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Abstract
One of the most interesting aspects of natural language is how texts cohere, which involves the pragmatic
or semantic relations that hold between clauses (addition, cause-effect, conditional, similarity), referred
to as discourse relations. A focus on the identification and classification of discourse relations appears as
an imperative challenge to be resolved to support tasks such as text summarization, dialogue systems, and
machine translation that need information above the clause level. Despite the recent interest in discourse
relations in well-known languages such as English, data and experiments are still needed for typologically
different and less-resourced languages. We report the most comprehensive investigation of shallow dis-
course parsing in Turkish, focusing on two main sub-tasks: identification of discourse relation realization
types and the sense classification of explicit and implicit relations. The work is based on the approach
of fine-tuning a pre-trained language model (BERT) as an encoder and classifying the encoded data with
neural network-based classifiers. We firstly identify the discourse relation realization type that holds in a
given text, if there is any. Then, we move on to the sense classification of the identified explicit and implicit
relations. In addition to in-domain experiments on a held-out test set from the Turkish Discourse Bank
(TDB 1.2), we also report the out-domain performance of our models in order to evaluate its general-
ization abilities, using the Turkish part of the TED Multilingual Discourse Bank. Finally, we explore the
effect of multilingual data aggregation on the classification of relation realization type through a cross-
lingual experiment. The results suggest that our models perform relatively well despite the limited size of
the TDB 1.2 and that there are language-specific aspects of detecting the types of discourse relation realiza-
tion. We believe that the findings are important both in providing insights regarding the performance of
the modern language models in a typologically different language and in the low-resource scenario, given
that the TDB 1.2 is 1/20th of the Penn Discourse TreeBank in terms of the number of total relations.
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1. Introduction
Turkish is a language of more than 80M speakers and belongs to the Turkic sub-family of the
Altaic language family. It has a complex morphology, where suffixation is a major tool of both
derivation and inflection and hence poses several challenges for NLP (Oflazer and Saraçlar 2018).
Despite its large number of speakers, its entrance to the NLP field is rather recent, and language
technology tools have been attempted only in the last few decades (Oflazer and Bozşahin 1994).
The interest in Turkish NLP and language technology tools have been increasing with interest
in sentence-level tasks such as named entity recognition (Seker and Eryiğit 2017; Akkaya and
Can 2021) as well as semantics (Eryiğit, Nivre, and Oflazer 2008; Çakıcı, Steedman, and Bozşahin
2018).
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Understanding natural language texts not only requires the knowledge of sentence structure
and sentence meaning but also the knowledge of how texts cohere. Although naturally easy for
human language users, understanding how texts cohere is still a challenge for Natural Language
Understanding (NLU) because the task requires to go beyond words and clauses. Recently, to
enable research on linguistic structures above the sentence level and to enhance language tech-
nology applications that exploit such structures (such as text summarization, dialogue systems,
information retrieval, and machine translation), there have been rigorous attempts to create lin-
guistic corpora annotated for semantics or discourse, for example Framenet (Baker, Fillmore, and
Lowe 1998), Propbank (Palmer, Gildea, and Kingsbury 2005), Groningen Meaning Bank (Bos
2013), and the Penn Discourse TreeBank (PDTB) (Prasad et al. 2008). To date, the largest anno-
tated discourse corpus for English is the PDTB containing over 40,600 discourse-level annotations
on Wall Street Journal texts (Prasad, Webber, and Joshi 2014). It annotates one of the building
blocks of discourse structure, that is, discourse relations (DRs), which are pragmatic or semantic
relations that hold between clauses (addition, cause-effect, conditional, similarity).

Discourse relations may be realized explicitly or implicitly. In the lexicalized approach of the
PDTB framework, connectives are considered as lexico-syntactic devices that signal the presence
of a discourse relation. Relations that are made salient by discourse connectives are referred to
as explicit relations. Discourse relations may also be instantiated without any discourse connec-
tive, known as implicit relations. Even in these cases, the semantic relation between text segments
(referred to as the arguments of a relation) can be easily inferred by humans. The PDTB treats
discourse connectives as discourse-level predicates that take two abstract objects as arguments
(events, states, and propositions Asher 1993) and annotates explicitly and implicitly conveyed
relations, their arguments, and senses. This annotation style has triggered an active line of research
in discourse parsing, particularly in English. However, many languages still lag behind such
developments presenting a challenge to universal end-to-end NLU pipelines.

The present paper aims to move toward filling this gap by working on Turkish discourse rela-
tions in corpora annotated in the PDTB style, the Turkish Discourse Bank (TDB) 1.2 and the
Turkish subpart of the TED Multilingual Discourse Bank (T-TED-MDB). We present the results
of our ongoing work toward an end-to-end discourse parser for Turkish. The task of discourse
parsing aims to uncover all the underlying discourse relations, along with their arguments and
senses, if any, in a given text. It involves various sub-tasks, each targeting different components
of discourse relations (see Section 2.2). Our current pipeline sidesteps the problem of argument
span extraction by performing DR realization type identification directly on texts. Specifically, we
train models to perform two tasks: (i) DR realization type identification (explicit, implicit, etc.)
and (ii) classifying the Level-1 senses of explicit and implicit relations. Classifying the sense of
implicit relations is one of the most challenging task in discourse parsing. We model both tasks
as multi-class classification tasks and present a series of experiments that use the modern pre-
trained language models (PLM) and neural network-based classifiers. The main contributions of
the present work are summarized below and depicted in Fig. 1:

• We perform the most thorough analysis on discourse parsing on Turkish. Specifically, a
DR realization type classifier and Level-1 sense classifiers are built for explicit and implicit
discourse relations.

• To circumvent the training data scarcity problem that arises due to the cost of annotation,
we run two kinds of experiments limiting ourselves to DR realization type classification:
(a) First, we investigate the effect of adding an additional language to BERT by preparing
a custom multilingual dataset consisting of two languages (English and Turkish) and run
experiments with multilingual pre-trained language models. (b) Secondly, the efficiency
of cross-lingual transfer learning techniques is investigated through multilingual language
models, and the results of our experiments over the monolingual (Turkish) PLM and the
multilingual PLM are compared.
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Figure 1. Symbolic representation of our approach

• Thus, by aggregating the TDB 1.2 with the PDTB 3.0, to the best of our knowledge, we
perform the first cross-lingual investigation on the DR realization type identification task.

• In order to evaluate the generalization abilities of the DR realization type classification
model, we test and report its out-of-domain performance using the Turkish part of the
TEDMultilingual Discourse Corpus.

The rest of the paper proceeds as follows. Section 2 reveals the PDTB annotation principles
with a focus on DR realization types and then describes the sub-tasks of our shallow discourse
parsing pipeline undertaken in the current research. Section 3 provides the literature review on
discourse parsing as well as the necessary background to understand the models and techniques
employed in our experiments. Section 4 overviews the datasets used in the experiments along with
the details of the experimental setup in order to facilitate the replicability of our results. Section 5
presents the results of our experiments and discusses their implications in detail. Finally, Section 6
concludes the paper with final thoughts and further suggestions on future directions.

2. Shallow discourse parsing
Shallow discourse parsing refers to uncovering local discourse relations in a text as they are defined
according to the PDTB. Since the PDTB annotation scheme was used for all versions of the TDB,
in this section, we briefly introduce the PDTB annotation principles, focusing on DR realization
types. Then, we describe the sub-tasks of the shallow discourse parsing pipeline undertaken in the
current research.

