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The gastrointestinal tract (GIT) is an interface between the external and internal milieus that requires continuous monitoring for
nutrients or pathogens and toxic chemicals. The study of the physiological/molecular mechanisms, mediating the responses to the
monitoring of the GIT contents, has been referred to as chemosensory science. While most of the progress in this area of research
has been obtained in laboratory rodents and humans, significant steps forward have also been reported in pigs. The objective of
this review was to update the current knowledge on nutrient chemosensing in pigs in light of recent advances in humans and
laboratory rodents. A second objective relates to informing the existence of nutrient sensors with their functionality, particularly
linked to the gut peptides relevant to the onset/offset of appetite. Several cell types of the intestinal epithelium such as Paneth,
goblet, tuft and enteroendocrine cells (EECs) contain subsets of chemosensory receptors also found on the tongue as part of the
taste system. In particular, EECs show specific co-expression patterns between nutrient sensors and/or transceptors (transport
proteins with sensing functions) and anorexigenic hormones such as cholecystokinin (CCK), peptide tyrosine tyrosine (PYY) or
glucagon-like peptide-1 (GLP-1), amongst others. In addition, the administration of bitter compounds has an inhibitory effect on
GIT motility and on appetite through GLP-1-, CCK-, ghrelin- and PYY-labelled EECs in the human small intestine and colon.
Furthermore, the mammalian chemosensory system is the target of some bacterial metabolites. Recent studies on the human
microbiome have discovered that commensal bacteria have developed strategies to stimulate chemosensory receptors and trigger
host cellular functions. Finally, the study of gene polymorphisms related to nutrient sensors explains differences in food choices,
food intake and appetite between individuals.
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Implications

How the gastrointestinal tract senses the arrival of dietary
nutrients and non-nutrients (e.g. toxins) has a tremendous
impact on the hunger–satiety cycle. Nutrient sensing is medi-
ated by the activation of taste receptors or other sensors/
transporters present in the intestinal epithelium associated
with the enteroendocrine system. For example, the excess
of specific non-limiting dietary amino acids in pigs has the
capacity to strongly trigger satiating signals through chemo-
sensory mechanisms (Muller and Roura, unpublished). In the
future, standard feed formulation guidelines in farm animals
(including pigs) will have to include not only essential-
limiting amino acids but the wider array of dietary amino
acids as well. A full understanding of these mechanisms is
essential to develop dietary strategies to optimize feed intake
in farm animals such as the pig.

Introduction

Nutritional chemosensing is the scientific discipline studying
how nutrients are perceived in biological systems including
genomic, metabolic, physiological and behavioural mecha-
nisms (Roura et al., 2016). The molecular mechanisms of oral
nutrient and non-nutrient sensing involve a large repertoire
of receptors including taste receptors (TRs). The activation of
TRs trigger the depolarization of the sensory cell in the
tongue and the stimulation of the gustatory cortex of the
brain mediated by the signalling of the cranial nerves VII,
IX and X (Barretto et al., 2015). In addition, the mechanisms
of nutrient perception discovered in the oral cavity have also
been described outside the oral cavity as part of the enter-
oendocrine system (EES) mediating the hunger–satiety cycle
(reviewed by Steensels and Depoortere, 2018). In the intes-
tinal epithelium, there are several cell types, such as enter-
ocytes, enteroendocrine cells (EECs), tuft, Paneth, goblet,
microfold and cup cells, which play a key role reporting† E-mail: e.roura@uq.edu.au
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the luminal content to the brain (Depoortere, 2014). These
mechanisms were originally studied in humans and
laboratory rodents; however, in recent reports homologous
mechanisms have been uncovered in pigs (reviewed by
Roura and Fu, 2017; Roura and Foster, 2018).

In addition, some nutrient transporters seem to play a dual
role meaning that the main role of transporting might be
coupled to nutrient-sensing signalling. These transporters
have been referred to as ‘transceptors’ (Reimann et al.,
2008; Poncet and Taylor, 2013). Sensory functions of nutrient
transporters in and outside the oral cavity are increasingly
being recognized in mammalian species (Diallinas, 2017;
Roura and Foster, 2018; Steensels and Depoortere, 2018).
Themolecular mechanisms of oral nutrient sensing and trans-
porters are complex and imply a high degree of specificity to
each nutrient type. This review aims at summarizing the
current knowledge on nutrient (carbohydrates, proteins
and lipids) and non-nutrient (bitter or bacterial compounds)
chemosensing and the mediation of appetite-regulating gut
peptides in pigs, presented using the progress obtained in
humans and laboratory rodents as a reference. Novel
research avenues on ‘microbial and parasite sensing’ have
been highlighted in the ‘Microbial and parasite sensing : : : ’
section of the review.

