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Summary
A variety of established tools are available for agricultural sustainability assessment at global, regional, and
farm geographical scales. However, no assessment has been reported in research literature to indicate their
ability to provide insights about the most sustainable cropping system at plot level or experimental unit.
Despite the environmental and social importance of soil in agricultural systems, many of the sustainability
assessments use few or no indicators related to soil properties or processes. Hence, we propose a
sustainability assessment methodology oriented to soil-associated agricultural experiments (SMAES) by
defining its parameters through simulations and testing the methodology with real data from a fertilization
tomato experiment with five treatments: chemical control (CR); organic control (OR); and organic:
chemical ratios (OR) of 25:75, 50:50, and 75:25. The distance from the maximum, principal component
analysis, and product of weighted indicator techniques were chosen for normalization, weighting, and
aggregation in a single index process, respectively. Applying the SMAES methodology, the sustainability
level of the treatments followed this sequence: CR (0.95) > O25:C75 (0.73) > O50:C50 (0.60) > O75:C25
(0.55)>OR (0.45). The proposed SMAES methodology allows soil researchers to define the best treatment
through the interaction of the environmental, social, and economic dimensions of agricultural systems.
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Introduction
The goal of most applied experimental research in agricultural soil management is to find the
treatments that cause the highest crop yield. However, most cropping system improvements and
adaptations are originated by farmers rather than experimental stations or test plots (Adhikari
et al., 2018). This is because the research knowledge transferred to farmers often does not consider
the multiple factors influencing agricultural systems. Experimental research recommends that the
treatments should be evaluated on statistically significant differences of a few response variables.
However, the technical optimum usually does not correspond to the economic optimum
(Lanfranco and Helguera, 2006), and the interaction among the environmental, social, and
economic dimensions may not be considered in experiments based on yield evaluations and
environmental impact or profitability variables (e.g., Gu et al., 2018; Wang et al., 2018).

Pretty et al. (2010) examined strategies to establish a consensus in developing and testing
metrics of sustainability in different agricultural systems that are appropriate and acceptable
to several agroecological, social, economic, and political contexts. To perform agricultural
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sustainability assessments, tools (metrics) have focus on evaluating the sustainability of traditional
production systems already established (e.g., Afshar and Dekamin, 2022; Akinnifesi et al., 2006;
Astier et al., 2011; Moore et al., 2014; Starkl et al., 2022; Uphoff, 2003; Van Asselt et al., 2014;
van der Vossen, 2005). However, to date, there are no tools to assess the sustainability of the
treatments (cropping systems) evaluated through experimentation. Deytieux et al. (2016) stated
that sustainability assessments should be oriented to new crop alternatives developed through
experimentation or modeling. These assessments will allow farmers to adopt the recommen-
dations and leading public science to become proactive rather than reactive (Pretty et al., 2010).

Considering that key soil functions in the ecosystem allow essential provision, regulation,
culture, and support services (Adhikari and Hartemink, 2016) and the impact of production
strategies depends on the soil, many of the agricultural sustainability assessments use few or no
indicators related to soil properties or processes (e.g., Gómez-Limón and Sanchez-Fernandez,
2010). According to Van Asselt et al. (2014), no more than one indicator per dimension is
necessary to carry out agricultural sustainability assessments. In this context, there may be a case
where no indicator related to the soil is evaluated. However, Aloui et al. (2022) stated that soil
researchers need a tool to estimate the level of sustainability of experimental treatments through a
quantitative index.

The objective of this work was to propose the Sustainability Assessment Methodology Oriented
to Soil-Associated Agricultural Experiments (SMAES) that estimates the sustainability level
through a quantitative index. This methodology has three essential features: (i) it can be adapted to
experiments related to soil management with different spatial, temporal, and measurement
characteristics; (ii) it can be used in experiments with broad or limited access to indicators; and
(iii) it is quantifiable, in terms of sustainability index for the treatments under consideration.

To know the functionality of SMAES in possible scenarios, we built SMAES from hypothetical
data and tested it with data from a real experiment.

Materials and Methods
Normalization, weighing, selection, and aggregation techniques with hypothetical data

The most common process to build sustainability indices includes normalization, weighting, and
aggregation (Gomez-Limón and Sánchez-Fernandez, 2010). According to that, we evaluated
different techniques for each of those processes to find the best fit with SMAES. Four
normalization techniques were evaluated according to Freudenberg (2003), as shown in Table 1.

