ′ ∪ p′ such that there is a
modelM that realizes T ′ and omits p′. Let us construct a tree T as follows. Pick an
enumeration e of length ì of all terms and formulas in the language L.
For every a ∈ Pκì, ç ∈ Ta if and only if there is a modelMç such that:

(1) for every α ∈ a, if e(α) is a sentence then ç(α) = 1 ⇐⇒ M |= e(α) and
(2) for every e(α) ∈ T , ç(α) = 1.

Since we assumed that the language L is Henkenized, for every a ⊆ b ∈ Pκì,
and ç ∈ Tb , the function ç ↾ a defines a sub-model of the model Mç, assuming
that e ” a is closed under sub-formulas and sub-terms. So, in this case, we say that
ç ↾ a omits p ∩ e ” a if there is no constant c ∈ e ” a such that for every ϕ(x) ∈ p,
ç(e–1(ϕ(c))) = 1.
We are now ready to construct the ladder system L. Let a ∈ Pκì, such that the

collection of formulas in e ” a is closed under sub-formulas and apply substitution
of a variable with a term in a formula. Let us define ç ∈ L ∩ Ta if there is a model
Mç that omits e ” a ∩ p. Note that if a ∩ κ is of uncountable cofinality, then there
are club many b ∈ P|a∩κ|a such that ç ↾ b is an assignment of a Henkenized theory,
and e ” b is closed under sub-formulas and omits e ” b ∩ p. Indeed, in order to omit
the sub-types of p, one needs to verify that for every constant symbol c in e ” b,
there is a formula ϕ ∈ p ∩ e ” b such that ϕ(c) ∈ e ” b and ç(e–1(ϕ(c)) = 0. Since
this is true for ç and a, we can define a function sending c ∈ e ” a to ϕ ∈ p ∩ e ” a
such that ϕ(c) ∈ e ” a andMç |= ¬ϕ(c). Thus, any b ⊆ a which is closed under this
function, omits the subtype p ∩ e ” b.
Let b be a cofinal branch though the tree T , and assume that bmeets L cofinally.

Since b is a cofinal branch, it defines a complete theory extending T and thus
a model of T. Let us call this model Mb . We want to verify that the type p is
omitted. Indeed, let z ∈Mb . Let x ∈ Pκë contain the ordinal in which the constant
for z is enumerated. Let y ⊇ x such that there is ç′ ∈ L ∩ Ty , ç

′ = b ↾ y. Since ç′

represents a model that omits a sub-type of p and contains the constant z, there
must be a formula ϕ ∈ p ∩ e ” y such that â = e(¬ϕ(z)) ∈ dom ç′ and ç′(â) = 1.
Thus, z does not realize p.
Let us finally show (1) =⇒ (2). LetM be a transitive model of size ì containing

T and L, and closed under < κ-sequences. By Theorem 3.3 and the hypothesis,
there is an elementary embedding j : M → N , with critical point κ, j ”ì ∈ N . Let
D ⊆ Pκì be a club such that for all x ∈ D, L ∩ Tx 6= ∅ and belongs to M. Then
j ”ì ∈ j(D) and in particular, there is some ç̃ ∈ j(T )j ” ì ∩ j(L).
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Let b be the following branch:

b(x) = j–1 ”(ç̃ ↾ j ”x) = {(æ, å) | b(j(æ)) = å}.

Buck inM, let Eç be the club, as in Definition 4.2(3). Let us apply j to the function

ç 7→ Eç and let Ẽ be the obtained club. So Ẽ is a club on Pκj ”ì (since κ = |j ”ì ∩
j(κ)|). For every z ∈ Pκj ”ì, z = j(w) for some w ∈ Pκì, so D = j

–1 ”(j(E)ç̃) is
a club in Pκì. For all x ∈ D, b ↾ x ∈ L (as j(x) ∈ Eç and j(b ↾ x) = ç ↾ j(x) ∈
j(L)), as wanted. ⊣

Again, by quantifying ì out, we obtain a characterization for supercompactness:

Corollary 4.5. The following are equivalent for an inaccessible cardinal κ:

(1) κ is supercompact.
(2) For every regular ì ≥ κ, LSCP(Pκì, κ-cofinally).