Carbohydrate sensing

Carbohydrate sensing has been related to two taste-like types
referred as sweet and starchy tastes in humans (Aji et al.,
2019). On the one hand, sweet taste has evolved around
mono-, di- and tri-saccharides (simple sugars), not only in
humans but also in other mammalian species including pigs
(Sclafani, 1987; Glaser et al., 2000; Lapis et al., 2014; Low
et al., 2017; Roura and Fu, 2017). On the other hand, starch
is the primary carbohydrate source in pigs. In recent years,
starch-related sweet taste has gained relevance as part of
the dietary nutrient-sensing mechanisms in the oral cavity.
Despite a short contact time with starch in the mouth, salivary
alpha-amylase has the potential to elicit sweet taste in
humans by releasingmaltose andmaltotriose (Aji et al., 2019).

However, the sensing of complex carbohydrates is inde-
pendent of sweet taste as described in laboratory rodents
(Sclafani, 1987). Lapis et al. (2014) demonstrated the taste
of glucose was correlated with sucrose but not with the
sensing of complex carbohydrates. Pigs were also reported
to sense complex carbohydrates from hydrolysed corn starch
(Roura et al., 2013).

Carbohydrate sensors and transceptors in the
gastrointestinal tract
Most mammalian species (except strict carnivores) have a
very conserved mechanism of simple sugar perception
(related to sweet taste in humans). Table 1 summarizes
the main receptors and transporters known to be involved
in sensing sugars in the gastrointestinal tract (GIT) in humans
and pigs. Among other potential receptors, simple

carbohydrates sensing involves a heterodimer of two
G-protein-coupled receptors (GPCRs) known as taste recep-
tor type 1 member 2 and member 3 (TAS1R2 and TAS1R3,
respectively) (Bachmanov and Beauchamp, 2007). In
addition, a TAS1R2/TAS1R3-independent sensing of mono-
saccharides (e.g. glucose and fructose) has been recently
described in the oral cavity. The system was related to the
glucose transporters/co-transporters (GLUTs) and sodium-
dependent glucose transporter type 1 and 2 (SGLT1/2),
and the brush border enzymes present in the apical mem-
brane of some taste sensory cells (Glendinning et al.,
2015; Sukumaran et al. 2016). An analogous system has
been previously described in the small intestine (Cheng
et al., 2014; Zhang et al., 2015). In addition, the stimulation
of the TAS1R sweet receptor dimer seemed to upregulate
SGLT1 to facilitate glucose uptake in the intestine
(Mace et al., 2007; Margolskee et al., 2007). GLUT5 has also
been reported to influence glucagon-like peptide-1 (GLP-1)
release from enteroendocrine K-cells (Douard and Ferraris,
2008). However, potential dual roles for other sugar
transporters/sensors known to be expressed in the GIT
(i.e. KATP channel, SGLT2, GLUT2 or GLUT5) have not been
reported to date (Table 1). Some of these molecular mecha-
nisms have also been described in pigs (Roura and Fu, 2017).
The identification of putative receptors responsible for the
sensing of starch and glucose polymers remains elusive to
date in mammalian species.

Carbohydrates sensors and the enteroendocrine system
The presence of simple sugars in the GIT activates the
expression and stimulation of TAS1Rs in EECs which, in turn,
release gut peptides relevant to the orchestration of the
hunger–satiety cycle (Rozengurt et al., 2006). The main hor-
mones involved in this response include cholecystokinin
(CCK), peptide tyrosine tyrosine (PYY) and GLP-1 (Badman
and Flier, 2005). These hormones are known to regulate
energy and glucose metabolism by modulating the homoeo-
static and food reward systems in the brain implicated in hun-
ger and satiety (Berridge and Robinson, 1998). In particular,
carbohydrate sensing mediated by TAS1R2/TAS1R3, SGLT1
and/or the KATP has been described on L-cells and K-cells
known to secrete GLP-1 and glucose insulinotropic peptide
(GIP), respectively (Steensels and Depoortere, 2018). The
expression and co-localization of TAS1R2, TAS1R3 and trans-
ceptor SGLT1 in L-cells has been related to GLP-1 secretion in
humans and rodents (Jang et al., 2007; Steinert et al., 2011a;
Gerspach et al., 2011). In addition, sugar sensors are found in
human stomach, expressed in endocrine P/D1 cells (also
referred to X/A cells in lab rodents) and inhibit the release
of the hunger hormone ghrelin (Wang et al., 2019).
However, the effect of glucose on GLP-1 and PYY release
could be overruled or potentiated by other nutrients such
as proteins or fats (Gerspach et al., 2011). Interestingly,
artificial sweeteners showed no effect on GLP-1 in vivo in
rodents and humans, suggesting that they may not induce
physiological effects in the GIT (Steinert et al., 2011b;
Steensels et al., 2016).
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Table 1. Main simple carbohydrates receptors and transporters known to be involved in GIT sensing in humans and pigs1

Nutrient Gene Receptor/transporter Cell-type expression in gut tissues GI peptides secreted References2

Gluc, Mal, Suc, Fru, sugar
alcohols

T1R2/T1R3 Sweet taste receptor Taste buds, X/A cell, enteroendocrine L-cell and K-
cells, pancreatic β-cells, tuft cells, Paneth cells L-cell

GIP, GLP-1, PYY, Li et al., 2002; Gerspach et al.,
2011; Moran et al., 2010a

Gluc, Gal SGLT1/SGLT3 Sweet taste receptor, glucose/
galactose transporter (SGLT1) and
glucose sensor (SGLT3)

