
THE WIND-SOCK THEORY OF COMET TAILS 

John C. Brandt and Edward D. Rothe 

I. Introduction 

Type I or ionic comet tails on the average make an angle of a few 

degrees at the nucleus with the prolonged radius vector in the direction 

opposite to the comet's orbital motion. This fact was explained by 

Biermann (1951) as the aberration angle caused by the comet's motion 

in the outflowing solar wind plasma, and, as is well known, led to the 

discovery of the solar wind itself. Mathematically, the direction of 

the tail T is given by the vector equation 

— • — * — > 

T = w - V (1) 

—» —• 

where w is the solar wind velocity and V is the comet's orbital velocity. 

Equation (1) or simplified forms of it have been used extensively to 

derive properties of the solar wind (Belton and Brandt 1966; Brandt 

1967; Brandt, Harrington and Roosen 1973). The solar wind properties 

derived from ionic comet tails agree with directly determined properties 

in all cases where comparison is possible and, hence, the validity of 

equation (1) has been established. If the solar wind determines the 

gross shape of the entire plasma tail, what is this shape and how can 

it be calculated? 
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There are at least three conceptually distinct approaches to 

calculating the shapes on ionic comet tails. 

(1) The Mechanical or Bessel-Bredichin Theory. The details of 

this approach first treated by Bessel (1836) are widely known. A 

constant acceleration is assumed to act on the tail material, and in 

the calculations, this is included by using a reduced solar gravity. 

Bredichin defined Type I comet tails as syndynes with extra repulsive 

force (1 - [j.) « 18. Unfortunately, syndynes are tangent to the prolonged 

radius vector at the nucleus which is contrary to the observations. The 

tail curvature given by a syndyne with (1 - (j.) » 18 is probably not 

correct either and we return to this point below. 

(2) The Smoke Theory. Here, the force on the tail material is 

given by a momentum transfer depending on the relative velocity of the 

solar wind with respect to the tail material (see Belton 1965, Appendix 1). 

Hence, if r is the velocity of the tail material, we would need to 

include a force of the form 

F (w - ?') (2) 

-»/ 

and calculate the speed of the tail material r at all points. Our 

understanding of the solar wind interaction with plasma tails is 

insufficient to permit accurate calculation of the forces required on 

the smoke theory. This difficulty obviously applies to an entire class 

of theories requiring specific forces. Fortunately, knowledge of 

specific forces may not be necessary. 
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(3) Wind-Sock Theory. Here we do not need the forces accelerating 

the material along the tail. The magnetic field along the tail is used 

to channel the tail plasma and the location of the magnetic field lines 

in the tail is determined by the local momentum field in the solar wind. 

The magnetic field acts as a transparent wind sock. This viewpoint 

implies that the field lines are trapped in the cometary plasma around 

the nucleus long enough for them effectively to be fastened to the comet's 

head. The first explicit statement of this concept known to us was by 

Alfven (1957) who wrote: 

"The tail should no more be considered as gas moving 

freely in space. Instead the tail is a real part of the 

comet, fastened to the head by magnetic field lines." 

II. Theory 

The gross shape of an ionic comet tail on the wind-sock theory 

assuming constant solar wind speed can be calculated by applying the 

equation T = w - v pointwise along the tail. The basic geometry in 

the plane of the comet's orbit is shown in Figure 1. By projecting the 

components of solar wind velocity into the cometocentric coordinate 

system, we obtain the basic equation for the wind-sock theory, viz., 

„ -V sin V - w sin 0/ + w_, cos a cos i /cos b 
dy r i_jb . 
dx TT . . / / , 

w cos a - V cos Y + w sin a cos I /cos b r 0 

Many of the quantities used are illustrated in Figure 1. In addition, 

w and w . are the radial and azimuthal components of the solar wind 
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velocity. The angles i and b are the inclination of the orbit 

with respect to the solar equator and the heliographic latitude, 

respectively. If necessary, this equation could easily be generalized 

to three dimensions; in this case, the direction cosines at each point 

(dx, dy, dz) would be similarly determined. 

A simple analytical result can be obtained on the basis of some 

reasonable approximations. For a comet away from the sun (i.e., non-sungrazers) 

and near perihelion, a « 1 and w » cos Y, respectively, are good 

approximations. Then, equation (3) can be written 

, -V sin Y - w a + w, cos i'/cos b 
£ " * (4) 
dx w v 

r 

Equation (4) can be used to evaluate the coefficients in a Taylor's 

se r ies . If we l e t 

-y = A+Bx +Cx2 +Dx3 + . . . , (5) 

we find 

A = 0 

B = 
V sin Y " w.cos i'/cos b" 

0 w - V cos Y r 
(6) 

B C = + — 2r 

D = -B ir2 
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If we write 

X = x/r 
(7) 

Y = y/r 

where r is the comet's heliocentric distance, our final equation becomes 

-Y= BX + j x 2 + ... (8) 

for X ^ 0.3, the cubic term is 1.3% or less compared to the sum of the 

first two terms. 