§5. Down to ù2. In the previous sections, the inaccessibility of κ played a major
role. We might ask whether meeting ladder systems cofinally or club often is still
equivalent at accessible cardinals. We will focus on the case of ù2. In this case, we
will refer to Definition 4.3 with ñ = ù1 or ù2, which means that even in the case of
Pù2ù2-trees, which are typically identified with ù2-trees, we will need to consider
their structure with respect to Pù1ù2 as well.
For ë = ù2, the ordinals are a club inPù2ë. Nevertheless, for each ordinalα > ù1,

the ordinals below α are not a club in Pù1α. This means that even in this special
case, we cannot treat the trees as simple ù2-trees but rather as Pù2ù2-trees, where
levels of countable size play an important role. This is a non-typical scenario, as
restricting the tree and the ladder system to a club does not preserve the properties
of the structure.

Theorem 5.1. It is consistent relative to a supercompact cardinal, that for every

ì ≥ ù2, LSCP(Pù2ì,ù1-club).

Theorem 5.2. It is consistent relative to a supercompact cardinal, that for every

ì ≥ ù2, LSCP(Pù2ì,ù1-cofinally) but ¬LSCP(Pù2ù2, ù1-club).

For the first theorem, we will use the standard Mitchell forcing.

Definition 5.3 (Mitchell [20]). Let κ be an inaccessible cardinal. The Mitchell
posetM(κ) consists of conditionsp = 〈a,m〉where a ∈ Add(ù, κ) andm is a partial
function with countable support such that for any α ∈ suppm, 
Add(ù,α) m(α) ∈

˙Add(ù1, 1).
We order the conditions of the forcing by 〈a,m〉 ≤ 〈a′, m′〉 if a ≤ a′ in the Cohen

forcing Add(ù, κ), domm ⊇ domm′, and a ↾ α 
Add(ù,α) m(α) ≤ ˙Add(ù1,1)
m′(α)

for every α ∈ domm′.

In [20], Mitchell showed that if κ is weakly compact thenM(κ) forces that the tree
property holds at κ. Starting with a stronger large cardinal hypothesis, the Mitchell
poset can be used to obtain the strong tree property, the ineffable tree property, and
more (see, for example, [27]).
To establish Theorem 5.1, it is enough to proof the following.
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Lemma 5.4. Let κ be ë-Π11-subcompact. Then in the generic extension by M(κ),
LSCP(Pù2ë,ù1-club) holds.

Proof. Let us consider a name for a tree Ṫ and a ladder system L̇ on Pκë of the

generic extension. By the κ-c.c. ofM(κ), the set (Pκë)
V is unbounded in (Pκë)

V [G ].
Moreover, one can easily code all names for elements in Pκë, Ṫ and L̇ into a
transitive structure M of size ë. We will assume that M satisfies some portion of
ZFC, and in particular it satisfies choice and the basic theory of forcing (including
the forcing theorem for Σn formulas, where n is sufficiently large).
By Lemma 2.8, there is an elementary embedding

j : M → N,

such that j ”M ∈ N . We would like to lift this embedding to an elementary
embedding from M [G ] to N [H ], where G is a V -generic filter for M(κ) and H
is an N-generic filter for j(M(κ)). We cannot construct H in V [G ], so in order to
construct H we force with j(M(κ))/M(κ) over V [G ].
Indeed, it is obvious that M(κ) = j(M(κ)) ↾ κ. Moreover, since for every p ∈

M(κ), j(p) = p, we conclude that for a generic filter H ⊆ j(M(κ)), letting G =
H ↾ κ, the embedding j can be extended to an elementary embedding j⋆ : M [G ]→
N [H ].
As in Theorem 4.4, by taking an element ç ∈ j(Ṫ )Hj ” ë ∩ j(L̇)

H , we obtain a

branch through ṪG ,

b = {j–1(ç ↾ j ”x) | x ∈ (Pκë)
V [G ]}.

