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Abstract

We present a method for detecting parking spaces in radar images based on convolutional
neural networks (CNN). A multiple-input multiple-output radar is used to render a slant-
range image of the parking scenario and a background estimation technique is applied to
reduce the impact of dynamic interference from the surroundings by separating the static back-
ground from moving objects in the scene. A CNN architecture, that also incorporates mechan-
isms to generalize the model to new scenarios, is proposed to determine the occupancy of the
parking spaces in the static radar images. The experimental results show very high accuracy
even in scenarios where little or no training data is available, proving the viability of the pro-
posed approach for its implementation at large scale with reduced deployment efforts.

Introduction

Worldwide urban population is projected to increase by nearly 2.5 billion people by 2050 [1],
which will ultimately lead to increased congestion and demand for a significant enhancement
of traffic management intelligence. One important building block toward the vision of Smart
Cities is a comprehensive multimodal predictive routing including all means of transportation.

When focusing on road safety and efficiency, the actual challenge is to improve the overall
usage of available public space by means of wide-area observation from the infrastructure side.
Therefore, multiple sensors are mounted overhead at, e.g. roadside light posts or building walls
to illuminate road and bike lanes, pedestrian crossings, or sidewalks beneath, with the aim of
generating a complete ‘global’ real-time map of public-space usage. Depending on the type and
required latency of information, these data may be processed locally or in a backend cloud ser-
vice, and supplied to road users via suitable 802.11/V2X or mobile links.

Parking-space occupancy detection with the aim of optimized directed routing is one appli-
cation supported by this new infrastructure. This problem has been addressed in the past by
means of various technologies, such as magnetic field sensors, video, or ground radar [2,3].
Radar technology has some notable advantages in this context like, for instance, reliability
under unfavorable light or weather conditions and respect for the privacy rights of road
users, since no images are recorded. In particular, the benefits of an overhead installation com-
pared with ground single-spot radars include the ease of installation without the need for clos-
ing of the road or the parking space, the capability of monitoring multiple spots per sensor and
the added value introduced by the possibility of simultaneously measuring through traffic,
detecting jams, counting, or classifying road users including pedestrians on sidewalks.

Recent developments in deep learning algorithms, provide an excellent opportunity to
leverage the potential of the sensors and augment the system with intelligent features for
smart-city applications. Specifically, convolutional neural networks (CNN), which have
become the state-of-the-art approach in classification tasks, can be used to interpret the
data acquired by the sensor and classify the radar images.

Although such architectures date back to the end of the 1980s [4], they did not receive
major attention until 2012, with the success of the architecture based on CNNs proposed
by Krizhevsky et al. for the Imagenet Large Scale Visual Recognition Challenge [5]. Ever
since, different variants of this concept have been proposed and applied in a wide variety of
fields, including computer vision, natural language processing [6], drug discovery [7], etc.

The key aspect of their success is their ability to extract features from a hierarchical struc-
ture comprising several layers in order to solve non-linear problems more accurately than pre-
vious approaches based on feature design. All of this is done with a reasonable number of
parameters, using local connectivity and shared weights.

Given their success, CNNs have also been considered for different applications in the radar
field with very good results, especially in recent years. Some applications include spectrum
sensing [8], target detection [9], automatic target recognition of SAR images [10], remote sens-
ing [11], and classification of micro-Doppler signatures in applications such as activity classi-
fication [12], hand-gesture recognition [13] or drone classification [14].
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In the following, we present an approach for occupancy detec-
tion of parking spaces using CNNs to classify images acquired by
a radar sensor. To minimize the effect of irrelevant targets present
in the scene, the system includes a background estimation algo-
rithm to improve the classification performance. By leveraging
the flexibility of CNNs, we introduce mechanisms to generalize
the trained model and adapt it to new scenarios with very high
accuracy and reduced training data. We present experimental
results obtained in real parking scenarios which show the viability
of our approach for its practical application.

Section “Radar sensor and parking scenario” describes the
radar sensor and the signal preprocessing, while Section
“Detection of stationary objects with background estimation”
presents the background estimation technique for detecting sta-
tionary objects. The CNN architecture and the model-training
technique are described in Section “Classifier based on convolu-
tional neural networks”. Finally, Section“Experiments and results”
presents an analysis of the results obtained in real parking
scenarios.