Taste buds, apical membrane of enterocytes, X/A cell,
L-cells, K-cell, pancreatic α-cells and SGLT3 in
enteric nervous system

GIP, GLP-1 Wrigth et al., 2011; Röder et al.,
2014; Suga et al., 2019; Moran
et al., 2010

Gluc, GalFru, Man, Glucos GLUT2 Membrane transporter Pancreatic β -cells, K-cells, L-cells, enterocytes Glucagon, GLP-1,
Insulin

Marty et al., 2006; Zuo et al.,
2010; Mueckler and Thorens,
2013; Fournel
et al., 2016; Seino et al., 2016

Gluc, Glucos GLUT4 Membrane transporter T1r3-positive taste cells - Yee et al., 2011; Zhang et al.
2016

Gluc, Fru, Gal GLUT5 Membrane transporter Apical membrane of enterocytes - Cottrell et al., 2006; Douard and
Ferraris, 2008

Gluc; Fru GLUT7 Membrane transporter Small intestine, colon - Cheeseman, 2008; Vigors et al.,
2016

Gluc, Fru GLUT93 Urate, glucose sensor Small intestine - Xuet al., 2016; Bu et al., 2017
Gluc KATP channel Glucose sensor Pancreatic β-cells, L-cells and K-cells GIP, GLP-1, Insulin Reimann and Gribble, 2002;

McTaggart
et al., 2010

GIT= gastrointestinal tract; GI= gastrointestinal; GIP= glucose insulinotropic peptide; GLUT= glucose transporter; PYY= peptide YY; SGLT= sodium–glucose cotransporter 1; T1R= taste receptor family 1; KATP channel=
ATP-sensitive K+ channel; GLP-1= glucagon-like peptide 1; Fru= fructose; Gluc= glucose; Gal= galactose; Man=mannose; Mal=maltose; Suc= sucrose; Glucos= glucosamine.
1 All the receptors and transporters presented in the table are relevant to humans and pigs except if noted with the superscript 3.
2 Table references are provided in Supplementary Material S1. Note: some references to laboratory rodent research have been used to illustrate the discovery or proof of the GIT-related function of some genes.
3 No literature evidence of the functionality of this gene has been found in pigs.
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In pigs, Moran et al. (2010a and 2010b) found that dietary
carbohydrates or saccharin enhanced SGLT1 expression in
small intestine epithelial cells including L and K cells resulting
in an increased glucose absorption. In addition, L and K cells
co-expressed pTas1r2/pTas1r3, SGLT1 and GIP and GLP-1.
Thus, SGLT1 was shown to be the main route of absorption
of dietary sugars and that the increased expression of SGLT1
in epithelial cells was mediated by the stimulation of pTas1rs
in pigs (Moran et al., 2010b).

Gene polymorphisms in carbohydrate sensing
Based on population genomic analyses, 18 single-nucleotide
polymorphisms (SNPs) (of which 10 were non-synonymous –
ns – that is, causing a change in the amino acid (AA)
sequence of the receptor) have been identified in TAS1R2
(Kim et al., 2006). TAS1R2 variants have been associated
with higher sucrose taste thresholds and dietary sugar intake
(Eny et al., 2010) or to lower carbohydrate intake (Ramos-
Lopez et al., 2016). In addition, Dias et al. (2015) found that
the functional impact of another TAS1R2 polymorphism was
body mass index (BMI) dependent – that is, high sucrose
thresholds and sugar intake found in overweight individuals
(BMI>25) but not in normal-weight individuals (BMI<25).
Furthermore, low compared to high sweet taste sensitivity
volunteers consumed a higher amount of energy from a
buffet meal, implying a strong involvement of TAS1R2 allelic
variants on food choices (Han et al., 2017). In the same study,
low sweet sensitivity was related to high salivary leptin.
Similarly, a high oral sensitivity to the taste of complex
carbohydrates (maltodextrin and oligofructose) was associ-
ated with higher consumption of energy and starch and waist
circumference (Low et al., 2017). Regarding genetic polymor-
phisms in pigs, the studies conducted to date have not
reported potential pTas1r2 variants because the gene was
not annotated in the pig genome at the time the studies were
conducted (Da Silva et al., 2014; Clop et al., 2016).

Protein/amino acid sensing

Dietary protein, as a source of AA, plays a fundamental role in
growth and development. Of the 20 proteinogenic AAs
needed for protein synthesis in eukaryotic cells, a few cannot
be metabolically synthesized ‘de novo’ from other carbon and
nitrogen sources within the cells, and need to be consumed
as part of the diet. Thus, optimal growth and development in
pigs requires a balanced supply of these so-called dietary
essential AAs; one of the key aspects in current pig feed for-
mulation practices. Failure to supply a balanced diet in terms
of essential AA results in deficient growth and development
and ultimately death. Thus, it is not surprising that a wide
array of AAs and peptide sensors exist in mammalian species.
In humans, the oral sensing of dietary AA was originally
related to glutamate (and aspartate) and defined as the
umami taste (Ikeda, 1909). Other AAs sensed include aro-
matic AA (e.g. L-Phe), basic AA (L-Arg) and dietary peptides
(Zhang et al., 2014). However, in other mammals such as

laboratory rodents and pigs, the oral/umami sensing of AA
involves several L-AAs (Tinti et al., 2000; Roura et al., 2011).