We would like to show that b belongs to V [G ] and that it meets L̇G on a club.
The forcing j(M(κ))/G cannot add new branches to aPκë trees (see, for example,

[27], or Claim 5.12 ahead). Thus, b ∈ V [G ]. Moreover, in N [H ] ⊆ V [H ], there is
a club in Pù1ë in which b intersects L, since cfκ = ù1 in the generic extension.
We would like to claim that the same holds in V [G ]. Assume otherwise and let us
consider

S = {x ∈ Pù1ë | b ↾ x /∈ L} ∈ V [G ].

InN [H ] ⊆ V [H ], S is non-stationary. But the forcing j(M(κ))/G is proper inV [G ]
since it is a projection of a product of a ó-closed forcing and a c.c.c. forcing. ⊣

In order to prove Theorem 5.2, we will modify Mitchell forcing in order to
introduce at each inaccessible level a counterexample for the stronger property of
ladder system catching at clubs, while still preserving the tree property.
Given an ordinal α ≤ ù2, and a binary tree T ⊆ 2≤α , we let T be the Pù2α-tree

defined by Tx = {r ↾ x | r ∈ Tsup x}.
We will say that L is a ladder system on an α-tree T if is a ladder system of the

corresponding Pù2α-tree T .

Definition 5.5. Let α be a regular cardinal. We define a forcing notion S(α) that
introduces an α-tree T with a ladder system L and branches {bt | t ∈ T} by initial
segments, as follows.
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A condition p ∈ S(α) is of tuple p = 〈t, ℓ, b, f〉 where:

(1) t ⊆ ≤ã2 is a normal binary tree of successor height, ã + 1 < α.
(2) ℓ is a function with a domain which is a closed subset of ã + 1, and for every
î ∈ dom ℓ of uncountable cofinality, there is a member x ∈ tî and a club Ex
at Pù1î, such that ℓ(î) = {x} ∪ {x ↾ z | z ∈ Ex}.

(3) b is a function from t to tã such that x ≤t b(x) for all x ∈ t.
(4) f is a set of pairs of the form (z, r) where z ∈ Pù1ã and r ∈ tsup z ∪ {– 1}. If
(z, r), (z ′, r′) ∈ f are distinct then sup z 6= sup z ′. The set

{sup z | ∃r 6=– 1, (z, r) ∈ f}

is nowhere stationary.
(5) For every â ∈ dom ℓ, rangef ∩ ℓ(â) = ∅.

We order S(α) by p = 〈tp, ℓp, bp, fp〉 ≤ q = 〈tq , ℓq , bq , fq〉 if tp end extends tq , ℓp
end extends ℓq above the height of tp, and for every x ∈ dom bq , bq(x) ≤tp bp(x)
and fp end extends fq .

The case r =– 1 in item (4) is just a place holder for cases in which we want the
ordinal supx to be outside of the domain of the generic function. In this case, we
abuse notation and declare the domain on f at supx to be empty.
Let us introduce the following notions which would be useful through the rest of

the proof.

Notation 5.6. If S ⊆ S(α) is a generic filter, then:

• Tα =
⋃

{t | ∃〈t, ℓ, b, f〉 ∈ S} is a binary α-tree,
• For each x ∈ Tα , let Bα(x) =

⋃

{b(x) | ∃〈t, ℓ, b, f〉 ∈ S, x ∈ dom b} ∈ α2 is a
cofinal branch at Tα .

• Lα =
⋃

{ℓ | ∃〈t, ℓ, b, f〉 ∈ S} is a ladder system on Tα .
• Fα =

⋃

{f | ∃〈t, ℓ, b, f〉 ∈ S}.

When α is clear from the context, we will omit it.

The role ofFα is to kill potential branches thatmeetLα on a club.Note that the set
{supx | x ∈ domFα} is nonreflecting stationary subset of ù2. The b-components
insure that the treeTα wouldhavemanybranches in the generic extension (otherwise,
the plain tree property would fail). The existence of many branches given by b is
crucial in the proof of the strategic closure of the forcing.
We refer the reader to [6, Definitions 5.8 and 5.15], for the definition of ó-closed

and α-strategically closed forcings.