Radar sensor and parking scenario

A schematic representation of the parking scenario is depicted in
Fig. 1. The sensor is placed at a height h and a distance d from the
area of interest; it is tilted with a pitch angle α in the elevation
plane and perpendicular to the parking row. The sensor was
designed at Siemens RF Systems labs and consists of 12 transmit-
ters and 6 receivers forming a virtual uniform linear array of 72
virtual channels with a spacing of half a wavelength. The elements
present a wide radiation pattern in azimuth but narrow in eleva-
tion to form a range-azimuth slice. To avoid country-specific fre-
quency regulations, the radar operates at the 24 GHz ISM band,
which, in addition, allows for a relatively wide bandwidth and
the availability of highly integrated and mature radar ICs. An
FMCW waveform with a bandwidth of 250 MHz at 24.125 GHz
center frequency is used for each transmitter with a time-division
multiplexing scheme and a sweep duration of 115.75 μs. The aver-
age output power is 12 dBm EIRP, and the typical operation range
is 5–18 m. The multiple-input multiple-output (MIMO) config-
uration allows a reduction in terms of cost and size, since a filled
array would require a geometrical extension of 35.5λ (as opposed
to 20.5λ with the MIMO array) and the respective switching
mechanism with 72 physical channels. Fig. 2 shows a block dia-
gram of the hardware. The two-dimensional (2D) radar image
is rendered after a complete sweep through all the transmitters,
with an approximate period of 3 ms.

The frame rate of the sequence of images is set to four frames
per minute to assure enough time resolution while maintaining a
reduced throughput. In order to label the images of the training
set and validate the classification result with ground-truth data,
an IP camera is installed next to the sensor and synchronized
to capture snapshots of the scenario at the same frame rate.
The recorded data are transmitted via a point-to-point wireless
link to a remote back-end for processing.

During the installation of the sensor, a calibration process is
needed to obtain a local reference of the parking spaces with
respect to (w.r.t.) the sensor. This process is carried out by meas-
uring the coordinates of a corner reflector in different positions
and is performed without altering the traffic or the parking
scenario.

A slant-range image of the scenario is obtained by processing
the raw data acquired by the sensor. For every virtual channel,
each sweep is zero padded and windowed before performing a
2048-point fast Fourier transform with a Taylor window to obtain
the range coordinates. The lateral resolution is achieved with
digital beamforming using an azimuth sweep from − 60° to 60°
with 1024 steps and a Chebyshev taper function with a side-lobe
level of − 30 dB. These parameters were selected based on a criter-
ion to maximize the signal-to-noise (SNR), while maintaining a
constant side lode level and minimizing the variance of the main-
lobe beamwidth across the azimuth span. The range-azimuth
image is transformed into Cartesian coordinates, and the resulting
image is resampled and interpolated in order to display a uniform
rectangular grid in the x and y axes. During this transformation,
the images are strongly oversampled w.r.t. the theoretical range
and azimuth resolution. This is important because it allows the
CNN to use several successive convolutional layers and downsam-
pling operations to extract meaningful features.

Detection of stationary objects with background estimation

The average parking period can range from a few minutes to sev-
eral hours depending on the nature of the scenario under consid-
eration. Therefore, if a frame rate of the order of a few frames per
minute is selected, the parking scenario can be considered static in
the long term. This assumes that moving objects in an urban
scenario, like passing traffic, a car during a parking maneuver
or pedestrians, do not typically remain in the scene for more
than a few frames.

Nonetheless, the appearance of such objects within the field of
view of the sensor generates significant artifacts in the radar
image of an otherwise static scenario. As is well known, the radial
component of the velocity of moving targets w.r.t. the radar

Fig. 1. Schematic representation of a downfire radar installation for parking
monitoring.

Fig. 2. Block diagram of the switched MIMO radar sensor.
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generates a Doppler shift that causes substantial alterations in the
radar image [15]. This is due to the additional phase shift that is
unaccounted for in the beamformer, and in a smaller scale, in the
range dimension. These distortions have a big impact on the per-
formance of the classifier, which is trained under the assumption
of a static scenario, to minimize the amount of training data. For
this reason, a background estimation technique is introduced to
detect and track the regions of the image corrupted by this phe-
nomenon, so that only those regions of the image that are
regarded as static are processed, while the rest are not considered
for classification.

