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Introduction

Robotics inherently deals with things that move in the world. We live in an era
of rovers on Mars, drones surveying the Earth, and, soon, self-driving cars. And,
although specific robots have their subtleties, there are also some common issues
we must face in all applications, particularly state estimation and control.

The state of a robot is a set of quantities, such as position, orientation, and ve-
locity, that, if known, fully describe that robot’s motion over time. Here we focus
entirely on the problem of estimating the state of a robot, putting aside the notion
of control. Yes, control is essential, as we would like to make our robots behave
in a certain way. But, the first step in doing so is often the process of determining
the state. Moreover, the difficulty of state estimation is often underestimated for
real-world problems, and thus it is important to put it on an equal footing with
control.

In this book, we introduce the classic estimation results for linear systems cor-
rupted by Gaussian measurement noise. We then examine some of the extensions
to nonlinear systems with non-Gaussian noise. In a departure from typical esti-
mation texts, we take a detailed look at how to tailor general estimation results
to robots operating in three-dimensional space, advocating a particular approach
to handling rotations.

The rest of this introduction provides a little history of estimation, discusses
types of sensors and measurements, and introduces the problem of state estima-
tion. It concludes with a breakdown of the contents of the book and provides
some other suggested reading.

1.1 A Little History

About 4,000 years ago, the early seafarers were faced with a vehicular state esti-
mation problem: how to determine a ship’s position while at sea. Primitive charts
and observations of the sun allowed local navigation along coastlines. Early in-
struments also helped with navigation. The astrolabe was a handheld model of
the universe that allowed various astronomical problems to be solved; it could
be used as an inclinometer to determine latitude, for example. Its origins can be
traced to the Hellenistic civilization around 200 BC and was greatly advanced
in the Islamic world starting in the eighth century by mathematician Muham-
mad al-Fazārı̄ and astronomer Abū al-Battănı̄ (aka, Albatenius). Also around
100 BC in ancient Greece, the so-called Antikythera mechanism was the world’s
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first analogue computer capable of predicting astronomical positions and eclipses
decades into the future.Figure 1.1

Quadrant. A tool
used to measure
angles.

Despite these early capabilities, it was not until the fifteenth century that global
navigation on the open sea became widespread with the advent of additional key
technologies and tools. The mariner’s compass, an early form of the magnetic
compass, allowed crude measurements of direction to be made. Together with
coarse nautical charts, the compass made it possible to sail along rhumb lines
between key destinations (i.e., following a compass bearing). A series of instru-
ments was then gradually invented that made it possible to measure the angle
between distant points (i.e., cross-staff, astrolabe, quadrant, sextant, theodolite)
with increasing accuracy.

These instruments allowed latitude to be determined at sea fairly readily usingFigure 1.2
Harrison’s H4. The
first clock able to
keep accurate time at
sea, enabling
determination of
longitude.

celestial navigation. For example, in the Northern Hemisphere, the angle be-
tween the North Star, Polaris, and the horizon provides the latitude. Longitude,
however, was a much more difficult problem. It was known early on that an ac-
curate timepiece was the missing piece of the puzzle for the determination of
longitude. The behaviours of key celestial bodies appear differently at different
locations on the Earth. Knowing the time of day therefore allows longitude to be
inferred. In 1764, British clockmaker John Harrison built the first accurate port-
able timepiece that effectively solved the longitude problem; a ship’s longitude
could be determined to within about 10 nautical miles.

Estimation theory also finds its roots in astronomy. The method of least squares
was pioneered by Gauss,1 who developed the technique to minimize the impact
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of measurement error in the prediction of orbits. Gauss reportedly used least
squares to predict the position of the dwarf planet Ceres after it passed behind
the Sun, accurate to within half a degree (about nine months after it was last
seen). The year was 1801, and Gauss was 23. Later, in 1809, he proved that the
least-squares method is optimal under the assumption of normally distributed
errors (Gauss, 1809) and later still he removed this assumption (Gauss, 1821,
1823). Most of the classic estimation techniques in use today can be directly
related to Gauss’ least-squares method.

The idea of fitting models to minimize the impact of measurement error car-
ried forward, but it was not until the middle of the twentieth century that estima-
tion really took off. This was likely correlated with the dawn of the computer age.
In 1960, Kalman published two landmark papers that have defined much of what
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has followed in the field of state estimation. First, he introduced the notion of
observability (Kalman, 1960a), which tells us when a state can be inferred from
a set of measurements in a dynamic system. Second, he introduced an optimal
framework for estimating a system’s state in the presence of measurement noise
(Kalman, 1960b); this classic technique for linear systems (whose measurements
are corrupted by Gaussian noise) is famously known as the Kalman filter, and
has been the workhorse of estimation for the more than 60 years since its in-
ception. Although used in many fields, it has been widely adopted in aerospace

1 There is some debate as to whether Adrien Marie Legendre might have come up with least squares
before Gauss.
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applications. Researchers at the National Aeronautics and Space Administra-
tion (NASA) were the first to employ the Kalman filter to aid in the estimation
of spacecraft trajectories on the Ranger, Mariner, and Apollo programs. In par-
ticular, the on-board computer on the Apollo 11 Lunar Module, the first manned
spacecraft to land on the surface of the Moon, employed a Kalman filter to es-
timate the module’s position above the lunar surface based on noisy inertial and
radar measurements.

