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Log at first sight
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A long-standing issue in pipe flow physics is whether the friction of the fluid follows a
logarithmic or an algebraic decay. In 2005, McKeon et al. (J. Fluid Mech., vol. 538, 2005,
pp. 429–443) published a detailed analysis of new measurements in the Princeton facility,
and apparently settled the debate by showing that ‘the log is the law’. Almost 20 years
later, no better data are presently available to reinforce their statement. Still, the story may
not be totally over, and this is bad news for mathematicians who were hoping to get a long
awaited final answer to one of their most elusive questions.
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1. Introduction

Many fluids of importance to human life or activity flow through canals or pipes, and so
they attracted attention early in the development of the science. As early as 1775, Antoine
de Chézy established a link between the mean velocity in a water channel, the hydraulic
radius and the channel slope, and showed that this link could depend on the state of the
surface via algae growth or decline, for example. This equation proved very robust, and was
used to build many canals in the 19th century. While the Chézy equation can be obtained by
simple balance arguments for linear momentum, it hides subtleties of the pipe or channel
flow physics, some of which may be connected to a famous conjecture by Onsager (Eyink
2024).

The mean flow rate in parallel flows is obtained by a balance between the work done by
the applied force (gravity or pressure gradient) and the energy loss due to friction against
the surface. The frictional process is very subtle as it depends both on the state of the
surface and of the fluid state itself, i.e. whether the flow is laminar or turbulent. In general,
frictional losses are characterized by a skin friction coefficient which is proportional to
the ratio of the applied shear stress at the surface, τw, divided by the pressure in the free
stream. In straight, smooth circular pipe flows, for which the pressure gradient balances
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the shear stress, the friction coefficient is simply given by the formula

λ = 4τw

ρŪ2/2
= −(∂xP)D

ρŪ2/2
≡

(
uτ

Ū

)2

, (1.1)

where ∂xP is the pressure drop per unit length, D is the pipe diameter, ρ is the fluid density,
Ū is the velocity averaged over the pipe cross-sectional area and uτ = √

τw/ρ is the skin
friction velocity. This formula shows that the friction depends on the velocity profile at the
wall (via Ū) and on the viscosity ν (through τw). Experimental measurements indicate in
fact that they only depend on these two ingredients, provided one normalizes the viscosity
by DŪ to form the Reynolds number Re = DŪ/ν.

In the laminar state, where Re < 103, the velocity profile close to the wall (y = 0) is
linear in the coordinate normal to the wall, U( y) = Sy, with τw = ρνS, so that Ū2/u2

τ ∝
Re, meaning that the friction coefficient simply decreases like λ ∼ 1/Re. As soon as the
flow becomes turbulent, however, the velocity profile displays a more complex behaviour,
and the drag exhibits a transition towards a milder decrease with Re. For economical and
theoretical reasons, prediction of this decrease has been the topic of active research since
1945. A search using ‘Web of Science’ for papers including ‘skin friction’ in the title
displays 1120 papers since 1945, cited 17 485 times, following an exponential curve.

From a theoretical point of view, two large categories of laws can be found, depending
on whether one assumes that the turbulent velocity profile is logarithmic, U( y) ∼
κ−1uτ log( y+ + a+) + B∗, or algebraic, U( y) = A∗uτ ( y+ + a+)α , with y+ = yuτ /ν; κ is
the Kármán constant, and a+, A∗ and B∗ are constants. By continuity of the velocity
profile, we can write Ū = U(βD), where β ∈ [0, 1] is a constant that depends on the
profile shape. Taking a+ = 0 for simplicity, we are thus led to implicit equations for the
drag coefficient for the two cases

1√
λalg

= A(Re
√
λalg)

α, (1.2)

1√
λlog

= 1

2κ
√

2
log(Re

√
λlog) + B, (1.3)

respectively, where A and B are new constants depending on the choice of β. Equation (1.2)
encompasses, for example, the Blasius formula (Blasius 1913) with λB ∼ 0.3164Re−1/4

corresponding to α = 1/7, while (1.3) corresponds to the Prandtl formula (Prandtl 1932)
with κ = 0.407 and B = −0.8. In the limit Re → ∞, it is easy to solve the implicit
equations to obtain the asymptotic decay of the drag as λalg ∼ Re−2α/(1+α) and λlog ∼
1/ log(Re)2.

Blasius and Prandtl theories basically provide the same value of friction for
Re ∈ [103, 105], see figure 1. However, they markedly differ in the large Reynolds
limit. Reaching this limit numerically or experimentally is challenging, as both the
computational burden, or the inaccuracy of experimental measurements increase with
Reynolds due to the thinning of the boundary layers at the wall. In this respect McKeon,
Zagarola & Smits (2005) set up a benchmark by analysing results obtained from
high-performance measurement devices installed in a large Reynolds number facility, the
Princeton SuperPipe.

2. Overview

The friction law was estimated from velocity profiles obtained using Pitot probes
of diameter 0.9 mm and 0.3 mm. Care was taken to correct for static pressure and
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Figure 1. Pipe flow laws. In both panels, the grey dots are the data from the Oregon experiments (Swanson
et al. 2002), while the red open squares are the data of the Princeton pipe, discussed in McKeon et al. (2005).
These data can be used to test two types of law. (a) The Blasius versus Prandtl log-law. The blue line is the
Blasius law λ = 0.3164Re−1/4. The blue dashed line is the fit obtained by inverting the Prandtl-type formula
2.1, resulting in λ = [0.8382W(0.6287Re)]−2, where W is the Lambert function; the black dotted line is the
laminar 1/Re law. (b) The algebraic laws with slowly varying exponent. The green line is the fit λ = 17.73Re−α ,
where α = 1.6405/(1 + 0.35 log10 Re); the black dotted line is the laminar 1/Re law. In both cases, the inserts
show the ratio of the data to the dashed-line fit, to evidence the quality of the correlation. The dotted line in the
inserts marks the 1 ± 0.005 limits, corresponding to an agreement within 0.5 %.