We isolate the unwanted regions in the sequence of radar
images with background estimation techniques that are similar
to those widely used in computer vision for video-based applica-
tions [16]. While spatial methods for background estimation ana-
lyse the image as a whole or blockwise by exploiting the spatial
correlation of neighboring pixels, a temporal approach based on
the statistical analysis of the history of each pixel is more suited
for this application, given its robustness when dealing with very
localized changes in the image [17]. Although the assumption
of statistical independence between pixels does not accurately
reflect the properties of the image, it is very beneficial when ana-
lyzing different regions of the image separately.

For a given pixel (x, y) of the image, at a time t, the probability
of finding the intensity value XT = I(x, y, t) for a known pixel his-
tory χT = {Xt, …, Xt−T} is given by P(Xt |χT), and based on this
probability, the pixel is labeled as background or foreground.
The evolution of the intensity values of each pixel along the
time dimension is modeled with a Gaussian distribution. While
a Gaussian mixture model is normally used in video applications
to model different lighting conditions, the properties of the radar
image makes the single Gaussian model more robust in terms of
detection of foreground objects. After an initialization process to
generate the model, the intensity value of each pixel in a new
frame is checked against the model.

If a pixel does not match the model, it is labeled as foreground.
A pixel matches the model if the following condition holds:

Xt − mn,t

sn,t
≤ Tmodel, (1)

where μn,t is the mean value of the n-th pixel at time t, σn,t is the
standard deviation and Tmodel is the threshold which determines
the sensitivity to foreground objects. A heuristic search for the
value of this parameter shows that a typical value of Tmodel = 2.5
represents a good trade-off between the number of discarded
images and the accuracy of the classifier.

In order to adapt the model to the scenario dynamics, if a pixel
matches the background model, it is updated according to a learn-
ing rate defined by the parameter α = 1/N, where N is the number
of samples to compute the distribution parameters, typically
N=12 frames. An online update scheme is deployed, as formu-
lated in (2) and (3) to avoid buffering the last N samples of
each pixel, thus significantly reducing memory requirements.

mt =
(N − 1)mt−1 + xt

N
, (2)

st =
���������������������������������������
(N − 1)s2

t−1 + (xt − mt−1)(xt − mt)
N

√
. (3)

The proposed online approach allows the model to update in
real time so that static objects fade into the background according
to the time constant given by 1/α. This applies to newly parked
cars that are integrated in the background model after a transient
period and are considered static. The value of the time constant
1/α defines how fast the response time of this transient period
elapses and depends on the scenario dynamics.

When a new frame is processed, the number of pixels labeled
as foreground within each parking space is computed. If the per-
centage of the area with foreground pixels exceeds a given thresh-
old (typically 25%), the parking space is discarded and is not
classified.

Figure 3 depicts two typical scenes in a parking scenario: a sta-
tic scene and a car during a parking maneuver. The background
estimation process assures that the frames of interest contain
only the information corresponding to static regions in the scen-
ario, such that foreground objects, i.e. a parking space whose area
contains more than 25% of pixels labeled as foreground due to
short-term changes, is not considered for classification.

Classifier based on CNN

CNN architecture

After the background estimation process, the stationary images
are fed into a binary classifier based on a CNN.

A CNN architecture is composed of several layers, such that
higher layers represent higher levels of abstraction, which are cap-
able of learning discriminative aspects from the raw input data
without handcrafting-specific features for a particular problem
[18]. In general, the structure of a CNN consists of several

Fig. 3. Comparison between a static scenario (a) and a scene with a car during a
parking maneuver (b). The radar image presents important distortions in the
dynamic scenario (d) as opposed to the radar image in the static scenario (c). In
the foreground masks (e,f), light blue represents the pixels that match the back-
ground model while dark blue represents changes in the scenario. The parking
spaces with more than 25 % of foreground pixels (marked with an exclamation
mark in (d) and (f)) are not considered for classification.
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functional blocks. Convolution filters are applied to extract local
features from the input images. The filter size determines the size
of the receptive field, and the number of filters represents the num-
ber of features to be extracted. A non-linear activation function,
that activates when a given pattern is detected, is normally used.
Pooling layers, which when combined with the convolutional filters
obtain invariant translational and rotational features, are intro-
duced to reduce the dimensionality. In a classification problem,
the upper layers of the network often form a fully connected
layer that links all the nodes in the previous layer with the class
scores of the output layer using a softmax activation function.