Amino acid sensors and transceptors in the
gastrointestinal tract
Table 2 shows the main receptors and transporters known to
be involved in AA sensing in the GIT in humans and pigs. The
umami taste receptor is a GPCR heterodimer: TAS1R1/
TAS1R3 (Nelson et al., 2002). In addition, the metabotropic
glutamate receptors (particularly mGluR1 and mGluR4) have
also been related to glutamate sensing in humans, in and
outside the oral cavity (San Gabriel and Uneyama, 2013).
Other AA sensors have been identified including the calcium
sensing receptor (CaSR, sensing basic AA and Ca2+ as a
heterotrophic cooperative enhancer) and GPRC6A (sensing
aromatic AA) (Zhang et al., 2014; Steensels and
Depoortere, 2018). CaSR acts in concert with GPRC6A and
are found expressed in D-, G- and L-cells (Haid et al.,
2012). Finally, di- and tripeptides are sensed by GPR92/93.
Similar to previous receptors, AA sensors are also widely
expressed throughout the GIT in humans, lab rodents and
pigs (Wellendorph et al., 2010; Roura and Foster, 2018)
(Table 2).

There is a complex and highly specific network of AA and
peptide intestinal transporters belonging to the solute carrier
(SLC) family. A detailed description of these transporters can
be found elsewhere (Broer, 2008). However, the evidence of
any of these transporters to function as AA sensors remains
to be fully studied.

Amino acids and the enteroendocrine system
In the GIT, the stimulation of the umami heterodimer and the
CaSR have been associated with the secretion of CCK, ghrelin
and GLP-1 (Liou et al., 2011a; Diakogiannaki et al., 2013;
Vancleef et al., 2015). In addition, GPR92/93 has been
reported in stomach G-cells and STC-1 cells responding to
a protein hydrolysate by releasing CCK (Choi et al., 2007;
Rettenberger et al., 2015).

Similar to the TAS1R-independent mechanisms of sweet
taste perception, the AA sensing also seems to partially rely
on AA transceptors as an alternative pathway to signal
responses through EEC. Di/tripeptide uptake in L cells occurs
via peptide transporter 1 (PEPT1) and results in subsequent
basolateral activation of the CaSR and GLP-1 release
(Diakogiannaki et al., 2013; Daniel and Zietek, 2015;
Modvig et al., 2019). Another potential example of AA trans-
ceptor is the sodium-dependent neutral AAs transporter 2
(SNAT2) involved in GLP-1 secretion (Reimann et al., 2006;
Young et al., 2010). A large number of additional AA trans-
porters (e.g. the SLC family) are known to be expressed in the
GIT but, as indicated previously, their potential role as trans-
ceptors has not been fully described (Broer, 2008). In pigs,
the first fully functional taste receptor gene to be sequenced,
cloned and expressed in a cell reporter systemwas the umami
heterodimer pTas1r1/pTas1r3 (Humphrey et al., 2009; Tedo
Perez, 2009; Roura et al., 2011). The results indicated that
the umami taste in pigs was tuned to 8 L-AA (Ala, Asn,
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Asp, Glu, Gln, Pro, Ser and Thr) (Roura et al., 2011). The
expressions of the porcine metabotropic glutamate receptors
(mGluR1 and mGluR4) and other AA and peptone receptors
(i.e. CaSR, GPRC6A and GPR92) have also been reported
more recently in pig tongue and stomach epithelia
(Haid et al., 2012; Da Silva et al., 2014). In addition, the
AA receptors involved in sensing protein breakdown products
were identified in G-cells and D-cells in pigs (Haid et al.,
2012). Finally, several AA transporters of the SLC family have
been identified in the pig GIT; however their potential role as
sensors has not been addressed (Vigors et al., 2014).

Gene polymorphisms in amino acid sensing
In humans, 17 SNPs (14 ns) and 12 SNPs (6 ns) were reported
for TAS1R1 and TAS1R3, respectively (Kim et al., 2006).
These polymorphisms have been associated with a lower
ability to taste glutamate (Chen et al., 2009) and with specific
food choices (Han et al., 2018). In particular, the research
published fromHan et al. (2018) reported that human carriers
of one of the TAS1R1 SNPs consumed more fat and calories
from a buffet meal. In addition, Raliou et al. (2009) showed
that mGluR1 polymorphisms contributed to a lack of
sensitivity to glutamate. Genetic variants in other AA sensors
(i.e. CaSR and GPRC6A) have also been reported; however,
the physiological impact of this variation is currently
unknown.