Claim 5.7. S(α) is ó-closed, α-strategically closed, and of size 2<α .

Proof. Let 〈pî | î < å〉 be the game played so far, å < α. We denote by pî =
〈tî , ℓî , bî , fî〉, and we let äî = maxdom ℓî and ãî + 1 be the height of the tree tî .
At successor steps, player Even does not move. At limit steps å, let us define tå . If

player Odd did not move co-boundedly below å, then player Even does need to do
anything.
Otherwise, the conditions pî are strictly decreasing on an unbounded subset of

å. Let us construct the condition which player Even would play. First, let us define
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tå . This is a tree of height (supî<å ãî) + 1. Let t̃ =
⋃

î<å tî . For each x ∈ t̃, let B(x)

be
⋃

î⋆<î<å
bî(x), where î⋆ is the level of x. We define

tå = t̃ ∪ {B(x) | x ∈ t̃}.

We let bå(x) = B(x) for x ∈ t̃ and B(x) = x for nodes x in the top level of tå .
Let ℓ̃ =

⋃

î<å ℓî . If sup äî < sup ãî = ãå , we let ℓå = ℓ̃. Otherwise, we need to

define ℓ(ãå). For cf å = ù, we can define ℓ(ãå) = ∅, and få =
⋃

î<å fî ∪ {(x, – 1)}
for some x with supx = ãå . If cf å > ù, we pick an arbitrary x ∈ tãå , and let

Ex = {y ∈ Pù1ãå | sup y ∈ {ãî | î < å}}.

We set ℓ(ãå) = {x} ∪ {x ↾ z | z ∈ Ex}.
We need to verify that the definition works. Note that the only non-trivial

requirement is the empty intersection of rangef and ℓ(â) for all â ∈ domf. The
requirement holds automatically for all â /∈ {ãî | î ≤ å}. For â = ãî , if y ∈ ℓ(â)
then sup dom y ∈ {ãî | î ≤ å}, but for each such y, if y ∈ domf, then f(y) =– 1.
Since the strategy is trivial at finite steps, the forcing is ó-closed. ⊣

Claim 5.8. Let α be a regular cardinal, α ≥ ù2. In the generic extension by S(α)
there is no branch of the generic tree Tα that meets the generic ladder system Lα on
an ù1-club.

Proof. Let ḃ be a name for some a branch and let Ċ be a name for a club. Let
p be a condition in S(α). We want to find a condition q ≤ p such that q 
 ǎ ∈ Ċ ,
ḃ ↾ a = x̌, and x̌ /∈ L̇.
Work inside some countable model M such that p, ḃ, Ċ ,S(α) ∈M , and let ä =

sup(M ∩ α). By taking an ù-sequence of extensions of p inside M, we obtain an
M-generic filterG. By the ó-closure of the forcing, there are many conditions q such
that G = {q′ ∈M | q′ ≥ q}. Any such condition is a lower bound for the filter G.
Since G isM-generic, for every æ ∈M , the value of ḃ(æ) is determined by some

condition in G. Therefore, there is some x : M ∩ α → 2 such that (ḃ ∩M )G = x.
Note that for each condition q as above, q 
 ḃ ↾ (M ∩ α) = x̌, and in particular for
some y, q 
 y̌ ∈ Ṫα and y ↾ (M ∩ α) = x.
Since cf ä = ù, we can pick q = (tq , ℓq , bq , fq) to be a lower bound of the

conditions in G, such that fq(M ∩ ä) = x, and ℓq(ä) = ∅. This is possible, since
the height of tq is at least ä + 1, y ∈ tqä+1, and x = y ↾ (M ∩ ä).

Since q is M-generic and Ċ ∈M is forced to a club, q 
M ∩ α ∈ Ċ . Finally,
q 
 ḃ ↾ (M̌ ∩ α̌) = x̌ /∈ L̇. ⊣

Definition 5.9. Work in the generic extension by S(α). Let Ṫ(α) be the S(α)-
name for the forcing that adds a club disjoint from the set {supx | x ∈ domF },
using bounded initial segments.

