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THE EXACT NON-NULL DISTRIBUTION OF
WILKS’ A CRITERION IN THE BIVARIATE
COLLINEAR CASE

BY
N. N. MIKHAIL AND D. S. TRACY

It is well-known that Wilks’ A criterion is distributed as the product of p inde-
pendent beta variables in the p-variable null-case [3]. In the collinear case, A
is still distributed as the product of p independent beta variables, one of them
following a non-central beta density. Thus when p=2, the exact non-null distribu-
tion of A in the collinear case is given by the product of two independent beta
variables, one central and the other having non-centrality parameter A. Therefore,
if we let A be denoted by the random variable w, its distribution function is
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a=(N-n2>12,b=n-1)2>0, 0<xy<L1,
2a and 2b being the degrees of freedom for the error and for the hypothesis re-
spectively.

Malik [4] uses the Mellin transform to derive the distribution of the product
of two independent non-central beta variables. The distribution of w here, however,
cannot be obtained from his formula, since the non-centrality is imposed on 1—y
and not on y. We use the technique of Mellin transformas in [4],to obtain ourresult.

The Mellin transform g(s)={7 #*-f(t) dt in our case yields
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Since the Mellin transform of the density function of the product of two inde-
pendent random variables is the product of their individual Mellin transforms [2],
the Mellin transform of the density function of w=xy is
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In order to obtain the density function of w we need to find the inverse Mellin
transform f(£)= (1/2mi)[i2 t=*g(s) ds of each term in (5). We use [1],
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where F(x, f8; y; x) is a hypergeometric function ,F;( - ). Letting u=a—1, v=a—2,
m=>b+i, n=>b and x=w in (6), we obtain
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Hence, the density function of w is

i
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MM,] = F(b, b+i+1/2; 2b+i; 1—w).
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X F(b, b+i+1/2; 2b+i; 1—w), 0<w< 1.

In the null-case, A=0 and (7) reduces to the product of two independent beta
densities.
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