In pigs, an SNP analysis of 79 pig genomes (belonging to
14 different breeds) revealed 13 (5 ns and 1 stop-lost) and 9
(1 ns) polymorphisms in pTasS1r1 and pTas1r3, respectively
(Da Silva et al., 2014). The research also showed several SNPs
for the other AA sensors: 22 (2 ns), 6 (3 ns), 16 (1 ns) and 28
(2 ns) for CaSR, GPRC6A, mGluR1 and mGluR4, respectively.
Clop et al. (2016) identified 31 (including 1 splice, 1 stop-
gained and 1 stop lost, 3 frame shifts and 4 moderate impact)
pTas1r1 variants and 14 (including 1 stop gained and 1 mod-
erate impact) pTas1r3 variants. In addition, they identified an
mGluR1 SNP linked to umami taste, feed intake and growth.
However, the incidence of SNP in AA sensors compared to the
bitter sensing systemwas very low (Da Silva et al., 2014). This
limited number of ns SNPs may indicate that AA receptor/
transceptor functions are highly conserved across individuals
and across pig breeds.

Lipid/fatty acid sensing

Fats are an essential dietary energy source that play a key role
in gut hormone release (Hara et al., 2014). Triglycerides, the
main dietary fat source, are digested by lipases releasing free
fatty acids (FFAs) and monoacylglycerides.

Fatty acid sensors and transceptors in the gastrointestinal
tract
The chemosensory system for fats has evolved mainly around
the sensing of FFAs and consists of an array of nine receptors
(FFARs) and transceptors featuring a degree of specificity
based on chain length (Table 3). In particular, the mainTa
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Table 3. Main FFA receptors and transceptors known to be involved in GIT sensing in humans and pigs1

Nutrient Gene Function Cell-type expression in the GIT GI peptides secreted References2

C1-C6 FFAR2 (GPR43) FFA taste receptor, and
FFA sensing

Endocrine L-cells, pancreatic α-cells and β-cells, gastric
brush cells, leukocytes in the lamina propria of the small
intestine

Ghrelin, GLP-1 and
PYY,

Kaji et al., 2011; Colombo et al., 2012;
Engelstoft et al., 2013; Brooks et al.,
2017

C1-C6 FFAR3 (GPR41) FFA taste receptor, and
FFA sensing

Taste buds, L-cells, I-cells, pancreatic α-cells and β-cells,
gastric brush cells, neurons in submucosal and
mesenteric ganglia

GLP-1 and PYY Tazoe et al., 2009; Nøhret al., 2013; Li
et al., 2014; Chambers et al., 2015

C4 MCT1 (SLC16A1) Butyrate transporter Caco-2 cells colon – Haenen et al., 2013; Stumpff, 2018
C9-C14 GPR84 Regulation of systemic

energy metabolism, lipid
sensor

Taste buds, oral granulocytes, G-cells (stomach), colon, liver Da Silva et al., 2014; Liu et al., 2018;
Widmayer et al., 2017

C10-C22, saturated
and unsaturated

FFAR1 (GPR40) FFA taste receptor3 and
FFA sensing

Taste buds and L-cells, I-cells, pancreatic β-cells CCK, insulin Itoh et al., 2003; Liou et al., 2011b ;
Da Silva et al., 2014; Chen et al.,
2017

C12-C22, saturated
and unsaturated

FFAR4 (GPR120) FFA taste receptor, and
FFA sensing

Taste buds, K-cells, L-cells, pancreatic islet δ-cells and
Kupffer cells

GLP-1, GIP, CCK,
ghrelin, glucagon,
insulin

Colombo et al., 2012; Gonget al., 2013;
Ichimuraet al., 2014; Iwasaki et al.,
2015

Long-chain FA FABP2 FA transporter Enterocytes K-cells GIP Besnard et al., 2002; Vigors et al., 2016
Long-chain FA FATP4 FA transporter Small intestine enterocytes, CCK, secretin Stahl et al., 1999; Zong et al., 2018
Long-chain FA CD36 FA translocase, regulation

of fat sensing
Apical side of lingual taste bud cells. Brush border
membrane of enterocyte small intestine

GLP-2 Laugerette et al., 2005; Yamamoto et
al., 2012; Vigors et al., 2016

Propionate OLFR784 FA sensing Colonic L-cells PYY Fleischer et al., 2015
Butyrate OR51E1 FA sensing Stomach, pyloric, duodenal, jejunal, ileal, caecal, colonic

and rectal mucosae L-cells
GLP-1, PYY Priori et al., 2015; Han et al., 2018

2-monoglycerides GPR1194 Enteroendocrine lipid
sensor

L-cells, β-cells GLP-1, PYY, insulin Soga et al., 2005; Overton et al., 2006,
Kogure et al., 2011

Bile acids GPBAR1 (TGR5) Cell surface receptor for
bile acids

Liver sinusoidal endothelial cells, gall bladder epithelial
cells, kupffer cells, enteric neurons and cells