Table 1. Normalization and aggregation techniques evaluated

Technique Abbreviation Equation

Normalization Standard deviation from the mean N1 V0 � V�Vx
Sd

Distance from the maximum N2 V0 � V
MA

Distance from the average N3 V0 � V
Vx

Distance from extreme observed
values

N4 V0 � V�Vmin
Vmax�Vmin

Aggregation Weighted sum of indicators ISS ISS �
Pk�n

k�1
Wk × Ik

Product of weighted indicators ISP ISP � Qk�n

k�1
IkWk

Multicriterion function ISλ ISλ � 1 � λ� ��Mink Wk�Ik� �� � 	 λ� Pk�n

k�1
Wk�Ik

V´ = normalized value, v = observed value to normalize, vx = average of all observed values, Sd = standard deviation, MA = more
sustainable value of the data set, vmin = minimum observed value, vmax = maximum observed value, ISS = sustainability index for
weighted sum, Wk = weight associated to the indicator k, Ik = standard value of indicator k, Mink (Wk * Ik) = weighted and normalized
minimum value for the set of indicators. Five values of the compensation parameter are considered (λ= 0.00, 0.25, 0.50, 0.75, and 1.00).
Twenty randomized values (v), from 93 to 140, were used to the normalization simulations.
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The techniques for allocating weights to the indicators can be divided into positive and
normative: Positive or endogenous are techniques that use statistical procedures. Principal
components analysis (PCA) is one of the most used. In this sense, PCA approach suggests
computing the sum of the square coordinates of an indicator k in each eigenvector (λj) multiplied
by the percentages of total variability (fj) explained by each principal component (PC) used as a
weighting factor or weighting (Wk) to rate the indicators (Rossi et al., 2009), as shown below.

Wk �
XPC
j�1

λj × PCj (1)

in which Wk corresponds to each attribute. Each Wk indicates the weight of the selected indicator
representing the attribute. The higher the Wk, the more important the contribution of the attribute.

Normative or exogenous techniques try to allocate different weights to the indicators as a
function of expert knowledge, assuming sustainability as a social construction (Baush et al., 2014;
Gómez-Limón and Sanchez-Fernandez, 2010; OECD-JRC, 2008).

The indicator selection method developed by Monsalve and Henao (2022) was included in
SMAES. In summary, this method divides the indicators according to their hierarchy (raw,
baseline, and core indicators). The minimum indicators set (MIS) is defined according to the
compliance of the different types of criteria (mandatory, main, alternative non-mandatory, and
correlation) and the score obtained through a checklist. Indicators in the MIS represent each
attribute and dimension in SMAES.

Through simulations of a range of real possible responses, three aggregation techniques were
evaluated (Table 1) to determine which one has the best representation of reality. To perform the
simulations, the three dimensions of sustainability (Ik) were assumed with three different possible
values each, as follows: I1= 0.00, 0.33, 1.00; I2 = I3= 0.10, 0.33, 1.00. Each possible combination
of Ik was contrasted with a weight vector (Wk), with four combinations of factors (W1,
W2, W3) = {(0.33, 0.33, 0.33), (0.1, 0.1, 0.8), (0.1, 0.8, 0.1), (0.8, 0.1, 0.1)}. Each value of Wk is
assigned to each value of Ik, building four scenarios with 27 combinations IkWk each (Table 2).

Evaluation of SMAES with experimental results

The study was carried out in the Bio-Systems Center of the Jorge Tadeo Lozano University,
located in Chía (Cundinamarca, Colombia). A randomized complete block design with five
treatments and 15 experimental units (EU) – three repetitions per treatment - was established.
Five treatments or mixtures of organic and chemical fertilization in different proportions were
evaluated, as follow: chemical control (CR); organic control (OR); organic:chemical ratio
25%–75% (O25:C75); 50%–50% (O50:C50); 75%–25% (O75:C25). One-hundred percent organic
pre-planting fertilization formula was composed of: 2600 g m−2 of chicken manure compost,
180 g m−2 of phosphoric rock, and 6 g m−2 of manganese sulfate. One-hundred percent chemical
pre-planting fertilization formula was composed of: 50 g m−2 of ammonium sulfate, 65 g m−2 of
diammonium phosphate, 4 g m−2 of manganese sulfate, and 0.5 g m−2 of boron.

SMAES requires the construction of one production system inventory (PSI) for each EU. With
the PSI, some environmental and social indicators and all economic indicators are estimated. In
the PSI, all agricultural exploitation and resource consumption data (inputs, labors, and outputs)
were collected (data shown in supplementary material). Regarding the indicators management,
Table 4 shows the indicators selected (core indicators) for analysis with SMAES. Characteristics of
all raw indicators can be seen in Monsalve and Henao (2022). To define the core indicators, we
adopted the method for selection of indicators proposed by Monsalve and Henao (2022). In
summary, this method divides the indicators according to their hierarchy (raw, baseline, and core
indicators). The MIS is defined according to the compliance of the different types of criteria
(mandatory, main, alternative non-mandatory, and correlation) and the score obtained through a
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Table 2. Simulations designed to find the best aggregation technique

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Wk

W1 W2 W3 W1 W2 W3 W1 W2 W3 W1 W2 W3

0.33 0.33 0.33 0.1 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.1

I1W1 I1W2 I1W3 I1W1 I1W2 I1W3 I1W1 I1W2 I1W3 I1W1 I1W2 I1W3

Ik I1 0.0 0.33 0.3 0.33 1.0 0.33 0.0 0.1 0.3 0.1 1.0 0.8 0.0 0.1 0.3 0.8 1.0 0.1 0.0 0.8 0.3 0.1 1.0 0.1
0.3 0.33 1.0 0.33 0.0 0.33 0.3 0.1 1.0 0.1 0.0 0.8 0.3 0.1 1.0 0.8 0.0 0.1 0.3 0.8 1.0 0.1 0.0 0.1
1.0 0.33 0.0 0.33 0.3 0.33 1.0 0.1 0.0 0.1 0.3 0.8 1.0 0.1 0.0 0.8 0.3 0.1 1.0 0.8 0.0 0.1 0.3 0.1