The following observation is standard:

Claim 5.10. S(α) ∗ Ṫ(α) contains an α-closed dense subset.

Proof. Let D be the set of all conditions 〈(t, ℓ, b, f), q〉 such that the height of t
is ã + 1, max dom ℓ = max q = ã. The set D is dense and α-closed. ⊣
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Next, we would like to define a variant of Mitchell’s forcing,M′(κ). We define it
by induction on ñ ≤ κ. We verify throughout the inductive definition that there are
natural projections fromM′(æ) toM′(ñ) for ñ < æ , given by taking the restrictions
of all the components in the condition.
A condition inM′(ñ) is of the form 〈a,m, s, t〉 where:

(1) a ∈ Add(ù, ñ).
(2) m is a function with countable support (contained in ñ), such that for all
α ∈ suppm, 
Add(ù,α) m(α) ∈ Add(ù1, 1).

(3) s is a partial function with Easton support contained in the inaccessible
cardinals < ñ, and for every α ∈ dom s , 
M′(α) s(α) ∈ S(α).

(4) t is a partial function with Easton support contained in the inaccessible
cardinals < ñ, and for every α ∈ dom t, 
M′(α)∗S(α) t(α) ∈ T(α).

We order the forcing naturally: (a,m, s, t) ≤ (a′, m′, s ′, t′) iff a ≤ a′, for
all α < ñ, a′ ↾ α 
 m(α) ≤ m′(α), (a ↾ α,m ↾ α, s ↾ α, t ↾ α) 
 (s(α), t(α)) ≤
(s ′(α), t′(α)).
We will force with M′(κ) ∗ S(κ), so the forcing at κ behaves differently than the

forcing at lower inaccessible cardinals: for each inaccessible α < κ we force with
S(α) ∗ Ṫ(α) while for κ itself we just force with S(κ), without Ṫ(κ). This strategy
traces back to Kunen’s proof [18], and appears in countless works where different
compactness and anti-compactness principles are compared.

Lemma 5.11. Let κ be ë-Π11-subcompact. Then in the generic extension byM
′(κ) ∗

Ṡ(κ), LSCP(Pù2ë,ù1-cofinal) holds but ¬LSCP(Pù2ù2, ù1-club).

Proof. Since our forcing notion is of the form M′(κ) ∗ ˙S(κ), by Claim 5.8, the
generic tree and ladder system which is introduced by S(κ) would witness the failure
of LSCP(Pù2ù2, ù1-club).

Let us turn now to showing that LSCP(Pù2ë,ù1-cofinal) holds. Let Ṫ be a name

for a Pù2ë-tree and let L̇ be a name for a ladder system on Ṫ .
As in the proof of the previous case, we start with a transitive model M, which

contains all relevant information and obtain from Lemma 2.8 a transitive model N
and an elementary embedding, j : M → N with j ” ë ∈M , ë < j(κ). This time, we
would like to require more closure from N, so we will assume that M satisfies the
further requirements of Lemma 2.9, and conclude that we can pick N to be closed
under < ë-sequences.
Let G ∗ S ⊆ M′(κ) ∗ S(κ) be a generic filter. We would like to find a generic

G ′ ∗ S ′ ⊆ j(M′(κ) ∗ S(κ)) and lift the embedding to an embedding j̃ : M [G ][S]→
N [G ′][S ′].
Since the f -part which is introduced in the forcing S(κ) is a non-reflecting

stationary set, there is no hope to lift this embedding without a forcing component
that would add a club disjoint from it. So, j̃ exists only in a generic extension of
V [G ][S].
First, let us show that

j(M′(κ)) ∼=M′(κ) ∗ Ṡ(κ) ∗ Ṫ(κ) ∗ Q̇.