PYY, GLP-1 Poole et al., 2010; Jain et al., 2012;
Dehmlow et al., 2013

FFA= free fatty acids; GIT= gastrointestinal tract; GI= gastrointestinal; FFARs= free fatty acid receptors; CCK= cholecystokinin; CD36= cluster of differentiation 36; FABP2= fatty acid binding protein 2; FATP4= fatty acid
transporter 4; SLC16A1= solute carrier family 16 member; GLP-1= glucagon-like peptide 1; GIP= glucose insulinotropic peptide; GLP-1= glucagon-like peptide 1; GPBAR1= G-protein-coupled bile receptor; TGR5= Takeda
G-protein-coupled receptor 5; GPR= G-protein-coupled receptor; MCT1=monocarboxylate transporter 1; OLFR78= olfactory receptor 78; PYY= peptide YY
1 All the receptors and transporters presented in the table are relevant to humans and pigs except if noted with the superscript 4.
2 Table references are provided in Supplementary Material S1.
3 Refers to the oral sensation elicited by free fatty acids (Note: to date, the FFA sensing has not achieved full recognition as a primary taste type by the sensory science community).
4 No literature evidence of the existence or functionality of these genes has been found in pigs.

N
utrientsensing

in
hum

ans
and

pigs

2719

https://doi.org/10.1017/S1751731119001794 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1751731119001794
https://doi.org/10.1017/S1751731119001794


ligands for FFAR2 and FFAR3 and olfactory receptor OLFR78
are short-chain fatty acids (SCFAs). The receptors FFAR1 and
GPR84 showed the highest affinity for medium-chain fatty
acids (MCFAs)(Wang et al. 2006; Liu et al., 2018), whereas
FFAR4 (also kwon as GPR120) and fatty acid (FA)-binding
protein 2 (FABP2), FA transport protein 4 (FATP4) and cluster
of differentiation 36 (CD36) have been characterized as
receptors for long-chain fatty acids (LCFAs) (Bachmanov
and Beauchamp, 2007; Mattes, 2011). In addition,
GPR119 has been proposed as a putative receptor for endog-
enous lipids containing oleic acid (e.g. oeloylethanolamide)
and 2-monoacylglycerol (Hansen et al., 2012).

Fatty acids and the enteroendocrine system
The receptors FFAR1 and FFAR4 are present throughout the
GIT found in EECs. The uptake of dietary FFAs is slow (com-
pared to sugars and AA) and requires bile acids secreted in
the duodenum. In contrast, FFAR2, FFAR3 and OLFR78 are
preferentially expressed in the colon, where abundant
SCFAs are produced resulting from bacterial fermentation
(Canfora et al. 2015; Fleischer et al., 2015). GPR84 has been
reported in mouse gastric mucosa (Widmayer et al., 2017).
GPR119 expression has been associated with EECs (L-cells)
and pancreatic cells (Overton et al. 2008; Lan et al., 2009;
Hansen et al., 2012).

On the one hand, intragastric administration of dietary
oral gavage of LCFA has been reported to increase the orexi-
genic (appetite) hormone ghrelin secretion presumably
through the stimulation of FFAR4 (Janssen et al. 2012). In
addition, the activation of FFAR2-expressing gastric X/A-cells
by SCFA inhibited ghrelin (Engelstoft et al. 2013). Short-chain
fatty acid can reach the stomach through the portal vein
(Morrison and Preston, 2016). This may be indicative of an
excessive fermentation occurring in the lower GIT which is
consistent with an anorexegenic (satiating) response. On
the other hand, some FFARs have also been related to
anorexigenic events associated with CCK and/or GLP-1 and
GIP. An acute oral dose of butyrate increased GLP-1 and
PYY levels in mice, presumably through FFAR3 (Lin et al.
2012). The expression of GPR84 in X/A-like ghrelin cells
and surface cells suggests an important role of MCFA in
the developing gastric mucosa of suckling mice (Widmayer
et al., 2017). In addition, SCFA olfactory receptor OLFR78
and GLP-1 and PYY co-express in murine colonic L-cells
(Pluznick, 2014; Fleischer et al., 2015). Furthermore,
GPR119 ligands (i.e. monoglycerides) triggered GLP-1 secre-
tion from intestinal primary cultures, particularly from colon
(Moss et al., 2016). Fatty acid transceptors CD36 and
FATP4 have been also reported to mediate lipid-induced
gut hormone secretion (Sundaresan et al., 2013; Poreba
et al., 2012).

In pigs, De Jager et al. (2013) reported the expression of
FFAR1, FFAR2, FFAR3, FFAR4 and GPR84 in circumvallate
papillae. In addition, Da Silva et al. (2014) revealed a very
low incidence of allelic variants across FFARs and GPR84
compared to other TR genes such as the TAS2R family (bitter
taste) indicating that FFARs were highly conserved in pigs.

The FFARs expression pattern described in pigs evidenced
some differences compared to humans. In particular, FFAR2
and FFAR3 were predominantly found in the distal small
intestine (Haenen et al., 2013) while FFAR4 in colon
(Colombo et al., 2012; van der Wielen et al., 2014). It is
tempting to speculate that these findings may be related
to the higher fermentative capacity of the hindgut of the
adult pigs compared to humans (Stevens, 1988). In contrast,
FFAR2 and FFAR3 were found expressed in colonic enteroen-
docrine L-cells responding to increased levels of SCFA
(i.e. butyrate) released after high inclusion of resistant starch
(Haenen et al., 2013). In addition, a co-expression pattern
was uncovered between FFAR2 and FFAR3 with PYY,
GLP-1 and serotonin in pig colon (Weatherburn, 2015).