2.1 Discourse relation realization types
As already mentioned, the PDTB mainly annotates explicitly and implicitly conveyed relations
together with their arguments (Arg1, Arg2) and senses. This section overviews the discourse rela-
tion realization types in the PDTB 3.0 (Webber, Prasad, and Lee 2019), which extends the earlier
version keeping the rules and principles of the PDTB framework intact. The sense hierarchy is
also revised. In the examples, discourse connectives, where available, are underlined for clarity.

Explicit DRs are those relations that are explicitly signaled through lexico-syntactic elements.
They may be realized across or within sentences and involve coordinating conjunctions (and, so,
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but) subordinating conjunctions (because, after, while), adverbials (however, additionally, conse-
quently), and prepositional phrases (in summary, on the contrary). These markers are referred
to as explicit discourse connectives, as shown in example 1. In the PDTB 3.0, explicit discourse
connectives have been extended to cover subordinators (i.e., prepositions such as because of, by,
despite, for, from) to more fully annotate intra-sentential relations and are only annotated when
they take clausal complements, as in example 2.

(1) The city’s Campaign Finance Board has refused to pay Mr. Dinkins $95,142 in matching
funds because his campaign records are incomplete.

(2) Eliminate arbitrage and liquidity will decline instead of rising, creating more volatility
instead of less.

Implicit DRs: In the absence of a connective supporting a discourse relation, readers can infer
the meaning of the relation, and the annotators are asked to insert an explicit marker that best
conveys the sense of the inferred relation. These are called implicit connectives. While the PDTB
2.0 only annotated implicit DRs that hold between sentences (example 3), the PDTB 3.0 annotated
implicit relations within sentences as well (e.g., between VPs or clauses conjoined implicitly by
punctuation, as in example 4) (Zhao and Webber 2021). The PDTB 3.0 also annotates implicit
relations when they co-occur with explicit relations, as will be exemplified in examples 12 and 13
below.

(3) So much of the stuff poured into its Austin, Texas, offices that its mail rooms there simply
stopped delivering it. (Implicit = so) Now, thousands of mailers, catalogs, and sales pitches
go straight into the trash.

(4) Father McKenna moves through the house praying in Latin, (Implicit = and) urging the
demon to split.

Alternative Lexicalization (AltLex): When an implicit discourse relation is inferred to hold
between or within sentences but the insertion of an implicit connective in the relation is per-
ceived redundant, the relation is referred to as being alternatively lexicalized. Expressions that are
inferred to confirm the presence of a discourse relation are annotated as AltLex (example 5). The
PDTB 3.0 extended AltLexes to cover AltLexC relations, that is, lexico-syntactic constructions that
unambiguously signal discourse relations, such as example 6.

(5) After trading at an average discount of more than 20% in late 1987 and part of last year,
country funds currently trade at an average premium of 6%. The Reason: Share prices of
many of these funds this year have climbed much more sharply than the foreign stocks
they hold.

(6) Crucial as these elections are for Greece, pressing issues of state are getting lost in the
shuffle.

Entity Relations (EntRels): Where no discourse relation can be inferred between adjacent sen-
tences and adjacent sentences form entity-based coherence with the same entity being realized
in both sentences either directly or indirectly, the discourse relation is annotated as an EntRel
(example 7).

(7) Pierre Vinken, 61 years old, will join the board as a non-executive director Nov. 29. Mr.
Vinken is chairman of Elsevier N.V., the Dutch publishing group.
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No Relations (NoRels): Where a semantic relation between adjacent sentences cannot be
identified, the adjacent pair of sentences are annotated as NoRel (example 8).

(8) Mr. Rapanelli met in August with U.S. Assistant Treasury Secretary David Mulford.
Argentine negotiator Carlos Carballo was in Washington and New York this week to meet
with banks.

Hypophora: Where a question is asked and a meaningful response is provided, Hypophora is
annotated. This is a new inter-sentential relation in the PDTB 3.0, and it stands for discourse
relations involving dialogue acts, which cannot be instantiated through connectives (example 9).

(9) But can Mr. Hahn carry it off? In this instance, industry observers say, he is entering
uncharted waters.

In summary, in the PDTB 3.0, not only explicit and AltLex discourse relations but also implicit
discourse relations are annotated both across and within sentences and are assigned a sense tag
from the revised hierarchy of senses. The PDTB 3.0 keeps the four Level-1 senses of earlier ver-
sions, namely Expansion, Comparison, Contingency, and Temporal. These are refined to more
specific senses at the second level. For symmetric relations, the sense hierarchy stops at the second
level; for asymmetric relations, the hierarchy provides third-level senses to define the semantic
contribution of each argument.a (The full sense hierarchy is provided in Appendix A). EntRels,
NoRels, and Hypophora are annotated as inter-sentential relations and not assigned a sense tag.

Multiple Relations: In addition to the DRs overviewed so far, the PDTB 3.0 annotates multiple
relations in certain cases. Multiple relations are those relations that can hold between a pair of
spans. For example, when there are co-occurring explicit connectives between the same spans,
multiple relations are annotated by creating two tokens (examples 10, 11).

(10) Small businesses say a recent trend is like a dream come true: more-affordable rates for
employee-health insurance, initially at least. But then they wake up to a nightmare.

(11) Small businesses say a recent trend is like a dream come true: more-affordable rates for
employee-health insurance, initially at least. But then they wake up to a nightmare.

Also, in cases where annotators infer a sense separate from the one conveyed by an explicit
connective or AltLex or AltLexC, separate implicit relations are annotated by inserting implicit
connectives (examples 12, 13).

(12) We’ve got to get out of the Detroit mentality and be part of the world mentality, declares
Charles M. Jordan, GM’s vice president for design. . .

(13) We’ve got to get out of the Detroit mentality and (Implicit=instead) be part of the world
mentality, declares Charles M. Jordan, GM’s vice president for design. . .

2.2 Shallow discourse parsing sub-tasks
A typical shallow discourse parser consists of three main sub-tasks: (i) connective identification,
(ii) argument extraction, and (iii) sense classification. In the current paper, we have adopted a
different approach and merged and converted the first two tasks into the identification task of a

aSymmetric relations are those where (Arg1, Arg2) and (Arg2, Arg1) are semantically equivalent. A relation that is not
symmetric is defined as asymmetric (Webber et al. 2016).
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discourse relation in a given text piece, referred to as DR realization type identification. That is,
our approach does not perform distinct connective and argument extraction, but it is still able
to identify the discourse relation, if there is any, in a given text piece and further disambiguates
the discourse relations in terms of the senses. Yet, we would like to note that the model is trained
on both inter- and intra-relations without the knowledge of distinctionb and is unable to detect
multiple discourse relations simultaneously. If the given text piece has more than one different
DRs, the model will be able to find only one of them.

DR realization type identification: This is one of the least studied aspects of discourse. Here, it is
modeled as a six-way classification task which aims to identify the specific realization type of the
discourse relation in the given text. Although the usage disambiguation of discourse connectives
(distinguishing between the connectives’ discourse and non-discourse role) has been investigated
for many languages as discussed in Section 3, and implicit relation identification has also been
targeted, these have often been considered as tasks on their own. The multi-level identification of
relation realization type is a challenging task, which to our knowledge has not been tackled before.