Many incremental improvements have been made to the field of state estima-
tion since these early milestones. Faster and cheaper computers have allowed
much more computationally complex techniques to be implemented in practical
systems. Today, exciting new sensing technologies are coming along (e.g., digital
cameras, laser imaging, the Global Positioning System) that pose new challenges
to this old field.

1.2 Sensors, Measurements and Problem Definition

To understand the need for state estimation is to understand the nature of sensors.
All sensors have a limited precision. Therefore, all measurements derived from Figure 1.3

Theodolite. A better
tool to measure
angles.

real sensors have associated uncertainty. Some sensors are better at measuring
specific quantities than others, but even the best sensors still have a degree of
imprecision. When we combine various sensor measurements into a state esti-
mate, it is important to keep track of all the uncertainties involved and therefore
(it is hoped) know how confident we can be in our estimate.

In a way, state estimation is about doing the best we can with the sensors we
have. This, however, does not prevent us from, in parallel, improving the quality
of our sensors. A good example is the theodolite sensor that was developed in
1787 to allow triangulation across the English Channel. It was much more precise
than its predecessors and helped show that much of England was poorly mapped
by tying measurements to well-mapped France.

It is useful to put sensors into two categories: interoceptive2 and exterocep-
tive. These are actually terms borrowed from human physiology, but they have
become somewhat common in engineering. Some definitions follow:3

in·tero·cep·tive [int-@-rō-’sep-tiv], adjective: of, relating to, or being stimuli
arising within the body.

ex·tero·cep·tive [ek-st@-rō-’sep-tiv], adjective: relating to, being, or activated
by stimuli received by an organism from outside.

Typical interoceptive sensors are the accelerometer (measures translational ac-
celeration), gyroscope (measures angular rate), and wheel odometer (measures
angular rate). Typical exteroceptive sensors are the camera (measures range/bearing
to a landmark or landmarks) and time-of-flight transmitter/receiver (e.g., laser
rangefinder, pseudolites, Global Positioning System (GPS) transmitter/receiver).
Roughly speaking, we can think of exteroceptive measurements as being of the

2 Sometimes proprioceptive is used synonomously.
3 Merriam-Webster’s Dictionary.
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position and orientation of a vehicle, whereas interoceptive ones are of a vehi-
cle’s velocity or acceleration. In most cases, the best state estimation concepts
make use of both interoceptive and exteroceptive measurements. For example,
the combination of a GPS receiver (exteroceptive) and an inertial measurement
unit (IMU) (three linear accelerometers and three rate gyros; interoceptive) is a
popular means of estimating a vehicle’s position/velocity on Earth. And, the com-
bination of a Sun/star sensor (exteroceptive) and three rate gyros (interoceptive)
is commonly used to carry out pose determination on satellites.

Now that we understand a little bit about sensors, we are prepared to define
the problem that will be investigated in this book:

Estimation is the problem of reconstructing the underlying state of a system given a sequence
of measurements as well as a prior model of the system.

There are many specific versions of this problem and just as many solutions. The
goal is to understand which methods work well in which situations, in order to
pick the best tool for the job.

1.3 How This Book Is Organized

The book is broken into three main parts:

I. Estimation Machinery
II. Three-Dimensional Machinery

III. Applications

The first part, Estimation Machinery, presents classic and state-of-the-art esti-
mation tools, without the complication of dealing with things that live in three-
dimensional space (and therefore translate and rotate); the state to be estimated is
assumed to be a generic vector. For those not interested in the details of working
in three-dimensional space, this first part can be read in a stand-alone manner. It
covers both recursive state estimation techniques and batch methods (less com-
mon in classic estimation books). As is commonplace in robotics and machine
learning today, we adopt a Bayesian approach to estimation in this book. We
contrast (full) Bayesian methods with maximum a posteriori (MAP) methods,
and attempt to make clear the difference between these when faced with nonlin-
ear problems. The book also connects continuous-time estimation with Gaussian
process regression from the machine-learning world. Finally, it touches on some
practical issues, such as determining how well an estimator is performing, and
handling outliers and biases.