I2W1 I2W2 I2W3 I2W1 I2W2 I2W3 I2W1 I2W2 I2W3 I2W1 I2W2 I2W3

I2 0.1 0.33 0.3 0.33 1.0 0.33 0.1 0.1 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.1
0.3 0.33 1.0 0.33 0.1 0.33 0.3 0.1 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.1
1.0 0.33 0.1 0.33 0.3 0.33 1.0 0.1 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.1

I3W1 I3W2 I3W3 I3W1 I3W2 I3W3 I3W1 I3W2 I3W3 I3W1 I3W2 I3W3

I3 0.1 0.33 0.3 0.33 1.0 0.33 0.1 0.1 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.1
0.3 0.33 1.0 0.33 0.1 0.33 0.3 0.1 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.1
1.0 0.33 0.1 0.33 0.3 0.33 1.0 0.1 0.1 0.1 0.3 0.8 1.0 0.1 0.1 0.8 0.3 0.1 1.0 0.8 0.1 0.1 0.3 0.1
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checklist. Indicators in the MIS represents each attribute and dimension in SMAES (Monsalve and
Henao, 2022).

Results
Evaluation of SMAES with hypothetical data: selection of normalization method

After comparing the four normalization techniques, the distance from the maximum (N2) was
chosen to be used in SMAES. Standard deviation from the mean (N1) and distance from the
average (N3) generate values outside the established range (0 to 1). Distance from extreme
observed values (N4) assigns a value of 0 to the lowest observed value. This causes inconsistences
with the aggregation technique since zero implies absolute unsustainability and should not occur
even with the lowest observed values (Fig. 1).

Evaluation of SMAES with hypothetical data: selection of weighing technique

Positive or endogenous techniques (e.g., PCA) are widely used showing a good fit for the plot or
EU scale (Dong et al., 2015; Gómez-Limón and Sanchez-Fernandez, 2010; Rossi et al., 2009). PCA
is a method that allocates weights to attributes objectively (Rossi et al., 2009), which is
advantageous for the geographical evaluation scale (plot or EU) of the SMAES. At this scale, the
three dimensions of sustainability depend on agricultural activities rather than government
policies. Normative or exogenous technique requires surveys to obtain the opinion of experts. In
this sense, the researcher should (i) define the minimum viable and reliable number (statistically)
of experts to contact, (ii) design the survey, (iii) rely upon experts to respond, (iv) rely upon
researchers to both carry out the survey, and (v) analyze the results. This survey technique works
well for large-scale studies whose results impact a considerable population, but it can be very costly
and unfeasible to carry out at the plot or experimental unit scale.

Evaluation of SMAES with hypothetical data: selection of aggregation technique

The performance of ISP and ISλ0.00 with the four possible weighting forms revealed the result is
zero when at least one of the Ik is 0, regardless of Wk (Fig. 2). Unlike ISP and ISλ0.00, the ISS and
ISλ1.00 indices (which generate the same result) tend to compensate for the effect of
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1.5

2.0

2.5
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Figure 1. Comparison of normalization techniques: N1 = standard deviation from the mean; N2 = distance from the
maximum; N3 = distance from the average and N4 = distance from extreme observed values; v = observed values.
Average= 112; standard deviation= 12; maximum= 140; minimum= 94. Horizontal red line allows visualization of those
normalization techniques that generate values above one (1).
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(a)

(b)

(c)

(d)

Figure 2. Simulation of indicators (Ik) and weights. (a) W1 = W2 = W3= 0.33, (b) W1= 0.1, W2= 0.1, W3= 0.8, (c) W1= 0.1,
W2= 0.8, W3= 0.1, (d) W1= 0.8, W2= 0.1, W3= 0.1 for the proposed sustainability indices (IS): ISS = weighted sum of
indicators, ISP = product of weighted indicators, and ISλ = multicriteria function for λ= 0.00, 0.25, 0.50, 0.75, and 1.
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indicators with values close or equal to zero. It is important to define the notion of ‘compensation’.
In this context, compensation is the action of masking the effect of an indicator, attribute, or
dimension that is outside the optimal range with another that is within the optimal range. For
instance, for W1–2–3 = (0.33, 0.33, 0.33) (Fig. 2a), when I1= 0, ISP and ISλ0.00= 0, while ISS and
ISλ1.00= 0.07 to 0.66. In this case, the total compensation effect between indicators is observed for
ISS and ISλ1.00. There is no evidence of any combination forWk that result in zero for ISS and ISλ1.00.

Whenever I1= I2= I3= 1, independent on any combination of Wk, then ISP= 1 (Fig. 2). ISP also
applies compensation between indicators, although the compensation rate between indicators is not
constant. It varies depending on the value of the indicators and the weights. Thus, as any indicator
increases, the same applies to its compensation capacity and vice versa. Except for ISP and ISλ0.00, all
IS values increased proportionally with the increase of Ik and Wk. This increase is more prominent
when (I1= 0;Wk= 0.1) (Fig. 2b, c). In Fig. 2d, if [I1= 0,Wk= 0.8], all IS are very low and increase as
I1 rises to 0.33, and finally to 1. When analyzing the intermediate levels of compensation (ISλ0.25,
ISλ0.50, and ISλ0.75), ISλ generated higher values as the degree of compensation increased.

Based on these results, the weighted indicator product technique (ISP) provides sufficient
representation of the objective and subjective process of the analysis which is best suited for
SMAES. This is because the same equation represents the total, partial, and null compensation.