Several architectures were tested during the experiments and
evaluated in terms of classification accuracy and training time.
A small CNN with three convolutional layers was selected due
to the limited size of the training data. We used three convolu-
tional layers with 10, 6, and 200 convolution filters, with dimen-
sions 9 × 9, 5 × 5, and 6 × 6 pixels, respectively. After the first and
second convolutional layers, a 2 × 2 max pooling layer was intro-
duced, followed by a ReLU (rectified linear unit) activation func-
tion. These functions have proven to provide better convergence
results compared with other functions, such as sigmoid or tanh
functions [5]. Finally, a fully connected layer is introduced to con-
nect all the nodes in the last layer with two output classes, i.e. free/
occupied parking space. For the output layer, we used a binary
softmax regression that allows the output of each class (K = 1,
2) to be interpreted as a probability:

P(y = 1|x;w)
P(y = 2|x;w)

( )
= 1∑K

k=1
exp(wTx)

exp(wT
1 x)

exp(wT
2 x)

( )
, (4)

where x represent the outputs of the previous layer, and w =
(w1, w2) is the matrix with the weights of the fully connected
layer.

The cost function associated with this distribution is the binary
cross-entropy loss, which is the function to minimize during the
training stage. A regularization scheme was introduced by adding
a weight decay term to the cost function to penalize large param-
eter values in order to reduce overfitting (λ = 0.0005):

J(w) = −
∑
m

∑
k

(yi == k) log exp(wT
k x)∑

j exp(wT
j x)

+ l

2

∑
k

∑
n

w2
k,n,

(5)

where ( yi = =k) is 1 when the label of the i-th training sample
belongs to the class k and 0, otherwise.

Two dropout layers were introduced after the pooling layers
for the same purpose: they randomly ignore connections between
nodes with a probability of 50% during training. This is to prevent
the formation of strong fixed connections derived from the par-
ticular characteristics of the training set, thus forcing the model
to learn robust features that generalize better to new data. The
CNN architecture is depicted in Fig. 4.

Training the model

The network is trained with experimental measurements from real
parking scenarios. After generating the slant-range image of the
scenario, the ground-truth coordinates of the parking lot w.r.t.
the sensor are obtained during calibration, and the area in the
image coordinates corresponding to each parking space is cropped
and saved individually to train the network. As CNNs belong to a
family of algorithms called supervised learning, the training stage
requires labeled data. The image of each parking space is manually
labeled according to its occupancy status (one free / two occupied).
This is done for network training and results-analysis purposes.

We use an open-source framework for MATLAB® based on
Caffe to implement the CNN [19]. During the training stage,
the softmax layer is replaced by the binary cross-entropy loss
function. An implementation of the backpropagation algorithm
computes the gradient of the error w.r.t. the network parameters
(i.e., the coefficients of the kernels in the convolutional layers and
the weights of the fully connected layer), and a mini-batch sto-
chastic gradient descent is used to minimize the cost function
with a batch size of 50 images. To speed up convergence and
reduce oscillations, the momentum method is applied with a
weight of 0.9, while the learning rate is set to 0.001.

Generalization of the model

One of the drawbacks of applying CNNs to classify radar images
is that, in general, there are not many labeled images available to
train the network. Training a network of several layers with a
reduced dataset often leads to parameters that overfit to the train-
ing set, thus degrading the cross-validation performance when
evaluating test data from new scenarios. Clearly, to optimize the
performance of the classifier for a given scenario, the network
should be trained either with a very large and heterogeneous data-
set or with training data from the specific location. Either way, the
cost of acquiring labeled data for network training is very high in
terms of time and labor, which renders the process unfeasible
when deploying the system at a large scale. Furthermore, a chal-
lenge of this application is to account for the variability between
scenarios, given the difficulty derived from the physical availabil-
ity of mounting points, or permission for installation granted by

Fig. 4. Architecture of the CNN. The radar image of a single parking space is the input to the CNN. The two output classes correspond to the occupancy state of the
parking space (free/occupied).
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different authorities or operators. While some generic CNN
mechanisms try to minimize the impact of reduced training
data by imposing architectural or algorithmic restrictions (drop-
out, regularization, etc.), other mechanisms based on the specific
domain knowledge for the particular application can be incorpo-
rated in order to overcome the training-data challenge, and apply
a general solution which makes the process viable from an eco-
nomical perspective.