Sense classification of discourse relations:This is themost popular sub-task of discourse parsing,
where the aim is to find the sense conveyed by a given explicit or implicit discourse relation. The
implicit classification task is rather (in)famous for its challenging nature due to the lack of an
explicit signal, that is, the discourse connective, and renders the task extremely challenging, where
the models must encode the semantics of each argument correctly. Due to its challenging nature,
the task is most commonly limited to only the Level-1 senses in the PDTB 3.0 sense hierarchy;
hence, in the current work, it is modeled as a four-way classification task. To the best of our
knowledge, the four-way sense classification of implicit discourse relation is the first attempt over
Turkish data. The second and third-level senses are out of scope of the current work.

3. A brief survey of related work
3.1 Attempts toward the development of discourse parsers
Prior to the work of Lin, Ng, and Kan (2014), research only targeted individual tasks involved in
discourse parsing. For example, the task of automatically identifying explicit discourse connectives
was shown to be doable with high accuracy with the help of linguistic features and information
about the connective’s surrounding context. In an early paper, Pitler et al. (2008) developed deci-
sion trees (i) to distinguish between explicit and implicit discourse relations in the PDTB 2.0, (ii)
to distinguish tokens of each Level-1 sense relation from all the others, (iii) to carry out four-way
sense classification of all tokens and a separate four-way sense classification of tokens with explicit
connectives. Their model reached a higher performance in the classification of explicit discourse
connectives than implicit ones. One of the earliest studies on the identification of discourse versus
non-discourse usage of explicit connectives has been carried out by Pitler and Nenkova (2009)
over the PDTB 2.0. Feeding syntactic features extracted from the arguments of discourse con-
nectives into a maximum entropy classifier,c the authors reached an F-Score of 0.92 in explicit
discourse connective disambiguation and 94% accuracy in the four-way sense classification of
explicit discourse connectives.

Later work has reached highly successful results in domain-specific applications. Ramesh et al.
(2012) used various supervised machine-learning-based algorithms for automatically identify-
ing explicit discourse connectives in the BioDRB corpus and proposed a hybrid classifier based

bThis means that at the time of inference, the model considers the possibility of an intra-sentential relation being a NoRel
although such a combination is not possible. Augmenting intra-/inter-sentential information to the training procedure would
probably improve the training, but since such information is not always available, we wanted to work with what we can safely
assume to exist in the corpora.

chttps://github.com/mimno/Mallet
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on a Conditional Random Fields-based classifier and a combination of instance pruning, feature
augmentation, and domain adaptation techniques. Extracting syntactic features such as the part-
of-speech (POS) tags of the tokens, the syntactic labels of the immediate parent of the token’s POS
in the parse tree, and the POS tags of the left sibling (the token to the left of the current word
inside the innermost constituent), an F-Score of 0.76 is reached. Gopalan and Devi (2016) used
fewer linguistic features relevant to discourse and employed machine-learning models to auto-
matically extract explicit discourse connectives, their senses, and arguments. They reported an
F-Score of 0.85 in the classification of explicit discourse connectives’ senses with the Conditional
Random Fields algorithm.

Work on non-English languages such as Arabic discovered features that contribute to the dis-
ambiguation of the discourse usage of explicit connectives. Alsaif and Markert (2011) worked on
an Arabic corpus where explicit discourse connectives are marked. They used syntactic features
such as the position of the potential connective (sentence-initial, sentence-medial, or sentence-
final), lexical features of the surrounding words, the POS tags of the words, and the syntactic
category of the parent of the potential connective. The authors also discovered the predictive role
of the infinitive form of the verb in the second argument of prepositional connectives and achieved
an F-Score of 0.78 in explicit discourse connective recognition with the best feature combination.

A recent work by Başıbüyük and Zeyrek (2023) disambiguates the discourse usage of Turkish
connectives with a rule-based and machine-learning approach using different sets of linguistic
rules for discourse connectives belonging to different syntactic classes. The machine-learning
approach achieves an F1-score of 84.44 for single/phrasal connectives with the Fast Forest Binary
algorithm and an F1-score of 80 for suffixal connectives with the Averaged Perceptron Binary
algorithm with the best feature combination.

While it could be said that explicit discourse relation recognition is largely a solved prob-
lem, especially for well-studied languages such as English, identification of implicit relations still
remains a challenge. Marcu and Echihabi (2002) have been the first to identify implicit relations by
removing discourse connectives to cheaply gather large amounts of training data. They also dis-
covered that word pairs are indicative of implicit relations (e.g., the pair embargo . . . legally was
a good indicator of contrast relations) and used them in extracting large amounts of data. They
reached high accuracies with this technique of obtaining artificial implicit relations. Particularly,
two of their classifiers were successful in distinguishing between Cause-Explanation-Evidence
versus Elaboration (93%) and Cause-Explanation-Evidence versus Contrast (87.3%).

A later paper by Pitler, Louis, and Nenkova (2009) predicted the Level-1 senses of implicit rela-
tions in the PDTB 2.0 in a realistic setting taking advantage of linguistically informed features
as well as lexical pairs from unannotated text. They achieved an F-Score of 0.76 with the best
combination of their features (polarity+Inquirer tags+context). Lin, Kan, and Ng et al. (2009)
took parser production rules as the main source of features and worked on the Level-2 senses of
the PDTB 2.0 hierarchy. They showed that syntactic patterns could contribute to predicting the
senses of implicit relations. In CoNLL-2015 Shared Task, the feature-based work of Rutherford
and Xue (2014) presented statistical classifiers for identifying the senses of implicit relations. The
authors introduced novel feature sets that exploit distributional similarity and coreference infor-
mation. They showed that Brown cluster pairs (Brown et al. 1992) work well in implicit relation
recognition.

A breakthrough is seen in the field with the development of an end-to-end discourse parser
(for English) by Lin et al. (2014). Working on the PDTB 2.0, the authors produced a PDTB-styled
parser, constructing a thorough pipeline for parsing the text in seven sequential steps titled as con-
nective classification, argument labeling, argument position classification, argument extraction,
explicit relation classification, and sense recognition of explicit as well as non-explicit relations.
The authors classified and labeled discourse relations and the attribution spans, where relevant.
Their parser can parse any unrestricted English text into its discourse structure in the PDTB style.
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The best F1-Scores are reported as 0.87 for the explicit classifier, and 0.4 for the non-explicit
classifier.

Lately, shallow discourse parsing has been attempted in a series of shared tasks. As in the work
of Mukherjee et al. (2015), shallow discourse parsing is mostly conducted by using syntactic and
semantic features for classification. It is also attempted in CoNLL Shared Task (2015), to which 16
teams participated by using a piece of newswire text as input and returning relations in the form
of a discourse connective (either explicit or implicit) with two arguments. Each team developed an
end-to-end system that could be regarded as variations of Lin et al. (2014), detecting and catego-
rizing individual discourse relations and returning a set of relations contained in the text. The best
system achieved an F1-Score of 0.24 on the blind test set, reflecting the serious error propagation
problem in such a system (Xue et al. 2015, 14).