Gene polymorphisms in fatty acid sensing
The ability to sense fats has been associated with an
increased consumption of fatty foods, higher BMI and obesity
(Stewart et al., 2011; Ichimura et al., 2012). FFA4 gene var-
iants have been found to have a significant impact on recep-
tor responses (Hudson et al., 2013). In addition, the FFAR4
mutation was found to increase the risk of obesity, demon-
strating the key role in fat sensing and the control of energy
balance in humans and rodents (Ichimura et al., 2012). In
addition, FA transporter CD36 was shown to play a crucial
role in oral fat sensing as well (Pepino et al., 2012).
Genetic CD36 variants were associated with the taste inten-
sity of oleic acid and triolein, total dietary fat and energy
intake, and the development of obesity in teenagers
(Toguri, 2008; Pepino et al., 2012; Keller et al., 2012;
Daoudi et al., 2015; Mrizak et al., 2015). In addition,
CD36 gene variants have also been implicated in obesity,
type 2 diabetes, the metabolic syndrome, hypertension
and coronary heart disease (Precone et al., 2019).

In pigs Da Silva et al. (2014) revealed a low incidence of
polymorphisms in FFARs genes when comparing to bitter
taste sensors. In particular, the total number of SNP for
FFAR1, FFAR2, FFAR3, and FFAR4 were 8 (4 ns), 11 (1 ns),
11 (2 ns) and 1 (0 ns), respectively (Da Silva et al., 2014).
In addition, the results published from the genomic analysis
in pigs by Clop et al. (2016) identified three CD36 variants
associatedwith growth and fat deposition. Finally, significant
differences in allele frequencies of FFAR4 were observed
between two extreme pig groups based on growth rates
(Fontanesi et al., 2015).

Bitter sensing

Bitter sensing has been associated with harmful contami-
nants, toxic compounds and general synthetic chemicals such
as pharmaceuticals present in foods/feeds (Nelson and
Sanregret, 1997; Meyerhof et al., 2009). These compounds
cause defensive and protective responses in the host includ-
ing food aversion, vomiting, and inhibition of gastric motility
and activation of efflux from enterocytes accompanied by an
increase in satiation and satiety (Sarkadi et al., 2006; Jeon
et al., 2011; Avau et al., 2015; Deloose et al., 2017a and
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2017b). In contrast, some non-toxic plant-derived com-
pounds (such as polyphenols) may also elicit bitter taste
(Soares et al., 2018). Overall, close to 1000 compounds
are known to be bitter to humans while 81 to laboratory
rodents and 27 to pigs (Wang et al., 2017; Roura and Fu,
2017; Dagan-Wiener et al., 2019).

Bitter sensors in the gastrointestinal tract
Bitterants activate the TAS2R family, which consists of 25
functional genes in humans (Meyerhof et al., 2009). The size
of the bitter taste receptor (TAS2R) repertoire is species
specific, ranging from the 36 genes in the rat to none in
carnivorous marine mammals (Roura and Foster, 2018).
The sensitivity of pigs to bitterness has been widely reported
in the literature (Nelson and Sanregret, 1997; Danilova et al.,
1999; Roura et al., 2008; Roura and Navarro, 2018). The por-
cine pTas2r repertoire was recently characterized consisting
of 16 functional genes and 3 pseudogenes (Colombo et al.,
2012; Roura, et al., 2016; Roura and Fu, 2017).

Bitter sensing and the enteroendocrine system
TAS2R transcripts have been observed in the oral and GIT
mucosa of several mammalian species including humans
and pigs (Rozengurt, 2006; Da Silva et al., 2014). In humans,
TAS2R5 and TAS2R38 have been co-localized with GLP-1-,
CCK- and PYY-labelled EECs in the human small intestine
and colon and TAS2R10 with ghrelin cells in the human
stomach (Park et al., 2015; Latorre et al., 2016; Wang
et al., 2019). Bitter herbal medicines were shown to affect
GLP-1 and CCK release in EEC lines (Avau and Depoortere,
2016). However, the active compounds of the medicinal
extracts studied remain to be identified. Finally, in tuft cells,
bitter agonist denatonium benzoate elicited a paracrine
activation of enterocytes presumably following the release
of acetylcholine (Schutz et al., 2015).

The presence of pTas2r in the porcine GIT has been
reported by several groups (Colombo et al., 2012; Da Silva
et al., 2014; Ribani et al., 2017; Clop et al., 2016).
However, little is known to date about the function, except
that dietary quinine and caffeine increased plasma insulin
and GLP-1 (Fu et al., 2018).