SMAES summary

Figure 3 shows a scheme that summarizes the methodology of sustainability evaluation oriented
to agricultural experiments associated with soil (SMAES) divided into three macro-processes:

Figure 3. Synthesis of the sustainability evaluation methodology oriented to agricultural experiments associated with soil
(SMAES). The blue, green, orange, gray, and brown boxes indicate macro-processes, achievements, activities, data
organization, and outcome (IS), respectively. PSI = production system inventory; EU= experimental unit; MDS=minimum
data set; PCA = principal component analysis; ISp = product of weighted indicators.
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(1) Experiment development (tillage, fertilization, irrigation, or rotation) during which the
measurement of soil, plant, and climate variables are taken, and the PSI is constructed individually
for each EU or plot and (2) the entire data set (variables or raw indicators) is divided according to
the dimension (environmental, social, or economic) and attribute to which it belongs.
Subsequently, (i) each indicator is parameterized by defining the thresholds (whether there is
an optimum or this optimum is the highest or lowest value in the dataset), (ii) a correlation,
variance, and comparison analysis is performed to define the base indicators, (iii) which are
normalized, and (iv) each base indicator goes through the checklist of selection criteria to define
the core indicators and subsequently the MIS; (3) build the sustainability index (IS), where weights
are assigned to each core indicator (weighting) by PCA. The indicators are added using the
product of weighted indicators technique (ISp) to obtain the IS value.

Evaluation of SMAES with experimental results: minimum indicators set (MIS)

As mentioned in the Materials and Methods section, indicator selection process was based on the
method developed by Monsalve et al. (2022). As shown in Table 3, the minimum indicator set
(MIS) was made up at the environmental dimension from the core indicators soil quality indicator
using principal component analysis (SQPCA), with a score of 0.81; land use (LU) (0.68); potential
eutrophication (PE) (0.75); and global warming potential (GWP) (0.73). For the social dimension,
MIS came from the core indicators yield (Yd) (0.77); wages per year per hectare (JA) (0.77); and
human toxicity (HT) (0.68). Finally, for the economic dimension, MIS was built from the core
indicators variable costs (VC) (0.81); net incomes (NI) (0.81); and benefit-cost ratio (B/C) (0.82)
(Table 3). From 30 raw indicators (13 environmental, 7 social, and 10 economic), 10 core
indicators were chosen (4 environmental, 3 socials, and 3 economics) (Table 4).

Evaluation of SMAES with experimental results: weighting, comparing treatments,
and estimation of IS

Weights (Wk) were allocated similarly for all attributes indicating that, in this case, all dimensions
had a similar influence on sustainability (Table 5). CR showed the best results for the core
indicators of all dimensions. On the other hand, OR had the lowest values because of its lowest
income (NI) and yield (Yd). At the same time, OR needed a higher area (LU) to produce the same
amount of produce as CR (Table 6). CR showed the highest economic sustainability index (Fig. 4).
This is due to the relationship among Yd, VC, and NI (Table 6). The opposite occurred with OR,
which reported the lowest index (Fig. 4), incurring in higher costs with lower income (Table 6).
A similar outcome was seen for the environmental and social dimensions, with CR being the most
sustainable treatment and OR the least one (Fig. 4). Considering the three dimensions altogether,
the CR treatment showed the highest sustainability index followed by O25:C75 (Fig. 4).

Discussion
Simulation process: indicators

SMAES integrates the three dimensions of sustainability (environmental, social, and economic) to
define the best treatments evaluated in soil-associated agricultural experiments. To use SMAES,
the first step is to select the indicators. The environmental indicators collected in this study
consider the impact of soil management and the cropping system on the entire ecosystem, i.e., on
biota, water, atmosphere, humans, and the soil itself. It is composed by four attributes: soil quality,
soil–plant, soil–water, and soil–atmosphere (Monsalve et al., 2021a). These attributes search for a
sustainable environmentally management of the soil, i.e., not performing any irreparable negative
effect either to the soil itself or to any other ecosystem (Tóth et al., 2018). A considerable number
of indicators can be measured either in the field or lab; however, the number of indicators must be
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Table 3. Score obtained by the raw indicators for the mandatory

Atrib Ind.

MnTr NmMn NmAt CrLc

TtStOb QuAt SpLn TrSt NoRd SgDf

WCS

AfMs PrTz MsEd ObSt VrRt

WCS

AcTn PtDv PrFu AgGt

WCS WCS

0.5 0.2 0.2 0.1

Environmental dimension
Soil qual SQSMAF 2 1 1 1 1 0 0.0 3 0 2 2 1 0.7 0.15 2 1 1 1 1.0 0.20 1.0 0.10 0.00

SQSA 2 1 1 1 1 3 0.8 0.41 3 0 2 2 1 0.7 0.15 2 0 1 1 0.8 0.16 0.7 0.07 0.78
SQW 2 1 1 1 1 3 0.8 0.41 3 0 2 2 1 0.7 0.15 2 0 1 1 0.8 0.16 0.7 0.07 0.78
SQPCA 2 1 1 1 1 3 0.8 0.41 3 0 2 2 1 0.7 0.15 2 0 1 1 0.8 0.16 1.0 0.10 0.81