The shared task DISRPT (2019) (DR Parsing and Treebanking) was held on discourse unit
segmentation across formalisms, including shallow discourse parsing, aiming to promote the
convergence of resources and a joint evaluation of discourse parsing approaches. The corpora
included 15 datasets in 10 languages, 12 of which target elementary discourse unit segmentation,
and three dedicated to explicit connective annotation (Zeldes et al. 2019). In the overall evalua-
tion, ToNy (Muller, Braud, and Morey 2019) performed the best on most of the datasets reaching
an F-Score of 0.9 in the average of all its tests. Turkish is also represented in the dataset with
the TDB 1.0, where only explicit discourse connectives are annotated. On this data, ToNy (Muller
et al. 2019) obtained the best results in discourse connective detection on plain, unannotated data,
reaching an F-Score of 0.85. In the DISRPT (2021) shared task event, the approach of the group
DiscoDisco increased the F1-Score of Turkish explicit discourse connective detection sub-task to
0.94.

One of the latest noteworthy achievements has been reported by Liang, Zhao, and Webber
(2020). The authors worked on the PDTB 3.0, where implicit relations are annotated both at
the inter-sentential and intra-sentential levels. In addition to these stand-alone implicits, implicit
sense relations between the arguments of explicit relations are also annotated. In a series of exper-
iments, the authors first recognized the location of implicits, then they recognized their senses,
arguing that the data annotated in this way simplifies the difficult problem of sense-labeling of
implicits.

To sum up, the supervised classification algorithms described above have been able to clas-
sify discourse relations, particularly explicit ones, very successfully in texts. But the results lack
general impact, as less-studied, low-resource languages have hardly been targeted. Moreover,
sense-labeling of implicit discourse relations still lags behind that of explicit relations. The next
section deals with the impact of deep learning models in the field of discourse understanding as
background to the experiments conducted in the current work.

3.2 Pre-trained languagemodels: The paradigm shift in NLP domain
The advent of attentionmechanism has been a breakthrough in NLP (Bahdanau, Kyunghyun, and
Yoshua 2015; Luong, Pham, andManning 2015) which, consequently, gave rise to the transformer
architecture (Vaswani et al. 2017). BERT is undoubtedly the most famous language model that is
based on the transformer architecture (Devlin et al. 2019). BERT uses a masked language model
which randomly masks 15% of the tokens from the input in order to predict the original vocab-
ulary by feeding the final hidden vectors (corresponding to the masked tokens) into an output
softmax over the vocabulary. Discourse relation classification benefited from BERT. For example,
Nie, Bennett, and Goodman (2019) showed that BERT can outperform previous state-of-the-art
models in implicit discourse relation classification, and Kishimoto, Murawaki, and Kurohashi
(2020) adapt BERT to the task, managing to reach an F1-Score of 0.59.
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3.3 Cross-lingual transfer learning
In recent years, cross-lingual transfer has become an active area of research in favor of low-
resource languages. It is a fairly specific way of training models using the data available for
languages with ample resources so that it can solve the same task in the target low-resource
language(s). Cross-lingual transfer learning serves many research domains including the con-
struction of bilingual dictionaries (Wang et al. 2019), zero-shot translation (Johnson et al. 2017),
spoken language understanding (Yazdani and Henderson 2015), semantic utterance classification
(Dauphin et al. 2014), entity extraction from Web pages (Pasupat and Liang 2014), fine-grained
named entity typing (Ma, Cambria, and Gao 2016), cross-lingual document retrieval (Funaki and
Nakayama 2015), relation extraction (Levy et al. 2017), multilingual task-oriented dialog (Schuster
et al. 2019), and event detection (Caselli and Üstün 2019).

A more specific case of transfer learning is known as zero-shot learning, where the classifier is
able to classify examples it is never exposed to during the training. In the cross-lingual scenario,
this often translates into training the classifier in one language and applying it to other languages
with a minimal performance loss. The advantage of cross-lingual transfer learning, in general, is
being able to leverage information from high-resource languages into the low-resource ones. In
the case of discourse parsing, it is highly relevant as almost all of the non-English languages lack
large manually annotated datasets.

4. An overview of the data, experiments, and the experimental setup
In the current paper, BERT is used in order to learn the labels over discourse relations, taking
advantage of its capacity to obtain the intrinsic representation of each word while preserving the
linguistic properties of the text. This section details the datasets and overviews the experimental
setup of the experiments described in Section 5.

4.1 Datasets
The datasets used in the paper involve the following: (i) The TDB 1.2, (ii) the PDTB 3.0, and (iii)
the Turkish section of the TED-MDB.

4.1.1 Turkish Discourse Bank
The TDB 1.2 is chosen as the main data source. It is a 40,000-word discourse-level resource of
Turkish created by manually annotating a corpus of modern Turkish texts written between 1990
and 2000 (Zeyrek and Webber 2008). The annotation principles of the TDB 1.2 and the anno-
tated categories closely follow those of the PDTB; most notably, all discourse relation realization
types described in Section 2.1 are spotted and annotated together with their binary arguments and
senses, where relevant.

The basic principle in annotating explicitly marked relations is the PDTB’s minimality princi-
ple, that is, the annotators are asked to select the shortest text spans (e.g., clauses or sentences) that
are necessary and sufficient to interpret a discourse relation encoded by a connective. The datasets
over which the two corpora are built differ; while the PDTB is built over Wall Street Journal
Corpus, the TDB is built over multiple genres (newspaper editorials, fiction, popular magazines).
Other differences involve (i) the way different types of discourse connectives are annotated (e.g.,
suffixal connectives are annotated as a type of explicit connectives (Zeyrek and Basıbuyuk, 2019))
(ii) a small number of new Level-2 sense tags are spotted and annotated (Zeyrek and Kurfalı 2017),
and (iii) attribution and AltLexC relations have not been annotated in the TDB 1.2 so far.

In the annotation stage, any possible discourse relation is searched and annotated by going
through the texts sentence by sentence, similar to the incremental processing of discourse.
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Table 1. Distribution of DR types and Level-1 senses in the TDB 1.2 and the PDTB 3.0

DR type TDB PDTB Level-1 Sense TDB PDTB

Explicit 1467 (38.2%) 24,240 (45.3%) Comparison 448 (12.9%) 8,399 (18.25%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Implicit 1743 (44.9%) 21,782 (40.7%) Contingency 702 (20.3%) 11,503 (24.99%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AltLex 146 (3.8%) 1498 (2.8%) Expansion 1,700 (49%) 20,266 (44.04%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hypophora 77 (2%) 146 (0.27 %) Temporal 617 (17.8%) 5,854 (12.72%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EntRel 233 (5.9%) 5538 (10.3 %)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NoRel 203 (5.1%) 287 (0.5 %)

Annotations were performed by a team of trained graduate students, sustaining a minimum value
of κ = 0.7 for inter-annotator agreement (Zeyrek and Kurfalı 2017). Even though this is below
the normal threshold of 0.8, due to the ambiguity of coherence relations, the annotation task is
very hard, forcing the team to take 0.7 as a satisfactory level as suggested by Spooren and Degand
(2010).

The TDB 1.2 contains 3987 discourse relations (Table 1), where discourse senses are annotated
on the basis of the PDTB 3.0 sense tag-set (Appendix A) (Zeyrek and Er 2022). Furthermore,
explicit and implicit relations and AltLexes are annotated both at the inter-sentential and intra-
sentential level. EntRels, NoRels, and Hypophora (13% of the corpus) are annotated only at the
inter-sentential level.

4.1.2 Penn Discourse Treebank 3.0
The Penn Discourse Treebank is the largest text corpus annotated for discourse relations. The
latest release, the PDTB 3.0, is an enriched version of the PDTB 2.0 with the addition of 13K new
annotations, which are mainly intra-sentential relations that were not annotated in the previous
edition (Webber et al. 2019). The PDTB 3.0 includes a total of 53631 annotations, the distribution
of which is provided in Table 1.