Gene polymorphisms in bitter sensing
TAS2R38 variants determine the sensitivity to bitter substance
phenylthiocarbamide in humans (Sandell and Breslin, 2006;
Risso et al., 2016) and have been associated with food pref-
erences (Sandell and Breslin, 2006), alcohol intake (Duffy
et al., 2004), obesity (Tepper et al., 2008) and susceptibility
to respiratory pathogens (Lee et al., 2012). Similarly, other
gene variants of TAS2R14 and TAS2R50 have been associated
with human diseases such as cancer and cardiovascular dis-
ease, respectively (Campa et al., 2010; Akao et al., 2012).
In addition, TAS2R16 variants appear to have had an evolu-
tionary role to prevent consumption of dangerous raw foods
(Valente et al., 2018). Other genetic TAS2Rs have been related
to the perception of bitterness in coffee (TAS2R2, TAS2R4 and

TAS2R5), alcohol consumption (TAS2R13) and grapefruit
liking (TAS2R19) (Hayes et al., 2013).

The porcine bitter taste system presented a high incidence
of allelic variants compared with the non-bitter taste genes,
suggesting a potential role for these genes in ecological
adaptation in pigs (Da Silva et al., 2014). This high variability
within and between species of the TAS2R gene repertoire
seems to reflect an adaptive nature to survive in specific/novel
ecological niches particularly to avoid plant-derived toxins. In
addition, three phenotype–genotype studies reported SNPs
with functional significance on the porcine bitter receptors
pTas2r38, pTas2r39 (Clop et al., 2016; Ribani et al., 2017)
and pTas2r40 (Herrero-Medrano et al., 2014). The associa-
tions reflected the impact of the fixed alleles on pig growth,
fat deposition and environmental adaptation.

Microbial and parasite sensing in the gastrointestinal
tract

While the role of nutrient receptors and transceptors has
been mostly linked to exogenous or dietary nutrients and
potential harmful compounds, recent findings indicate that
this sensors may also respond to compounds producedwithin
the intestinal tract. For example, products of the microbial
population in the GIT, such as SCFA and MCFA, have the
capacity to affect the chemosensory system. Similarly, metab-
olites produced in the GIT by parasitic or protozoan infections
may also be able to activate some of the receptors and
transceptors.

Microbial metabolites
SCFA and MCFA resulting from bacterial fermentation in the
GIT affect the expression of nutrient sensors and gut peptides
in EECs (Steensels and Depoortere, 2018). A decrease in FA
sensors (FFAR1, FFAR4 and CD36), together with an increase
in glucose and AA sensors (TAS1R3 and SGLT1), were
reported in germ-free mice (Duca et al., 2012; Swartz
et al., 2012). These changes were associated with reduced
CCK, GLP-1 and PYY. In addition, bacterial endotoxins acti-
vate the toll-like receptors which are co-localized in CCK, PYY
and serotonin secreting EECs (Bogunovic et al., 2007;
Larraufie et al., 2017).

Commensal bacteria have evolved to produce metabolites
that chemically mimic mammalian agonists and trigger
eukaryotic cellular responses (Cohen et al., 2015).
Bacterial N-acyl amides showed high affinity to host
GPR119 functioning to regulate GIT physiology, gut hor-
mones and glucose homeostasis (Cohen et al., 2017).
Sung et al. (2017) replicated the positive effect of oral resver-
atrol by fecal microbiome transplants to obese (but naive to
dietary resveratrol) mice. In addition, Clostridium coli and
Escherichia coli were shown to affect intestinal motility by
modulating serotonin synthesis from enterochromaffin cells
(Cao et al., 2017). Taken together, robust evidences are accu-
mulating, showing that gut microbes have evolved to interact
and modulate animal host GIT physiology.
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Parasites
Parasitic worms and protozoan infections initiate a signalling
cascade in tuft cells mediated by TAS1Rs and/or TAS2Rs
(Gerbe et al., 2016; Howitt et al., 2016; von Moltke et al.,
2016). Tuft cells orchestrate type 2 cell-mediated immunity
in a process where TR sensing signals mediate the differen-
tiation of epithelial crypt progenitors to tuft cells and goblet
cells. Tuft and goblet cells hyperplasia is instrumental to
achieve worm clearance (Zhao et al., 2008). Furthermore,
the succinate receptor and TAS2Rs are expressed on tuft cells
to detect the metabolites secreted by the parasites
(Nadjsombati et al., 2018; Luo et al., 2019).

Conclusions

The nutrient and non-nutrient sensing in the GIT tract has
evolved as a continuum function necessary to orchestrate
ingestion, digestion, absorption, metabolism and neutraliza-
tion of harmful substances. The mechanisms related to the
sensing of carbohydrates, AAs, FAs, bitter compounds and
microbial and parasite metabolites involve specialized cells
in the enteric mucosa (i.e. EEC) that elicit hormonal responses
(i.e. CCK, GLP-1, PYY, ghrelin, etc.) which, in turn, mediate
changes in passage rate and appetite. Gene variations have
been related to food choices in humans while in pigs to
ecological adaptations particularly regarding the bitter taste
receptor repertoire. In addition, genetic mutations have the
potential to lead to the development of novel nutritional
strategies in pigs, for example, regarding FFA sensing. In
addition, our understanding on the impact of gut microbiome
on the host’s gut-brain communications has started to unfold.
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