Soil plant LU 2 1 1 1 1 2 0.7 0.36 3 0 2 1 1 0.6 0.13 2 0 1 0 0.6 0.12 0.7 0.07 0.68
W-kg 2 1 1 1 1 2 0.7 0.36 3 0 0 1 1 0.5 0.09 1 0 1 0 0.4 0.08 0.00
N-kg 1 1 1 1 1 2 0.6 0.32 3 0 2 2 1 0.7 0.15 1 0 1 0 0.4 0.08 1.0 0.10 0.64

Soil water FWT 2 1 1 1 1 5 1.0 0.50 2 0 0 0 1 0.3 0.05 1 0 0 0 0.2 0.04 0.00
MWT 2 1 1 1 1 5 1.0 0.50 2 0 0 0 1 0.3 0.05 1 0 0 0 0.2 0.04 0.00
PE 2 1 1 1 1 5 1.0 0.50 2 0 0 1 1 0.4 0.07 2 0 0 0 0.4 0.08 1.0 0.10 0.75

Soil atmos PA 2 1 1 1 1 5 1.0 0.50 2 0 0 0 1 0.3 0.05 1 0 0 0 0.2 0.04 0.00
GWP 2 1 1 1 1 5 1.0 0.50 2 0 0 0 1 0.3 0.05 2 0 0 0 0.4 0.08 1.0 0.10 0.73
OLD 1 1 1 1 1 5 0.9 0.45 2 0 0 0 1 0.3 0.05 1 0 0 0 0.2 0.04 0.00

Social dimension
Food secur Yd 2 1 1 1 1 2 0.7 0.36 3 0 2 2 1 0.7 0.15 2 1 1 0 0.8 0.16 1.0 0.10 0.77

PCat 2 1 1 1 1 0 0.0 3 0 2 2 1 0.7 0.15 1 0 0 0 0.2 0.04 0.00
Empl gen JA 2 1 1 1 1 5 1.0 0.50 1 0 2 0 0 0.3 0.05 2 0 1 0 0.6 0.12 1.0 0.10 0.77
Hum health ELB 2 1 1 1 1 5 1.0 0.50 3 0 0 0 1 0.4 0.07 0 0 0 0 0.0 0.00 1.0 0.10 0.67

ELB(4,5) 2 1 1 1 0 5 0.0 3 0 0 0 1 0.4 0.07 0 0 0 0 0.0 0.00 0.3 0.03 0.00
PO 2 1 1 1 1 5 1.0 0.50 2 0 0 0 1 0.3 0.05 1 0 0 0 0.2 0.04 0.00
HT 2 1 1 1 1 5 1.0 0.50 2 0 0 1 1 0.4 0.07 1 0 0 0 0.2 0.04 0.7 0.07 0.68

Economic dimension
Expen VC 2 1 1 1 1 5 1.0 0.50 1 0 2 1 1 0.5 0.09 1 1 1 0 0.6 0.12 1.0 0.10 0.81

FC 2 1 1 1 1 4 0.9 0.45 1 0 2 0 0 0.3 0.05 1 1 1 0 0.6 0.12 0.00
Incom GI 2 1 1 1 0 3 0.0 3 0 2 1 1 0.6 0.13 1 0 1 0 0.4 0.08 0.00

NI 2 1 1 1 1 3 0.8 0.41 3 0 2 2 1 0.7 0.15 2 1 1 0 0.8 0.16 1.0 0.10 0.81
Proftbl B/C 2 1 1 1 1 3 0.8 0.41 3 0 0 2 1 0.5 0.11 2 1 1 1 1.0 0.20 1.0 0.10 0.82

NPV 2 1 1 1 1 3 0.8 0.41 1 0 0 2 1 0.4 0.07 2 0 1 1 0.8 0.16 0.00
ORO 2 1 1 1 0 3 0.0 1 0 0 2 1 0.4 0.07 1 0 1 1 0.6 0.12 1.0 0.10 0.00
IRR 2 1 1 1 1 3 0.8 0.41 1 0 0 2 1 0.4 0.07 2 0 1 1 0.8 0.16 1.0 0.10 0.74
BPQ 2 1 1 1 1 2 0.7 0.36 1 0 0 2 1 0.4 0.07 1 0 1 1 0.6 0.12 1.0 0.10 0.66

BPP 2 1 1 1 1 2 0.7 0.36 1 0 0 2 1 0.4 0.07 1 0 1 1 0.6 0.12 1.0 0.10 0.66

MnTr = main nonmandatory; NmMn = alternate nonmandatory; NmAt and correlation (CrLc) = selection criteria. Where StOb: related to sustainability objective; QuAt: quantifiable; SpIn: specifically
interpretable; TrSt: transparent and standardized; NoRd: not redundant; SgDf: significantly different; WCS: weighting value assigned for the selection criteria; AfMs: affordable measurement; PrTz:
parameterized; MsEd:measured or estimated; ObSt: related to the study objective; VrRt: variable between repetitions; AcTn: acceptance; PtDv: participatory development; PrFu: present and future balance;
AgGt: aggregate; and Tt: total score.
Indicators: soil management assessment framework (SQSMAF); soil quality indicator using principal component analysis (SQPCA); land use (LU); amount of water per kilogram produced (W-kg); amount of

nitrogen per kilogram produced (N-kg); fresh water toxicity (FWT); marine water toxicity (MWT); potential eutrophication (PE); potential acidification (PA); global warming potential (GWP); ozone depletion
(OLD); yield (Yd); percentage of first category (PCat); wages per year per hectare (JA); work effort indicator (ELB); high and maximum work effort (ELB(4,5)); photochemical oxidants (PO); human toxicity (HT);
variable costs (VC); fixed costs (FC); investment (IV); gross income (GI); net income (NI); net present value (NPV); benefit–cost ratio (B/C); opportunity rate obtained (ORO); internal rate of return (IRR); breakeven
point by quantity (BPQ); and breakeven point by price (BPP).
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Table 4. Core indicators selected in the environmental, social, and economic dimensions