4.1.3 TED-Multilingual Discourse Bank
The TED-MDB is a multilingual corpus that follows the same annotation principles of the PDTB
and the TDB (Zeyrek, Mendes, and Kurfalı 2018, Zeyrek et al. 2020) follows the PDTB 3.0 sense
hierarchy. Yet, unlike those corpora, the TED-MDB is annotated on the subtitles of six TED talks.
In total, there are 695 discourse relations (317 explicit and 210 implicit relations) in the Turkish
part of the corpus.

4.2 Experimental setup
Each task is modeled as a multi-way classification task. As we do not assume a separate identifi-
cation of arguments, each discourse relation is presented as one unit to BERT; hence, in practice,
the models do not have any information regarding the boundaries of the discourse arguments but
see them as one continuous text piece.

For each dataset, 10% of the data is allocated as the validation set and another 10% as the test
set. The distribution of labels in each set is provided in Table 2. For each task, we fine-tune BERT
following the standard practice suggested by Devlin et al. (2019).

Following the previous work, we set the maximum sequence length to 128. We use AdamW
optimizer (Loshchilov and Hutter 2017) with the learning rate of 5e− 5. We also apply a learning
rate warm-up where the learning rate is linearly increased from 0 to 5e− 5 over the first 10%

https://doi.org/10.1017/S1351324923000359 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000359


Natural Language Engineering 1019

Table 2. Summary of the train, development, and test splits of the TDB 1.2 used
in the experiments. The upper part presents the distribution of labels in the DR
realization type classification experiments and the lower part presents the sense
experiments over explicit and implicit DRs.

TYPE Train Dev Test

AltLex 113 13 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EntRel 196 24 13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Explicit 1157 147 163
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hypophora 68 2 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Implicit 1394 186 163
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NoRel 167 15 21

Explicit Implicit

Level-1 Sense Train Dev Test Train Dev Test

Comparison 205 23 31 130 15 17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contingency 206 29 33 264 35 34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expansion 429 57 54 879 118 93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Temporal 317 38 45 121 18 19

of iterations and then linearly decreases to 0. The models are fine-tuned for 50 epochs, with the
batch sizes of 16. We apply early stopping with patienced of 25 according to the performance on
the development set. The models are evaluated four times in each epoch and the one with the
best development performance is stored as the final model. As the target metric, we use Macro-F1.
Yet, for each experiment, we report the performance of our models on the set via accuracy, recall,
precision, Macro-F1, and Weighted F1,e calculated as:

Recall= TP
TP + FN

Precision= TP
TP + FP

F1= 2 ∗ Recall ∗ Precision
Precision+ Recall

(1a)

Macro-F1= 1
N

N∑
i

F1i (where N is the number of labels) (1b)

Weighted-F1=
N∑
i

wi · F1i where(wi)is proportional to the frequency of class i (1c)

All the training is performed on a single T4 GPU. The experiments for the development
of a classification model gave rise to the Bert_MultiClass model, built based on the transform-
ers.TFBertModelf class (More details about the classification model, the method of fine-tuning,
and the tests are provided in Appendix B).

dEarly stopping is a feature that enables the training to be automatically stopped when a chosen metric has stopped
improving. Patience is the number of epochs without improvement, after which training will be early stopped.
ehttps://scikit-learn.org/stable/modules/model_evaluation.html
fhttps://huggingface.co/docs/transformers/v4.15.0/en/model_doc/bert#transformers.TFBertModel
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Table 3. An overview of the conducted experiments

Experiment # Encoding PLM Dataset Purpose

5.1 Turkish BERT TDB 1.2 To explore the effectiveness of a monolingual BERT

T-TED-MDB for both in-domain and out-domain datasets in

the classification of DR realization types and

Level-1 senses
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Turkish BERT TDB 1.2 To explore the effectiveness of

Multilingual BERT PDTB 3.0 multilingual data aggregation

on DR realization type classification

5. Results and discussion
In this section, we report and discuss the results of our experiments on Turkish discourse parsing.
We carried out two sets of experiments. The first set involves in-domain experiments on a held-
out test set from the TDB 1.2, where we identify the realization type of the discourse relation that
holds in a given text span, if there is any (Section 5.1.1). Then, we move on to the sense classifi-
cation of the identified explicit and implicit relations (Section 5.1.2). We report the out-domain
performance of our models in order to evaluate their generalization abilities, using the T-TED-
MDB (Section 5.1.3). In the second set of experiments, through a series of cross-lingual transfer
learning experiments, we explore the effect of multilingual data aggregation on DR realization
type classification (Section 5.2) and discuss the extent to which the lack of training data that arises
due to the cost of manual annotation can be alleviated in a low-resource scenario such as ours.
Table 3 provides an overview of the conducted experiments.

5.1 Monolingual experiments
The first set of experiments aims to explore the effectiveness of a monolingual BERT PLM for
the target tasks. Despite having quickly become the de facto way of performing NLP tasks in
recent years, such pre-trained models have seen very limited attention for non-English languages,
where Turkish is no exception. We address this shortcoming and investigate the performance
of a Turkish BERT model using the Hugging Face libraryg with the available annotated data in
Turkish. In what follows, we present the results of DR realization type classification for the first
time.

5.1.1 DR realization type classification
As defined in Section 2.2, DR realization type classification focuses on identifying how precisely
discourse relations are realized in a given text span, given the PDTB’s five relation realization types
(implicit, explicit, AltLex, Hypophora, EntRel). If no such relation is found, the model is supposed
to label the text as having a NoRel relation, mimicking the PDTB annotation style. The results of
our experiments are provided in Table 4.

According to the results, the Turkish BERT model achieves almost 74% accuracy and a Macro-
F1 Score of 0.58 over all relations. The relatively lowMacro-F1 Score suggests that the task is more
challenging than it looks; however, it must be highlighted that the model does not have access to

ghttps://huggingface.co/dbmdz/bert-base-turkish-128k-uncased
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Table 4. DR realization type classification results over the TDB 1.2

DR Type F1-score Recall Precision

AltLex 0.63 0.58 0.69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EntRel 0.32 0.40 0.32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Explicit 0.90 0.89 0.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hypophora 0.74 0.79 0.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Implicit 0.77 0.78 0.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NoRel 0.11 0.11 0.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 73.90%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macro-F1 0.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted F1 0.77

any information regarding the argument boundaries or whether there is a connective in the text
span or not. Hence, we find the results to be promising.

Of all relation realization types, the explicitly realized ones turn out to be the most easily iden-
tifiable relations with the F1-Score of 0.9. This result suggests that the model implicitly learns to
recognize discourse connectives. On the other end of the spectrum lie the EntRels and NoRels
which are identified very poorly. Hypophora relations, which are the least frequent relations in
the data, are surprisingly identified well.

The model manages to identify Hypophora relations almost as good as implicits. Although it is
hard to draw any definite conclusions due to the limited sample size, considering that Hypophora
relations consist of a rather fixed template, a question-answer pair where commonly the first
argument expresses a full question and the other provides an answer, it is plausible that the
model learns to associate this form with the Hypophora label.h Yet, we would like to empha-
size that at this point any observation regarding the infrequent relation types, especially EntRel
and Hypophora relations, are only informed guesses due to their limited size and must be justified
with further experiments with more data.