EARLY ESTIMATION

MILESTONES

1654 Pascal and Fer-
mat lay founda-
tions of probabil-
ity theory

1764 Bayes’ rule
1801 Gauss uses

least-squares to
estimate the orbit
of the planetoid
Ceres

1805 Legendre pub-
lishes ‘least-
squares’

1913 Markov chains
1933 (Chapman)–

Kolmogorov
equations

1949 Wiener filter
1960 Kalman (Bucy)

filter
1965 Rauch–Tung–

Striebel smoother
1970 Jazwinski coins

‘Bayes filter’

The second part, Three-Dimensional Machinery, provides a basic primer on
three-dimensional geometry and gives a detailed but accessible introduction to
matrix Lie groups. To represent an object in three-dimensional space, we need
to talk about that object’s translation and rotation. The rotational part turns out
to be a problem for our estimation tools because rotations are not vectors in the
usual sense and so we cannot naively apply the methods from Part I to three-
dimensional robotics problems involving rotations. Part II, therefore, examines
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the geometry, kinematics, and probability/statistics of rotations and poses (trans-
lation plus rotation).

Finally, in the third part, Applications, the first two parts of the book are
brought together. We look at a number of classic three-dimensional estimation
problems involving objects translating and rotating in three-dimensional space.
We show how to adapt the methods from Part I based on the knowledge gained in
Part II. The result is a suite of easy-to-implement methods for three-dimensional
state estimation. The spirit of these examples can also, we hope, be adapted to
create other novel techniques moving forward.

Appendix A provides a summary of matrix algebra and calculus that can serve
as a primer or reference while reading this book.

1.4 Relationship to Other Books

There are many other books on state estimation and robotics, but very few cover
both topics simultaneously. We briefly describe a few works that do cover these
topics and their relationships to this book.

Probabilistic Robotics by Thrun et al. (2006) is a great introduction to mo-
bile robotics, with a large focus on state estimation in relation to mapping and
localization. It covers the probabilistic paradigm that is dominant in much of
robotics today. It mainly describes robots operating in the two-dimensional, hor-
izontal plane. The probabilistic methods described are not necessarily limited to
the two-dimensional case, but the details of extending to three dimensions are
not provided.

Computational Principles of Mobile Robotics by Dudek and Jenkin (2010) is
a great overview book on mobile robotics that touches on state estimation, again
in relation to localization and mapping methods. It does not work out the details
of performing state estimation in 3D.

Mobile Robotics: Mathematics, Models, and Methods by Kelly (2013) is an-
other excellent book on mobile robotics and covers state estimation extensively.
Three-dimensional situations are covered, particularly in relation to satellite-
based and inertial navigation. As the book covers all aspects of robotics, it does
not delve deeply into how to handle rotational variables within three-dimensional
state estimation.

Robotics, Vision, and Control by Corke (2011) is another great and compre-
hensive book that covers state estimation for robotics, including in three dimen-
sions. Similarly to the previously mentioned book, the breadth of Corke’s book
necessitates that it not delve too deeply into the specific aspects of state estima-
tion treated herein.

Bayesian Filtering and Smoothing by Särkkä (2013) is a super book focused
on recursive Bayesian methods. It covers the recursive methods in far more depth
than this book, but does not cover batch methods nor focus on the details of
carrying out estimation in three dimensions.

Stochastic Models, Information Theory, and Lie Groups: Classical Results
and Geometric Methods by Chirikjian (2009), an excellent two-volume work,
is perhaps the closest in content to the current book. It explicitly investigates the
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consequences of carrying out state estimation on matrix Lie groups (and hence
rotational variables). It is quite theoretical in nature and goes beyond the current
book in this sense, covering applications beyond robotics.

Engineering Applications of Noncommutative Harmonic Analysis: With Em-
phasis on Rotation and Motion Groups by Chirikjian and Kyatkin (2001) and
the recent update, Harmonic Analysis for Engineers and Applied Scientists: Up-
dated and Expanded Edition (Chirikjian and Kyatkin, 2016), also provide key
insights to representing probability globally on Lie groups. In the current book,
we limit ourselves to approximate methods that are appropriate to the situation
where rotational uncertainty is not too high.

Although they are not estimation books per se, it is worth mentioning Op-
timization on Matrix Manifolds by Absil et al. (2009) and An Introduction to
Optimization on Smooth Manifolds by Boumal (2022), which discuss optimiza-
tion problems where the quantity being optimized is not necessarily a vector, a
concept that is quite relevant to robotics because rotations do not behave like
vectors (they form a Lie group).

The current book is somewhat unique in focusing only on state estimation
and working out the details of common three-dimensional robotics problems in
enough detail to be easily implemented for many practical situations.
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