Indeed, the map sending (a,m, s, t) ∈ j(M′(κ)) to (a ↾ κ,m ↾ κ, s ↾ κ + 1, t ↾ κ +
1) is a projection. Since Vκ ⊆ N , it is easy to verify that Ṡ(κ), Ṫ(κ), and the forcing
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M′(κ) are computed in the same way inM and inN, and therefore this map projects
j(M′(κ)) onto M′(κ) ∗ Ṡ(κ) ∗ Ṫ(κ). Let T ⊆ TG∗S(κ) be a V [G ][S]-generic filter,
and let Q be the quotient forcing:

Q := j(M′(κ))/
(

M′(κ) ∗ Ṡ(κ) ∗ Ṫ(κ)
)

= j(M′(κ))/(G ∗ S ∗ T ).

Let C =
⋃

T be the generic club introduced by T(κ). In order to lift j, we must
find a generic filterG ′ ⊆ j(M′(κ)) and S ′ ⊆ j(S(κ)) such that for every p ∈ G ∗ S,
j(p) ∈ G ′ ∗ S ′. By the structure of the conditions in M′(κ), this implies that G ′ ↾

κ = G , and for every s ∈ S, j(s) is in the generic S ′ for j(S(κ)). As usual, we
choose G ′ such that G ′ ↾ κ + 1 = G ∗ S ∗ T and G ′/(G ∗ S ∗ T ) is a generic filter

for Q̇G
′↾κ+1 overM [G ′ ↾ κ + 1].

We would like to find a master condition—a condition in j(S(κ)), m such that
for all condition s ∈ S(κ) that appear in the generic filter S, m ≤ j(s). This would
be sufficient as all conditions in the generic filter G are unmoved by j.
Let Tκ, Bκ, Lκ, Fκ be the generic tree, branches, ladder system, and function

introduced by S(κ), respectively, as defined in Notation 5.6 (do not confuse the
generic tree Tκ with the generic filter for the forcing T(κ), T).
Take tm = Tκ ∪ rangeBκ ∈ 2

≤κ. So, tm is a tree of height κ + 1. Let ℓm extend the
generic ladder system Lκ by adding one element in the level κ. Since κ is forced to
have uncountable cofinality in the generic extension by j(M′(κ)), ℓm(κ) is obtained
by picking one arbitrary element ç from the κ-th level of the tree and using the
generic club C that was introduced by T(κ): the club Eç consists of all x ∈ Pù1κ
such that supx ∈ C .
Let bm = Bκ, the collection of all generic branches. More precisely, for every

x ∈ Tκ, we define bm(x) to be the node in tm which lie on top of the cofinal branch
Bκ(x), and bm(x) = x for x ∈ tm ∩ κ2. Let fm = Fκ. The generic club C witnesses
the domain of F to be non-stationary. Moreover, since C does not intersect {supx |
x ∈ domF }, we conclude that ℓm(κ) is disjoint from F.
Finally, we take a generic S ′ such that m ∈ S ′. By the above discussion, in

V [G ′][S ′], the embedding j lifts. Let us denote by j⋆ : M [G ][S]→ N [G ′][S ′] the
lifted embedding.
As in the proof of Theorem 4.4, we obtain a branch b by considering the value

of the ladder system at j ” ë: The element j ” ë is a member of the club which is
included in the domain on j∗(L). We take ç ∈ j∗(L)(j ” ë), and define

b = {j–1(ç ↾ j ” z) | z ∈ Pù2ë}.

We claim that b ∈ V [G ].

Claim 5.12. Assume that in V [G ], there is no cofinal branch in T that meets the
ladder system Lù1-cofinally. Then, the forcing T(κ) ∗Q ∗ j(S(κ)) does not introduce
such a branch.

Proof. In order to prove the claim, we are going to find a forcing notion Q̂ and
a projection from Q̂ to Q. We will show that T(κ) ∗ Q̂ ∗ j(S(κ)) (that projects to
T(κ) ∗Q ∗ j(S(κ))) does not introduces new branches to Pù2ë-trees, assuming that
there is no branch that meets the ladder system cofinally.
First, since j(S(κ)) is forced to be j(κ)-strategically closed in the generic extension

of N, it is forced to be at least ë-strategically closed in V. Thus, if ḃ is a name for a
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new branch through T which is forced tomeetLù1-cofinally, then one can construct
a filter of j(S(κ)) deciding the value of ḃ(α) for all α < ë, such that the obtained
branch b′ indeed meets L cofinally.
Now, take Q̂ to beAdd(ù, j(κ) \ κ)× CwhereC is the collection of all conditions