The Taylor's series solution can be obtained without the approximations 

used to write equation (4) and is 

-Y = BX + 
r \ cos b / \ 

/\2 / 
sin Y cos i 
cos b r + w cos y) 

2 
(w - V cos Y) 

B * 2 

— + . . . (9) 

For most cases, the term in brackets in equation (9) is close to 1 and 

equation (9) reduces to equation (8). In doubtful cases, equation (9) 

provides a check on the applicability of the simple solution. 

Our approximate (but rather accurate solution) for steady solar 

wind conditions depends only on the quantity B which is the tangent of 

the aberration angle at the nucleus used in the earlier work. The 

calculated tails are nearly straight near the head, but show curvature 

well away from the head. The curvature arises from the geometrical 

divergence of the radial direction in a spherical coordinate system. 
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III. Applications 

First, we briefly reexamine the historical question of Bredichin's 

identification of the Type I tails with syndynes from the mechanical 

theory for (1 - |j) « 18. We have checked back to some of Bredichin's 

(1884) original work in which the observations (for the Great Comet of 

1882) were given. They show little or no tail curvature and we have no 

difficulty fitting the wind-sock theory with modern solar wind parameters 

(Figure 2). Bredichin's fit with (1 - |j) « 18 would not be bad in an 

rms sense, even though the aberration angle at the nucleus was in 

error on the average by « 5 and the curvature was too large. Visual 

observations of very bright comets in the 19th century may be a valuable 

untapped source of solar wind data. 

The wind-sock theory can also be applied to the geomagnetic tail 

(Figure 3). Behannon's (1970) observations gave an aberration angle 

of 3.1 and this is closely approximated by the solar wind parameters 

chosen. Figure 3 shows that observations would be required at tenths 

of A.U. from Earth to detect the effects of the tail curvature; such 

observations are unlikely in the near future. A comparison of an 

accurate computer integration of equation (3) with the Taylor's Series 

result of equation (8) is also shown. 

Figure 4 shows a photograph of Comet Kohoutek taken at the Joint 

Observatory for Cometary Research (JOCR) on January 19, 1974. We would 

anticipate no difficulty in explaining the gross shape of the main ion 

tail on the basis of steady solar wind conditions. However, it is 

important to note that our model may require comparison with averages 
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of observations if sufficiently steady solar wind conditions are not 

found. For example, Comet Kohoutek on January 20, 1974 (Figure 5) 

showed a large disturbance in the shape of the main tail. Our solution 

with B = 0.36 would be a reasonable fit to the tail shape except for 

the disturbance as is shown schematically in Figure 6. The disturbance 

could be caused by a high-speed solar wind stream. Note that the quiet 

conditions for B= 0.36 are somewhat unusual; a large negative value of 

w . is necessary to produce a reasonable w value. We suspect that 

changes in solar wind conditions produce changes in gross plasma tail 

shapes and that study of tail shapes may provide information on 

velocity structures in the solar wind. 

IV. Conclusions 

We have presented a simple version of the wind-sock theory of 

ionic comet tails. The simple model is consistent with all facts 

known to us. There are straightforward improvements that can be made 

for the case of steady solar wind conditions (e.g., inclusion of 

effects due to the tail's magnetic field). Consideration of the 

non-steady case are also of considerable interest. 
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DISCUSSION 

B. Jambor; If I understand you correctly your Bredikhin approach to the 
problem fails because you do not get enough curvature in the tail; I would be 
curious to know what a more precise approach like the Finson-Probstein, not 
relying on approximations of series expansion, would yield. 

J . C. Brandt: Yes. You know, I took that solely because for years that 
has been the definition of a Type 1 tail. These Type 1 and Type 2 appear in 
Bredikhin's papers, and I was curious as to how this got started. 

D. J . Malaise: The windsock model has the nice feature that you can 
compute the shape of the tail. Has it not the drawback that you have to drop the 
assumption that the tail lies in the orbital plane of the comet. Even small de
partures from the orbital plane makes the computation of the true direction of 
the tail quite indeterminate in some projection situations. 

J . C. Brandt: Now clearly, you can create such a comet. The Comet 
Mrkos was one such thing. It was at 90 degrees inclination, and that's going to be 
a problem. But with any care at all, i t 's not a problem. 

K. Jockers: Your windsock model is the model of a tail which can with
stand any tension along its axis but has to be in lateral momentum equilibrium. 
The small curvature of the tails is caused by a diverging but stationary solar 
wind flow field. How can this model be applied to an evidently non-stationary 
situation as on Jan. 20? 

J. C. Brandt: I think, if you stop and think about it, that you can make 
qualitative statements about what happened. 

K. Jockers: You know, that windsock has to respond to the changing 
non-stationary situation and that is completely different than that line you have 
calculated. 

J . C. Brandt: It is not necessarily completely different from the line, 
but it may be. But if you know how to calculate that, why don't you let me know 
and we'll do it. 
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