Dim Attribute Indicator Abb Unit Thrs Method

nvironmental Soil quality Soil quality indicator
using principal
component analysis

SQPCA – HVB SQPCA � Qc�n

c�1
SWc
c

Where Sc = Normalized value of the soil property (c), Wc = Weight of c.
Detailed calculation is shown in Monsalve et al. (2021b)

Soil–plant Land use LU m2 kg-1 LVB LU � 1 m2

kg Product

Soil–water Potential
eutrophication*

PE kg PO4
3- eq LVB PE � P

i

vi
Mi

x No2
Ae

1
M
PO3�

4

x No2
Ap

0
@

1
A mi

Where: vi = number of moles of N or P in a molecule of compound i,
M = molecular mass (kg mol-1); NO2 = number of moles of O2

consumed during algae degradation; Ae = number of moles of N or P
contained in an algae molecule and mi = mass of substance 1 (kg)
(Guinée et al., 2004). It was estimated by LCA

Social Soil–atmosphere Global warming
potential*

GWP kg CO2 eq LVB GWP � P
i

T
0 aici t� �dt

T
0 aCO2 cCO2 t� �dt

� �
mi

Where: T = time (years); ai = heating produced by the increase in the
concentration of a gas i (W m-2 kg-1); ci(t) = concentration of the gas i
in time (t) (kg m-3); and mi = mass of the substance i (kg). The
corresponding CO2 values are included in the denominator (Heijungs
and Guinée, 2012). It was estimated by LCA.

Food security Yield Yd Mg ha-1 HVB ———————————————
Employment

generation
Day’s pay per year per

hectare
JA Day’s-pay

year-1 ha-1
LVB JA � JC X Cycles per year

Where: JC = Day’s pay per cycle per hectare
Human health Human toxicity* HT kg 1.4-DB eq LVB HT � P

i;n HTPi;n × f i;n × mi
Where: HT = Characterization factor for human toxicity; fi, n = fraction of

the substance i that is transported from the crop to the environmental
compartment n and mi = emitted mass of each pollutant i (Antón,
2004). It was estimated by LCA.

Economic Expenses Variable costs VC $ ha-1 LVB Sum of variable costs
Incomes Net incomes NI $ ha-1 HVB NI � GI � VC	 FC� �

Where: GI = Gross incomes; VC = Variable costs; FC = Fixed costs
Profitability** Benefit–cost ratio B/C $ HVB B=C � GI

VC	FC.

where Abb = abbreviation; Thrs = threshold, HVB = highest value is the best, and LVB = lowest value is the best.
*For all indicators estimated through life cycle assessment (LCA), all resource consumption and emissions referred to a functional unit of mass of one kg of fresh commercial tomatoes. Extraction of the raw material
to the farm gate was the limit of the system, i.e., an LCA from cradle to door. It was considered a single subsystem, fertilization. The background processes included the production of fertilizers, whose data for their
production came from the Ecoinvent V3.4 database (Ecoinvent Center, 2017).
**The indicators of each attribute were obtained from the PSI, based on a business model, where all the technical, administrative, and management processes followed the Colombian legal framework (CCB, 2019;
DIAN, 2019). All the variable costs (plant material, fertilizers, crop protection, wages, among others) and fixed costs (leasing, public services, salaries, administration, among others) associated with the production
were accounted for and included in the analysis. The analysis was carried out based on the technique of investment projects assessment (Karibskii, 2003a y 2003b), assuming that production is constant for a
cropping area of one hectare in each EU (project), transforming the values of each variable, of the EU area to one ha.
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Table 5. Weighting indicators results through principal component analysis

Estimators

Environmenta9l (PCj) Social (PCj) Economic (PCj)

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Eigenvalues 1.643 0.548 0.003 1.330 1.051 0.355 1.455 0.940 0.002
Variability (%) 0.900 0.100 0.000 0.590 0.368 0.042 0.706 0.294 0.000
Cumulated (%) 0.900 1.000 1.000 0.590 0.958 1.000 0.706 1.000 1.000
PCj (%) 100% 62% 38% 71% 29%

Dimension Attribute

Eigenvectors (λPCj): [Eigenvectors (λj)]2:

PC1 (%) x λ1 (a) PC2 (%) x λ2 (b) Wk (a	 b)λPC1 λPC2 λPC3 λ1 λ2

Environmental Soil-Plant 0.540 0.842 0.001 0.292 0.292 0.292
Soil-Water 0.595 -0.383 0.707 0.354 0.354 0.354
Soil-Atm 0.595 -0.381 -0.708 0.354 0.354 0.354