of the form (1, m, s, t) ∈ Q, ordered by their induced order from Q. Note that this
is just the termspace forcing for Q, and that C is ó-closed. See [6, Section 22] for
further details about termspaces and projections.
Since the forcing Add(ù, j(κ) \ κ) is productively c.c.c., it cannot add branches

to a Pù2ë-tree [25, Lemma 1.6]. Thus, any new branch was already introduced by
T(κ) ∗ C.
Let us assume that there is such a branch. Let M be a countable elementary

substructure of H (÷)[G ] that contains the forcing notions T,C, the tree, and the
name for the new branch ḃ. Let us pick M such that ä = sup(M∩ κ) does not
belong to the set S = {α < κ | ∃x ∈ domf, supx = α}. There is such a model
since the set S is co-stationary on S

ù2
ù .

Let us construct a prefect tree of mutuallyM-generic filters, 〈Kç | ç ∈
ù2〉. Each

one of those filters gives rise to a condition 〈tç, qç〉. For each ç, tç =
⋃

{t | 〈t, q〉 ∈
Kç} ∪ {ä} ∈ T(κ) since ä /∈ S. For each ç, the condition qç exists by the ó-closure
of C.
Now, for each ç ∈ ù2, there is a different realization of ḃ onM. Note that 〈tç, qç〉

forces the value of ḃ ∩M to be some xç. By mutual genericity of the filters Kç, and

since 
 ḃ /∈ V [G ], for every ç 6= ç′, xç 6= xç′ . But in this model 2
ℵ0 = ù2, which

contradicts the assumption that each level of the tree has size < ù2. ⊣

Finally, let us show that the set

B = {x ∈ Pù1ë | b ↾ x ∈
⋃

range ℓ}

is unbounded. Indeed, this set is even stationary as inN [G ′][S ′] (in which cfκ > ù)
this set contains a club. ⊣

This establishes Theorem 5.2.
As the different variants of the strong tree property behave differently onù2, let us

compare them to the Ineffable Tree Property. The model of Lemma 5.11, assuming
full supercompactness, also provides the following separation result.

Remark 5.13. In the model of Theorem 5.2, ITP(ù2) holds. In particular,
ITP(ù2) is consistent the failure of LSCP(Pù2ù2, ù1-club).

Proof. We work with full supercompact embeddings. Let j : V →M be a
ë-supercompact embedding. As in the proof of Lemma 5.11, we can lift it to an
elementary embedding j∗ : V [G ]→M [H ].
Let us consider now aPù2ë-tree T with a list d. Let us consider the branch bwhich

is generated by j∗(d )(j ” ë) ∈M [H ]. By the arguments of Lemma 5.11, this branch
appears already in V [G ]. We need to show that it is ineffable. Working in V [G ],
let B = {x ∈ Pù2ë | b(x) = d (x)}. If B is non-stationary in V [G ], then there is a
clubD, avoiding it. Let us consider j∗(D). j ” ë =

⋃

x∈D j
∗(x) ∈ j∗(D). Therefore,
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j ” ë /∈ j∗(B), but this is absurd, as

j∗(b)(j ” ë) =
⋃

x∈Pù2ë

j∗(b(x)) = j∗(d )(j ” ë). ⊣

§6. Questions. We conclude the paper with some questions. Our model of
Theorem 5.2 gives an unsatisfying separation between the different ladder system
principles as the cofinal branch meets the ladder system on a stationary set, and not
merely an unbounded set. This seems to be essential in this type of argument.

Question 6.1. Is it consistent that LSCP(Pù2ë,ù1-cofinal) holds, but the seemly
stronger property LSCP(Pù2ù2, ù1-stationary) fails, namely there is an ù2-tree with
a ladder system such that no branch meets that ladder system on a stationary set in

Pù1ë?

Question 6.2. Does the LSCP(Pù2ë,ù1-clubs) imply the Ineffable Tree Property
at Pù2ë

′ for some ë′ < ë?
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