In order to gain further insight into the model’s decisions, we first analyzed the results in the
form of a confusion matrix provided in Appendix C, Fig. C1. According to the confusion matrix,
the model frequently mixes EntRels with implicits. However, confusing EntRels with implicits is
not really unexpected: Zeyrek and Kurfalı (2017) report that human annotators also struggle with
telling these two relations apart. Implicit relations conveying an Expansion sense (especially the
Level-2 sense of “level-of-detail”) look very similar to EntRels as they also tend to talk about a
common entity.

As for NoRels, they are almost always classified as an implicit relation (18 out of 21 relations).
Therefore, it is clear that the model did not learn the difference between these two relations. This
is probably the case because the number of NoRels is pretty limited in the data, and more impor-
tantly, these non-relations do not have any specific clue for the model to pick up (e.g., a set of
recurrent tokens such as connectives); so the model tends to classify them as the more frequent
implicit relations that also do not have any characteristic explicit clue.

Next, we extracted the sentence embeddings of the textual elements formed by concatenating
Arg1, Arg2 and the discourse connective (if available) of each discourse relation in the TDB 1.2.
We computed the cosine similarity of each textual element versus all other textual elements within

hPlease note that the model does not see any final punctuation as they are omitted in the annotation stage. Hence, the model
cannot rely on question marks.
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Figure 2. The bar chart and the box plot showing the semantic similarity analysis of DR realization types in the TDB 1.2
(encoded with the Turkish BERT)

each set of similarly realized relation types. Each DR realization type received (n x n) number of
similarity scores, where n is the number of relations in a category.

In Fig. 2, the similarity scores of each DR realization type are plotted in a box plot and their
category-wise averages are shown in a bar chart. The box plot shows that the upper and lower
quartiles are very close to each other in all categories; most of the scores are squeezed in very small
ranges, and even small differences would be significant for our assessment. The analysis shows
that the average similarity scores of NoRels, EntRels, and Hypophora are significantly higher than
those of other relation realization types. The higher semantic similarity rates mean that they have
an identifiable pattern and could be better distinguished. But, EntRels and NoRels have signifi-
cantly low performance as clearly shown in the confusion matrix (see Fig. C1). The results of this
analysis are in line with our earlier observation and confirm that the model cannot identify a clear
pattern associated with EntRels and NoRels, which could be due to the low number of annotated
EntRel and NoRel tokens.

5.1.2 Sense classification
The sense classification task focuses on the disambiguation of the Level-1 sense conveyed by a dis-
course relation. Unlike the previous task, sense classification is not performed over all relations.
We train separate sense classifiers for explicit and implicit discourse relations, following the com-
mon practice. Ideally, one could also train one for AltLex relations as they also convey a sense but
that was not possible for the TDB 1.2, due to the lack of enough training data (there is a total of
146 AltLexes in the TDB 1.2 (see Table 1)).

The results of sense classification experiments are provided in Table 5. As expected, sense-
wise, explicitly conveyed discourse relations are much easier to classify than implicitly conveyed
ones. The explicit sense classifier achieves almost two times better performance than its implicit
counterpart (0.41 vs 0.82 Macro-F1) and the classification is very stable across four major sense
categories: The classifier achieves 0.81+ F1-Score for each major sense category, which suggests
that it is robust to the uneven distribution of labels in the training data (e.g., Expansion relations
are twice as frequent as Contingency relationsi). Hence, it should be safe to conclude that such
explicit sense classifiers require only several hundreds of examples per label to achieve steady
performance.

The sense classification of implicit discourse relations is a notoriously challenging task and
often regarded as the most difficult step in shallow discourse parsing. Accordingly, we achieve

iSee Table 2.
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Table 5. Level-1 Sense classification results of explicit and implicit DRs in the TDB 1.2

Explicit Implicit

Level-1 Sense F1-score Recall Precision F1-score Recall Precision

Comparison 0.85 0.82 0.89 0.13 0.12 0.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contingency 0.81 0.80 0.83 0.37 0.33 0.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expansion 0.81 0.76 0.87 0.69 0.72 0.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Temporal 0.82 0.91 0.74 0.45 0.50 0.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 82.20% 53.37%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macro-F1 0.82 0.41
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted F1 0.82 0.54

much lower performance in the disambiguation of implicit relations. However, considering the
size of the training data, the results are in line with our expectations; for example in the PDTB
2.0, the same setup achieves the F1-Score of 0.52 (Kim et al. 2020). Unlike explicit relations, the
performance varies significantly across different labels, where expansion relations are clearly more
successfully classified. This variation can be partly explained by the label distribution in the data:
Expansion relations occur almost four times more frequently than the second most frequent label
(Contingency). However, the frequency of labels do not explain the poor performance on the
Comparison relations since Temporal relations are classified much better despite being slightly
less frequent in the training set. Therefore, in addition to the insufficient exposure to some labels,
certain relations may be inherently more challenging to classify.

5.1.3 Cross-domain experiments
The lack of annotated data in discourse parsing does not only make it challenging to train high-
performance discourse parsers, but, it also hinders the models from generalizing across different
domains (Stepanov and Riccardi 2014). Therefore, it is crucial to evaluate the performance of
the models on different domains in order to get a complete picture of their real performance.
To this end, in this section, we report the performance of our models on the T-TED-MDB. The
TED-MDB involves the annotated transcripts of spoken language, and the annotated talks differ
from each other in terms of their subject matter. These make this corpus the perfect candidate for
such a cross-domain evaluation. The performance of our type and sense classifiers are provided in
Tables 6 and 7.

As expected, the performance of all our three models drop on the T-TED-MDB. Yet, the per-
formance drop is within acceptable margins for both explicit (0.82 vs. 0.73Macro-F1) and implicit
(0.41 vs. 0.35 Macro-F1) sense classification. On the other hand, genre change seems to have
affected the DR realization type classifier considerably, where the performance drops almost 0.25
in Macro-F1- Score. The performance drops over all DR realization types, but the AltLexes suffer
the most significant performance loss, where the classification performance almost drops to half.
Considering that AltLexes are rather an open class, compared to explicit connectives, it seems
that the models do not learn AltLexes well enough to generalize over unseen AltLex phrases.
Overall, although there is much room for improvement, considering the size of the T-TED-MDB,
the cross-domain performance of our models is in line with our expectations and can indeed be
useful in mining relations on different text types.

5.2 Cross-lingual transfer experiment
The overarching problem in discourse parsing studies in general is the data bottleneck. Although
the results provided in the previous sections are on similar levels with what is achieved for English
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Table 6. Cross-domain DR realization type classification results over the T-TED-MDB

DR realization type F1-score Recall Precision

AltLex 0.37 0.42 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EntRel 0.18 0.18 0.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Explicit 0.77 0.80 0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hypophora 0.11 0.20 0.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Implicit 0.47 0.46 0.49
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NoRel 0.09 0.06 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 59.85%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macro-F1 0.33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted F1 0.54

Table 7. Level-1 Sense classification results of explicit and implicit DRs in the T-TED-MDB

Explicit Implicit

Level-1 Sense F1-Score Recall Precision F1-Score Recall Precision

Comparison 0.71 0.69 0.75 0.16 0.14 0.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contingency 0.75 0.73 0.77 0.21 0.36 0.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Expansion 0.80 0.78 0.82 0.65 0.61 0.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Temporal 0.65 0.83 0.55 0.41 0.40 0.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 73.18% 49.75%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macro-F1 0.73 0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted F1 0.76 0.52

despite the significantly smaller size of the TDB 1.2, clearly, there is much room for improvement.
In this second set of experiments, we aimed to explore whether enriching our training data with
a larger resource in another language can help us to improve our scores. To this end, we focused
on the DR realization type sub-task and performed a cross-lingual transfer experiment using the
PDTB 3.0 with the multilingual BERT (mBERT)j as the text encoder.