Social Food sec. -0.698 0.272 0.662 0.488 0.074 0.300 0.028 0.328
Empl. Gen 0.054 0.942 -0.330 0.003 0.888 0.002 0.341 0.343
Hum. Hlt. 0.714 0.195 0.673 0.509 0.038 0.313 0.015 0.328

Economic Expenses 0.308 -0.951 -0.006 0.095 0.905 0.067 0.266 0.333
Incomes 0.673 0.213 0.708 0.453 0.045 0.320 0.013 0.333
Profitab. 0.672 0.222 -0.706 0.452 0.049 0.319 0.015 0.334

PCA. PC = Principal component; Atm = Atmosphere; Food sec = Food security; Empl. Gen = Employment generation; Hum. Hlt = Human health; Weight (Wk).
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estimated through models, such as life cycle assessment (LCA) (Monsalve et al., 2021a). In this
sense, the PSI is critical to SMAES because most environmental and social indicators along with all
economic indicators are based on the PSI (Monsalve et al., 2021a). It is worth noting that SMAES
works at the plot level, where commercial conditions are simulated, and the treatments are the
only modifications to the cropping system. Experiments under fully controlled conditions may
have limitations since the inventory of the production system may not be related to the
commercial cropping conditions.

Many authors have pointed out the importance of establishing selection procedures with
transparent and well-defined criteria that lead to relevant, comprehensive, and meaningful
assessments that represent a production system (Binder et al., 2010; de Olde et al., 2016; Lebacq
et al., 2013; Marchand et al., 2014). The definition and prioritization of the criteria to make the
selection of the indicators vary widely among the assessment tools. Therefore, it is necessary to
describe these criteria by adding clarity and reliability to the sustainability assessments (de Olde
et al., 2016). The indicators selection procedure included in SMAES (Monsalve and Henao, 2022)
allows the user to choose the suitable indicators given a list of criteria grouped in hierarchical
categories (raw, baseline, and core indicators). It is possible and highly recommended to use this
procedure both before the experiment development and during the analysis.

Table 6. Results for the evaluation of the indicators for each treatment dimension

Attribute Indicator CR OrC O25:C75 O50:C50 O75:C25

Environment Soil quality SQPCA 8.93a 9.12a 8.93a 8.98a 9.12a
Soil–Plant LU 0.047a 0.053b 0.046a 0.048a 0.048a
Soil–Water EP 2.6E-04a 2.2E-03e 6.7E-04b 1.1E-03c 1.6E-03d
Soil–Atmosphere GWP 5.7E-02a 4.7E-01e 1.4E-01b 2.4E-01c 3.3E-01d

Social Food security Yd 211.6a 187.8b 217.8a 207.3a 208.3a
Employ generation JA 2.76a 2.79b 2.82e 2.81d 2.80c
Human health HT 0.23a 1.91e 0.58b 0.98c 1.35d

Economic Expenses VC 139.4a 140.1b 141.1c 140.6b 139.8b
Incomes NI 55.11a 27.74b 63.51a 47.19ab 51.76ab
Profitability B/C 1.18a 1.05b 1.22a 1.14ab 1.16ab

Same letter indicates no significant differences among treatments (Tukey, p< 0.05); n= 15.

a

e

b

c
d

a

e

b

c
d

a

b

a

ab
aba

d

b

c
c

0.0

0.2

0.4

0.6

0.8

1.0

CR OR O25:C75 O50:C50 O75:C25

IS

Treatment
Environmental Social Economic Total

Figure 4. Comparison of sustainability indices (SI) between treatments. The SI for each dimension and the accumulated SI
(Total). Equal letters indicate no significant differences between treatments (Tukey, p< 0.05); n= 15. Chemical control (CR);
organic control (OR); organic:chemical ratio 25%–75% (O25:C75); 50%–50% (O50:C50); 75%–25% (O75:C25).
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Simulation process: IS selection

Munda (2005) suggests the use of noncompensatory multicriteria techniques (ISλ0.00) for the
elaboration of sustainability indices. These techniques do not allow indicators with low values to
be compensated by those with higher values validating the concept of ‘strong’ sustainability, which
implies the impossibility of replacing the effect of one indicator or dimension by another.
However, if quantitatively zero corresponds to unsustainable and one corresponds to the highest
degree of sustainability, the results of the simulations suggest that even in ideal conditions, such as
shown with the combination W1 = W2 = W3= 0.33 with I1 = I2 = I3= 1.0 (Fig. 2a), ISλ0.00 will
never be equal to one. Conversely, in this condition, ISλ0.00 tends to be closer to zero than one
(0.33 in this case), suggesting that the system is unsustainable, which is not a reflection of the input
values in this scenario.

On the other hand, ISS and ISλ1.00 have a high compensation power. If an attribute or
dimension obtains a zero value, it will be masked by another with a higher value. This implies, for
example, that any environmental conflict can be solved with economic compensation with IS not
reflecting such differences, which is the opposite of the multidimensional and integrated concept
of sustainability. Hediger (1999) indicates that assuming total compensation between indicators is
associated with the concept of ‘weak’ sustainability, which implies the possibility of replacing the
effect of one indicator by another.

Using intermediate compensation values (ISλ0.25, ISλ0.50, and ISλ0.75) adds subjectivity to the
study since it is necessary to define which value is going to be defined and justify that decision
adequately. Considering that the objective of this analysis was to reduce the degree of subjectivity
inherent in sustainability analyses, no value is recommended for intermediate partial
compensation within the multicriteria function as a single sustainability index.