Dataset normalization

A critical preprocessing step before training the network consists
of normalizing the intensity value of the training set. This allows
the network to omit accidental features derived from the absolute
backscattered intensity in a particular scenario and learn instead
the characteristic geometric patterns in the 2D distribution of
the power reflected by the object to be classified. By subtracting the
mean value of the complete training set from each individual
image, the power of the images is centered around zero. In a
test scenario, the new images are zero-centered as well with the
mean value of the images of the new scenario over a set period.
The benefits of such a process are twofold. On the one hand,
the variability between different scenarios is accounted for by
minimizing the impact of differenft sensor setups, enforced by
the particular requirements of a given scenario (the distance d
to the parking row, the height h of the sensor and the pitch
angle α). On the other hand, it reduces the effect caused by the
directivity variation of the radiation pattern at different azimuth
angles, which causes the images of the parking spaces near the
boresight of the array to exhibit higher intensity than those at
the outer limits of the azimuth field of view. In addition, this
scheme provides the option of adapting to scenario variations
over time (e.g. change of humidity, temperature, or nearby vege-
tation, which cause a certain drift of signal characteristics in the
long term), by updating the mean value to zero-center the data.

Data augmentation

Given the sensor downfire orientation and the antenna array sym-
metry in the yaw axis, the imaging process presents a symmetry
axis in the azimuth dimension, providing symmetry invariance
to the classifier, such that its performance remains constant
when the image is mirrored w.r.t. the range dimension.
Although the CNN architecture could be modified to enforce
such invariance, a method for artificially augmenting the dataset
is much simpler, since it only requires understanding of the gen-
erative process of the data rather than the recognition process.
Hence, the size of the training dataset can be artificially augmen-
ted by flipping the images on their respective vertical axes in a
random subset of each batch during the backpropagation algo-
rithm, and increasing the number of epochs. This operation is
performed on 50% of the batch for each iteration.

Fine-tuning the model with a reduced dataset

As explained above, the option of training a network ad hoc with
scenario-specific data is unrealistic in an industrial setting because
a large dataset with thousands of labeled images of each scenario
from different times of the day is required for optimal and stable
sensor operation. Nevertheless, the performance of the classifier
can easily be improved using a very small set of scenario-specific
labeled data, provided that a model has been trained and tested

with heterogeneous data. This can be done by loading a pre-
trained model with sufficient data, and fine-tuning the weights
by re-training the network with the reduced dataset for the spe-
cific scenario. The performance of this approach is discussed in
Section “Scenario B versus fine-tuned model of scenario A”.

Experiments and results

The experiments were carried out in two different parking scenarios.
The installation parameters in each scenario are listed in Table 1.

Scenario A

A first network is trained only with the data obtained in scenario
A, which is an 80-m-long parking row. In this scenario, the region
of interest in the radar image is restricted to a lateral coverage of
seven parking spaces (roughly y≈ ±9 m). We performed four sets
of measurements along the whole parking lot in sub-scenarios of
this size at different times on different days to introduce some
variability into the model. The parameters d, h, and α were
kept constant, except for instrumental errors caused by installing
the sensor at different positions on different occasions (ed < 40
cm, eh < 40 cm and eα < 2°). For each set of measurements, the
ground truth coordinates of the parking row w.r.t. the sensor
were obtained during calibration, and the area in the image coor-
dinates corresponding to each parking space is cropped and saved
individually to train the network.

Each set of measurements takes 2 hours, and the total number
of labeled images (after removing the non-static images detected
with the background estimation technique) is about 11 000. We
select a random subset of 2750 images (25 % of the whole set)
to train the network. Although a limited amount of training
data was used in the experiments, the tests show the viability of
the proposed approach. Convergence was reached after 50
epochs and the training time was 370 s. Although considerable
computational effort is required to train the network, especially
if there is a large amount of training data involved, an image is
classified in a single forward-pass through the network, whose
parameters are pre-calculated. Hence, the complete detection
operation can be run in real time: the scenario image is rendered
at the required frame rate, the background is estimated, and the
images for each parking space are then classified in the CNN.
Fig. 5 depicts an example of the detected occupancy after
classification.

The performance of the classifier is assessed in terms of its clas-
sification accuracy (i.e. the ratio between the number of test images
correctly classified and the total amount of labeled images), false
positive rate, and false negative rate. The average classifier accuracy
for the tested scenarios was 99.1%. Table 2 compares the results
before and after using the background estimation technique, show-
ing an improvement of about 3% when the images that contain
foreground objects are not considered for classification. Fig. 6
shows the classification error for each parking space within the

Table 1. Parameters of scenarios A and B

Scenario A Scenario B

Distance d 18 m 7.5 m

Height h 5 m 4 m

Pitch angle α 18° 30°
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area of interest for one of the test scenarios with and without back-
ground estimation. The error distribution when no background
estimation is applied depends on the dynamics of the particular
scenario: there could be moving objects in random parking spaces,
for example. When background estimation is enabled, however, a
pattern emerges in which the error increases for those parking
spaces further away from the boresight of the antenna. This is
due to a reduction in the SNR caused by the loss of directivity of
the beampattern at large scan angles.