In total, we have considered two different settings: (i) the zero-shot setting where mBERT is
trained only on the PDTB 3.0 dataset, (ii) the cross-lingual setting, where mBERT is trained on the
aggregation of the PDTB 3.0 with the TDB 1.2. We compare the performance of the cross-lingual
transfer experiments to the monolingual baseline, where the Turkish BERT model is trained on
the TDB 1.2 as discussed in Section 5.1.

The results in Table 8 suggest that the DR realization type classification is a highly language-
specific task. In the zero-shot scenario, where the model is exposed to only English examples,
the model achieves 72% accuracy and 0.71 weighted F1-Score. Despite still being significantly
higher than the chance baseline, the results demonstrate a noticeable decrease when compared
to the monolingual baseline. Specifically, the less frequent types experience a significant negative
impact, with the performance dropping to zero for Hypophora and NoRel relations, and to half

jhttps://huggingface.co/bert-base-multilingual-cased
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Table 8. F1-Scores of DR realization type classification experiments with Turkish BERT on the TDB
1.2 and with mBERT on both the PDTB 3.0 and the joint dataset

DR realization type I (TDB 1.2) II (PDTB 3.0) III (TDB 1.2+ PDTB 3.0)

AltLex 0.63 0.29 (–0.34) 0.48 (–0.15)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EntRel 0.32 0.47 (+0.15) 0.18 (–0.14)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Explicit 0.90 0.80 (–0.10) 0.87 (–0.03)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hypophora 0.74 0.00 (–0.74) 0.60 (–0.14)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Implicit 0.77 0.72 (–0.05) 0.71 (–0.06)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NoRel 0.11 0.00 (–0.11) 0.12 (+0.01)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy (%) 73.90 72.00 (–1.9) 73.64 (–0.26)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macro-F1 0.58 0.38 (–0.20) 0.49 (–0.09)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weighted F1 0.77 0.71 (–0.06) 0.72 (–0.05)

(I) Turkish BERT is fine-tuned with the TDB 1.2, and its test set is classified (repetition of Table 4 in Section 5.1.1).
(II) mBERT is fine-tuned with the PDTB 3.0 for zero-shot performance, and the test set of TDB 1.2 is classified.
(III) mBERT is fine-tuned with the joint dataset, PDTB 3.0+ TDB 1.2, and the test set of TDB 1.2 is classified to detect the
effect of multilingual training data—cross-lingual transfer learning.
Note: All the differences are calculated from Column I.

for AltLtex relations. On the other hand, the performance drop in implicit and explicit relations
is not as sharp compared to the other types and can be considered to remain within a reasonable
margin. The only performance improvement is detected for EntRel relations.

When the training data compose of both the PDTB 3.0 and the TDB 1.2, the results increase
perceptibly as compared to zero-shot setting. The performance becomes close to the monolingual
baselines, with only 0.26% loss in accuracy. However, the performance still lags behind the mono-
lingual baselines, meaning that the addition of another language to the training set does not lead
to any improvement.

The confusion matrices in Appendix C summarize the classification performance of the mono-
lingual and the multilingual models. A κ (Kappa) statistic is computed to compare the results. We
find that the multilingual model has reached a κ coefficient that is 0.025 less than that of our base-
line monolingual model, confirming that the performance of the multilingual model lags behind
the monolingual model.

Our results mimic the findings of a very recent work on connective prediction, where the
authors also report that the language-specific models trained on the target language outperform
themultilingual model trained on a concatenation of different languages (Muermans and Kosseim
2022).

Table 8 and our Kappa analysis suggest that the types by which discourse relations are real-
ized in Turkish and English are diverse enough to prevent any knowledge transfer even between
the resources that are annotated following the same framework. In order to shed more light into
these discrepancies between languages, we have performed a manual error analysis of the predic-
tions of the multilingual model that is trained on both resources. According to our preliminary
analysis, the following points stand out as the possible reasons behind the poor generalization
across languages:

• Discrepancies between languages in expressing AltLexes: The largest performance drop
occurs in AltLex relations, which are open class by definition. Hence, the languages con-
siderably vary when it comes to AltLexes, an observation also put forward by (Özer et al.
2022).
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• EntRels manifest a performance drop almost as large as AltLexes, and they are frequently
confused with implicits and NoRels. These are quite similar to the errors in monolin-
gual experiments (see Section 5.1.1), showing that neither the monolingual model nor the
multilingual one learns the EntRel and NoRel labels properly.

• Discrepancies between languages expressing explicit relations: There is a performance
drop, albeit small, in the prediction of explicit relations, and our manual error analysis
shows that one of the reasons of performance loss is due to the intra-sentential relations
conveyed by converbial suffixes, annotated as a type of explicit connectives in Turkish. For
example, in sentence 14, despite the presence of the suffixal connective -se "if," the relation
is mislabeled as an implicit relation.

(14) Üç kişi versek, güç çevreleriz.
(If three of us come together, we could hardly encircle it.)

English and Turkish annotate discourse connectives belonging to different syntactic classes
(e.g., single words vs suffixes), and this could be one reason why the success of cross-lingual
transfer decreases in our experiments.

6. Summary and conclusion
Shallow discourse parsing is an important step toward discourse understanding and a prominent
contribution to NLU research in general. However, despite its importance, most of the existing
work is still confined to English, leaving the field largely understudied in the non-English con-
text. In this paper, we aimed to help remedy this problem by performing various sub-tasks of
the shallow discourse parsing pipeline on Turkish. Although our work falls short of developing
a full end-to-end parser, it constitutes the most exhaustive study on Turkish so far. Specifically,
we focused on a rather overlooked task—the classification of discourse relation realization types,
which focuses on understanding whether there is a discourse relation in a given text piece, and if
so, how it is realized. Besides, we also performed the well-known tasks of sense classification of
explicit and implicit discourse relations.

All tasks are modeled as multi-class text classification problems, and we used a Turkish BERT
model to encode the textual elements of a discourse relation. The results suggest that despite the
scarcity of the available training data, all tasks can be performed with a satisfactory accuracy, on
a par with the reported results on English. In order to gain insight into the DR realization type
classification decisions of our monolingual PLM, we first analyzed the results in terms of confu-
sion matrices. Then, using the same PLM, we extracted sentence embeddings by concatenating
the arguments of discourse relations and conducted a cosine similarity analysis over the textual
elements within DR realization types.

We finally performed a cross-lingual investigation to see if it is possible to leverage information
from the much bigger resource of the PDTB 3.0 on the DR realization type classification. In both
zero-shot and fully supervised cross-lingual transfer experiments, the performance deteriorated
compared to the monolingual baseline, suggesting that even smaller amounts of annotated data
in the target language are a better approach than relying on cross-lingual transfer.