The product of weighted indicators technique (ISP) uses a compensation rate between
indicators that varies depending on the value of the indicators and the weights. Thus, as the value
of an attribute or dimension takes extreme values (close to 0 or 1), the same occurs with its
compensation capacity. This implies that an Ik that has a high Wk generates a high degree of
compensation. However, if Ik is close to zero, indicating that it is outside the allowed threshold, all
the dimensions, and therefore the treatment, would be considered unsustainable. This way, ISP
represents better the potential results in real scenarios than ISS and ISλ. The aggregation process
refers to attributes or dimensions since this process can be applied to both cases.

Experimental results: comparing treatments

The lower yield of OR directly influences the environmental impact, since the LCA uses a
kilogram of fresh tomato as a functional unit, i.e., the more input used to produce a kilogram of
tomato, the higher the environmental impact will be generated. Despite being the only treatment
to which no organic fertilizers were applied, CR excels in the environmental dimension. In this
regard, there is a tendency to increase the environmental impact (PE and GWP) as the amount of
organic fertilizer applied (chicken manure) increases, in this order: OR > O75:C25 > O50:
C50 > O25:C75 > CR. These results are consistent with those reported by Bojacá et al. (2014),
who found that fertilization is the agricultural activity that generates the highest negative
environmental impact (regardless of infrastructure) and, accordingly, chicken manure is the
precursor of this result for most of the categories evaluated in their study on the environmental
impact of Colombian greenhouse tomato crop. The high N content of chicken manure is
associated with high levels of leaching and N emissions (Bergström and Kirchmann, 2010;
Hayakawa et al., 2009).

As for the number of wages (JA), the analysis can be done from two points of view: (1) the
farmer (owner of the crop) and (2) the employee. For the farmer, a smaller number of wages is
more convenient, while for the employees there is a more significant benefit while more wages
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require the crop. For this case study, the analysis was made from the farmer perspective, since a
higher number of wages implies higher production costs, which can affect the sustainability of the
system alone. Based on this, CR is the most economically sustainable treatment because it requires
the fewest number of wages. This has to do with the fertilization scheme, since a smaller number of
wages is required when only applying chemical fertilizers in preplanting.

The measurement timespan is too short (one production cycle) to appreciate the application of
the organic amendment advantages in the soil and the ecosystem. However, it also influences the
fact that chicken manure was used to replace a percentage of the amount of chemical fertilizer, i.e.,
it was used as a fertilizer, not as an amendment. It is noticeable that compared to chemical
fertilizers, whose nutrients are immediately available to the plant, chicken manure has a limited
fertilizing action.

In this study, thresholds were not associated with the selected environmental indicators, thus
the definition of the level of sustainability was based on the comparison between the evaluated
treatments. This simple comparison limits the analysis, especially for the environmental
dimension. If hypothetically, all treatments have a negative environmental impact, statistically
significant variation forces the assignment of differential sustainability levels (weights). In fact, the
world legislation and policy on soil quality are poorly defined due to the diffuse definition of soil
quality, which is accentuated by the difficulty inherent in the quantification and mapping of its
space variability (de Paul Obade and Lal, 2016).

Final considerations about SMAES

In SMAES, many of the variables that feed the indicators come from core research, and the
indicators as measures of sustainability on an experimental scale are able to capture the sources of
variation or treatments due to the homogeneity and size of the plots. This is contrary to the
sustainability studies on a larger geographical scale, which require a large number of observations
due to the heterogeneity of the information source (e.g., Dantsis et al., 2010). Government policies
have the same influence on all EU under evaluation in SMAES as well as different computational
tools allow calculating specific indicators that act as a complement of the measurements in the
field (e.g., LCA), and the classic statistical evaluation is no longer a critical parameter for decision
making. This serves as a selection criteria to decide which indicators will be included in the
sustainability analysis.

Conclusion
This study provides a conceptualization of SMAES, an adaptable and quantifiable methodology
for the evaluation of sustainability oriented to soil-associated agricultural experiments. The
outputs are interpreted through a sustainability index that assembles the environmental, social,
and economic information of the experiment. SMAES could become part of a decision support
tool whose use would allow soil researchers to define how sustainable the evaluated treatments in
their experiments are, to improve the reliability, and application feasibility of results that would be
transferred to the farmers. When only a few variables are studied and the recommendation is
based just on technical results, it can generate biases because it is not considering how the
recommended treatment would affect each dimension of the sustainability. Thus, as in this study,
if only the yield is considered as an indicator to designate the best treatment, all treatments are
recommended exception made for the one with organic fertilizers and amendments applied as
preplanting fertilization. However, with the use of SMAES, differences among treatments were
revealed, indicating that the most sustainable treatment is the one where chemical fertilizers were
not mixed with organic fertilizers. It is important to highlight that SMAES is applied to evaluate
the results of the experiments without considering possible replications in time and/or space. Each
experiment must be analyzed separately. In this specific study and, in accordance with the
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literature, it is possible that if the management of the treatments is maintained over time, in 10 or
20 years, the fertilization treatments including organo-mineral mixtures could show the highest
yields. On the other hand, the chemical treatment could generate a greater negative environmental
impact, which probably makes it unsustainable.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S0014479723000145
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