Pitot displacements. The data used in the paper cover the range 31 × 103 < Re < 35 ×
106. This range of Reynolds number is sufficient to test various hypothesis with great
accuracy. The first test concerns the validity of the Blasius or Prandtl correlations. For
Re < 98 × 103 the data lie within 1.4 % of the Blasius formula, see figure 1(a). For larger
values of Re, the data are better described by a Prandtl type correlation, albeit with
different constants corresponding to κ = 0.423 and B = −0.537, see figure 1(a). With
these values, the correlation coefficient between the friction law described by (1.3) and
the data is better than 0.995 for 31 × 103 < Re < 18 × 106 , as shown in the insert of
figure 1(a). A second test concerns the role of the offset constant, a+, of the velocity
profile. This offset is predicted by a Lie group analysis (Oberlack 1999) but is ignored
in classical correlation laws. Including the offset produces corrections to the friction law
that decay like 1/Re, and impacts estimates of the Kármán constant. The present data set
is insufficient to determine an appropriate value of a+ for pipe flows. However, even a
conservative value of a+ = 5 results in less than a 1 % change for κ . Finally, the role of
possible viscous corrections was investigated. They provide a power-law correction to the
friction factor, that also impacts the value of B and κ , increasing the latter by a factor 0.002.
However, both the addition of the offset and of viscous corrections degrade the correlation
with the data by at least 1 %, so that the final conclusion is that the best fit to the data at
large Reynolds is given by the formula

1√
λlog

= 1.930 log(Re
√
λlog) − 0.537. (2.1)

This is the main conclusion of McKeon et al. (2005).
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3. Impact

Nineteen years later, the impact of the paper can easily be measured quantitatively by its
citation records (135), showing that it has reached the level of ‘reference paper’ in the
field. This is a testament to the fact that McKeon et al. (2005) have clearly demonstrated
the effectiveness of a log-law to fit their data at large Reynolds number. Is the logarithmic
versus algebraic controversy now over with these results? Clearly, the Blasius solution
with fixed exponent has been excluded, but one cannot completely dismiss a more subtle
algebraic decay, as advocated by Barenblatt, Chorin & Protokishin (1997). As an example,
we show in figure 1(b) a fit of the data by a power law formula given by (1.2), with
an exponent decaying very slowly with Reynolds number, α ∼ 1/[1 + 0.35 log10(Re)].
At large Reynolds number, the agreement with the data is as good, if not better, than
with the Prandtl-log formula. The difference between the two laws is more than just
a fitting exegesis. Indeed, they behave very differently in the infinite Re limit, where
the Prandtl-log law predicts a vanishing friction coefficient, while the algebraic formula
predicts a finite value of the friction coefficient. As discussed in Eyink (2024), this last
case would correspond to an ‘anomalous’ friction law that may be connected to the
existence of dissipative weak solution to inviscid Navier–Stokes equations, an outstanding
mathematical puzzle that has recently attracted much attention in the mathematical
community.

Is there any way the debate between the logarithmic and algebraic laws could be settled?
Obviously, this is a difficult numerical challenge, since reaching Reynolds numbers of the
order of 106 already requires resolutions that are at the border of what is possible over
current supercomputers (Yao et al. 2023). On the other hand, going beyond the Princeton
range of Reynolds numbers is difficult. Experimental friction is accessible via various
techniques, including force-balance measurement, the use of the velocity profile, pressure
measurements by surface Pitot tubes or around obstacles, and the use of analogies with
heat transfer, mass transfer or surface oil-flow. The challenge with all these measurements
is to reach sufficient precision to measure otherwise very small friction that becomes
increasingly small as the Reynolds number is increased. In that sense, hot-wire or image
velocimetry are presently not precise enough to determine the shear stress within the fluid.
Besides this measurement problem, two additional challenges concern the experimental
apparatus. First, it is difficult to reach the very large Reynolds number limit, which can
only be achieved using either very large facilities (Baidya et al. 2019), or fluids with very
low viscosity, such as helium at very low temperature (Swanson et al. 2002) or pressurized
fluid with variable density (Bodenschatz et al. 2014). Second, it is difficult to realize a
‘sufficiently smooth pipe’, as the boundary roughness significantly modifies the friction
as soon as the size of the boundary layer becomes smaller than the typical height of the
roughness (Nikuradse 1950). Since the boundary layer thickness decreases with increasing
Reynolds number, sufficiently smooth pipes become more and more difficult to achieve as
Re is pushed even higher. All these difficulties explain why there are presently no better
data than those discussed in McKeon et al. (2005), which combine large Reynolds number,
measurement precision and sufficient smoothness.

The friction law in a pipe may thus be ‘log at first sight’, but there is always the
possibility of finding an algebraic law after second thoughts. Such a finding would open
the possibility of an anomalous friction law, and open the possibility of the existence of
dissipative singularities in pipe flows. This is a thrilling prospect for mathematicians and
physicists, and we are all eagerly waiting for the next chapter of this exciting debate.

Acknowledgements. I thank T. Drivas and G. Eyink for many discussions around these issues.
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