Acknowledgements. We would like to thank our anonymous reviewers for insightful suggestions. Any errors that remain
are our own.
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A. PDTB 3.0 sense hierarchy

Figure A1. The leftmost column contains the Level-1 senses and the middle column contains the Level-2 senses. For asym-
metric relations, Level-3 senses are located in the rightmost column (Webber et al. 2019). While the TDB 1.2 and the PDTB 3.0
both assign senses from all three levels, the present work exploits Level-1 senses only.
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B. The classification model, method of fine-tuning and tests
As shown in Fig. B1, a neural network-based classification model is devised and magnified
up to 768 hidden layers with 184,345,344 parameters for the improvement of results by the
virtue of the GPU memory size, which is fully utilized. The first component of the model is
the Input layer that feeds the model with B (Batch Size) number of DRs (encoded by BERT)
in each iteration. The main body of the model is TensorFlow BERT, and the Main Layer is
TFBaseModelOutputWithPoolingAndCrossAttentions class, released in transformers library.k It
forms a base class for the model’s outputs, and it also contains a pooling of the last hidden states.
Its novelty is the cross-attention mechanism instead of self attention: here, after the attention soft-
max, the attention weights of the decoder’s cross-attention layer are used to compute the weighted
average in the cross-attention heads.

The class has two components: The Last Hidden State and the Pooler Output. The Last Hidden
State of the TensorFlow BERT Main Layer is a TensorFlow tensor of the shape B, M (maximum
sequence length (128)), and H (number of hidden layers (768)). It forms the sequence of hidden
states at the output of the last layer of the model. The BERT Main Layer is followed by the Pooler
Output, which is a TensorFlow tensor of the shape B and H. The Pooler Output is the last layer
where the hidden state of the first token of the sequence (classification token) is further processed
by a linear layer and a Tanh activation function. The Pooled Output is the drop out layer of shape
B and H, which collects the results for the softmax function. The final layer is the prediction layer
of shape n (number of classes) and B, which creates a discrete prediction for each DR by an argmax
function.

In all the experiments, the fine-tuning of the specific PLM involves the use of a supervised
learning approach, which is literally a training that results in a new PLM to be used for the
encoding of the test set. The other aspects of the experiment setup are as follows:

• The classification task is conducted separately for all DR realization types and their Level-1
senses.

• The input is pairs of arguments (Arg1 and Arg2), and the output is a label, such as a DR
realization type label or a sense label annotated in the data.

• The input dataset is formed by concatenating the text spans of arguments (Arg1, Arg2) to
form the “text” feature for BERT encoding.

• The DR realization type labels and the sense labels form the “category” feature of the input
for both training and test phases.

• Hyper-parameter tuning is done empirically by repeating the steps below:

1. Concatenate the binary arguments of a DR together with the discourse connective (if
available) into single lines.

2. Take 128 as the maximum input sequence length (the maximum number of words that
represent each DR). Tokenize that many number of words from the texts with the BERT
tokenizer and convert all into the indexes of the tokenizer vocabulary.

3. Pad or truncate the texts into the maximum length long vectors.
4. Create an attention mask and return a dictionary of outputs.
5. Fine-tune the PLM by training it with the Bert_MultiClass classification model, depicted

in Fig. B1, by using AdamW optimizer (Loshchilov and Hutter 2017) with the learning
rate of 5e− 5.

khttps://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_outputs.py
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Figure B1. The symbolic representation of the BERT MultiClass TensorFlow Model

6. The [CLS] token is used to represent the whole relation. It is classified by a dense layer to
reach the final prediction. As for the loss function, we used the cross entropy following
the common practice.

• The DRs in the test set are encoded with the fine-tuned model and classified by using the
same Bert_MultiClass classification model.

C. Kappa analysis over confusion matrices
Our monolingual and multilingual classifier results are presented in the form of confusion matri-
ces in Figs. C1 and C2 below. They provide valuable quantitative values, including the total
number of samples, precision, recall, and F1-Score values, but we also need an objective method to
compare the performance of our models. For this purpose, we use the Cohen’s Kappa Association
Coefficient (κ) (Landis and Koch 1977).

For more than five decades, κ has been used as an associating measure for providing an agree-
ment score between two observers on a nominal scale and its formula is built upon an N by k
observation matrix in which the elements nij represent the number of observers who assigned the
i-th case in the j-th class:

pj = 1
Nn

N∑
i=1

nij, Pi = 1
n(n− 1)

⎛
⎝

k∑
j=1

n2ij − n

⎞
⎠ (C1)

Po = 1
N

N∑
i=1

Pi, Pe =
k∑

j=1
p2j , (C2)
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Figure C1. The confusion matrix of DR realization type classification with the TDB 1.2 test set, where the model is trained
over TDB 1.2, and encoded with the fine-tunedmonolingual BERT

Figure C2. The confusionmatrix of DR realization type classification with the TDB 1.2 test set, where themodel is trained on
the custommultilingual dataset (TDB 1.2+ PDTB 3.0) and encoded with the fine-tunedmBERT
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Table C1. κ Coefficient of the confusion matrices in Figs. C1 and C2 calculated by Formula 4

Monolingual model (TDB 1.2) Multilingual model (TDB 1.2+ PDTB 3.0)

κ 0.6 0.575
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ Difference −0.025

where N is the number of all data samples annotated, pj is the proportion of all assignments to
the j-th class, Pi is the extent of agreement among the n observers for the i-th sample, Po is the
observed overall agreement, and Pe is the expected mean proportion of agreement due to chance
(Fleiss 1971).

So, the Kappa statistic is defined as the degree of actually attained agreement in excess of chance
(Po − Pe), normalized by the maximum agreement attainable above chance (1− Pe) (Grandini,
Bagli, and Visani 2020):

κ = Po − Pe
1− Pe

(C3)

The κ statistic reduces the ratings of two observers to a single number (Warrens 2014) by taking
into account a priori distribution that does not affect the distribution of the predictions among the
target classes. The bias between observers and the distribution of data across the categories (preva-
lence) affect κ in very complex ways (Byrt, Bishop, and Carlin 1993) and κ ’s ability to compensate
for random hits makes it an interesting alternative for measuring the success levels of classifiers.
Especially in working with unbalanced data such as ours, the κ coefficient can be helpful in com-
paring the performance of classification models. For inter-annotator agreement evaluation, the
range of κ coefficients extend from –1 to +1 such that –1, 0 and +1 indicate strong disagreement,
chance-level agreement and strong agreement, respectively. In the evaluation of classification over
confusion matrices, κ coefficients could be interpreted from very poor to perfect classification.

We calculated the κ coefficients of our monolingual and multilingual classification models
using the values in the confusion matrices as follows (Tallón-Ballesteros and Riquelme 2014):

κ =
∑m

i=1 CMii − ∑m
i=1 Cicorr .Cipred

N2 − ∑m
i=1 Cicorr .Cipred

(C4)

where

• CMii represents the diagonal elements of the confusion matrix,
• Cicorr is the number of correct samples in the i-th class,
• Cipred is the number of predicted samples picked for the i-th class.

We measured the κ coefficients of the values in confusion matrices in Figs. C1 and C2 by the
Formula 4. That is, we calculated a random accuracy by taking the sum of all multiplications of
the number of correct samples in the i-th class (Cicorr) with the number of each predicted sample
picked for the i-th class (Cipred). Then, in order to calculate a κ coefficient for each confusion
matrix, we divided the difference between the sum of all true positives (the diagonal elements of
the confusion matrix) and random accuracy into the difference between the square of the data
sample size in the test (N) and Random Accuracy.

The results are given in Table C1, showing a decrease of 0.025 in the κ coefficient of the
multilingual model.
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