The rate of images discarded after the background estimation
due to the artifacts caused by the Doppler effect, due to traffic and
cars during a parking maneuver, was 5% in this scenario. It is
worth pointing out that the ratio of the classifier accuracy and
the number of discarded images greatly depends on the scenario
dynamics, in such a way that in scenarios with heavy traffic, the
rate of discarded images could increase to maintain a given clas-
sification accuracy level.

Scenarios B versus A

We evaluate the model’s potential for generalization by applying
the network trained on scenario A to the measurement data
obtained on scenario B with a different sensor setup (Table 1).
The number of available parking spaces in this scenario is limited
to six cars; hence, the coverage of the radar image is reduced
accordingly. We use a fixed installation and record the data
over a 90-min period from the exact same location at different
times on four different days.

In order to assess the generalization performance obtained
with the mechanism of artificially augmenting the data by mirror-
ing a random subset of each batch, we analyze the data when the
network is trained without this mechanism. Table 3 indicates that
the average accuracy obtained on scenario B with the model of
scenario A without data augmentation is reduced to 90.3%. As
expected, the accuracy is lower, as scenario A, where the network
was trained, differs quite substantially from scenario B. However,
when the network is trained with an artificially increased training
set, we achieve an average improvement in classification accuracy
of ∼ 2.4%, which is consistent across the different sets of measure-
ments recorded on scenario B.

Scenario B versus fine-tuned model of scenario A

Finally, we analyze the classification performance when using a
pre-trained model with heterogeneous data and fine-tuning the
network with a reduced set of scenario-specific data, as discussed
in Section “Classifier based on CNN”.

Specifically, we use the network for model A, which was
trained with 2750 labeled images from four different days, and
fine-tune the model by running backpropagation with a dataset
of only 275 images from scenario B. The new dataset represents
a 10% of the amount of images used to train the general model
A. Due to the hierarchical representation of the features in a
CNN, the lower layers should be practically unchanged after fine-
tuning, while the weights of the upper layers are updated with the
characteristics of the new dataset. To improve convergence in this
context, the learning rate of the first layer is reduced from 0.001 to
0.0001.

The results from these experiments are shown in Table 4 and a
snapshot of scenario B is depicted in Fig. 7. The accuracy obtained
when the network for scenario A is fine-tuned with the reduced

Table 2. Scenario A

Without BS with BS

Accuracy(%) 95.8 99.1

False positive rate(%) 6.9 1.8

False negative rate(%) 3.1 0.5

Discarded positions(%) 0 5.1

Table 3. Scenarios B versus A

No data augm. Augmented data

Accuracy(%) 90.3 92.7

False positive rate(%) 21.2 16.3

False negative rate(%) 2.5 2.6

Discarded positions(%) 12.2 12.2

Fig. 6. Classification error before and after background estimation.

Fig. 5. Image of scenario A and the corresponding radar image after classification.
Red markers indicate occupied parking spaces, while green ones show free spaces
based on the classifier scores.
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dataset from scenario B is 96.1%. If, however, the network is
trained with such a reduced dataset from scratch, i.e. randomly
initializing the weights without pre-loading the network of scen-
ario A, the accuracy is reduced to 93.5%. This technique demon-
strates the viability of generalizing a pre-trained model for new
scenarios to very high accuracy levels without the need for acquir-
ing and labeling a big set of training data from each scenario on
different days. The cost of deployment in new scenarios with dif-
ferent environmental settings is thus significantly reduced.

Conclusion

We presented a method for monitoring parking spaces with a
MIMO radar sensor in a downfire configuration. Foreground
moving objects are detected and removed using a background
estimation technique. The static background is classified using a
CNN to determine the occupancy status of each parking space
in real time. We introduce mechanisms to generalize the model
for new scenarios by artificially augmenting the dataset and fine-
tuning a pre-trained model with a reduced set of labeled data.
Experimental measurements of different parking scenarios were
presented showing very high accuracy and generalization capabil-
ity after foreground objects have been removed, which shows the
viability of the approach for its practical application. Future work
will focus on rigorously testing these findings in already existing
real-life pilot installations.
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