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ON THE EDGEWORTH EXPANSION FOR ELEMENTARY
POLYNOMIALS BASED ON TRIMMED SAMPLES

YURI V. BOROVSKIKH AND N. C. WEBER

This paper develops a one term Edgeworth expansion under minimal conditions for
elementary symmetric polynomials of any degree based on trimmed samples. These
statistics are special cases of trimmed U-statistics and natural extensions of the
trimmed mean.

1. INTRODUCTION AND RESULTS

Let Xi,..., X, be independent and identically distributed, real-valued, random vari-
ables with distribution function F and let X,; < --- € X,» denote the order statistics
of the Xs. We shall consider the behaviour of trimmed versions of the elementary sym-
metric polynomials studied in [12, 8, 9, 21], among others.

Consider the trimmed U-statistic sum of the form

(1) U(a, ﬂ) = (kaﬁ> Z h(Xnin- . 7Xm',..)

m . .
ka+1<i1 < <im<kg

with the kernel
h(Zy, ..y Tm) =21 T, m 21,

where 0 < a < 8 < 1 are any fixed numbers, kop = kg — ko, ko = [an], ks = [An] and []
denotes the integer part.

If  =0and § =1 then U(0,1) corresponds to the ordinary elementary symmetric
polynomial of degree m which is a U-statistic with product kernel based on the full sample.
Limit theorems, Berry-Esseen bounds, Edgeworth espansions and large deviation results
have been established for this class of statistic. See, for example, (8, 10, 4, 6].

For m =1, (1) gives the (o, 8} trimmed sample mean

ks
(2) Y(a’ ﬂ) = (kﬁ - ka)—l Z Xhni-

t=kq+1

The asymptotic normality of the trimmed mean was established in [3] and many prop-
erties were established in the theory of robust estimation. The approximation problems
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connected with sharpening the rate of convergence to the normal distribution of X (e, 8)
have been explored in many papers including [11, 13, 14, 15, 19, 22, 23, 24, 25].

For the general class of U-statistics, the asymptotic normality of the trimmed statis-
tic was established in [17]. For fixed m > 1 we shall obtain conditions under which the
1-term Edgeworth expansion holds for the trimmed elementary symmetric polynomials
given in (1).

We need the following notation. Write F~!(u) = inf{z : F(z) > u}, 0 <u < 1, for
the left-continuous inverse-function of F" and F,, (z) for the empirical distribution function.
The ~yth quantile of F' is £, = F~'(y). The sample estimate of &, is E,, =F71(v) = Xnx

Let

"

B
3) p= (8 —a) / F'(u)du

and w, = ny — [ny] with v = a, 8. Let W;,i = 1,...,n, denote X; winsorised outside of
(€a» &8), that is

(4) Wi = £l (X € &a) + Xil (§a < Xi < &p) +&1(Xi > &p)

where I(A) is the indicator of the event A. Then W, K. Q(U;),i=1,...,n, where U; are
independent random variables uniformly distributed on (0, 1) and

(5) Qu)=&I(u< o)+ Fl(ul(a<u< f) +&I(u>p).

Furthermore, let Wyi,¢ = 1,...,n denote the order statistics corresponding to
Wi, ..., W,. Then

(6) Whi = &I (i € No) + Xnil (No < @ < Ng) +&51(i > Ng),
n

where N, = Y I(X; < &) with v = o, 8. Note that
i=1 .

n
N, L ST I(U; € v). Let
i=1

v = /0 1 Qu)du, o = /0 Q) - v)du,

VR S ) )
Y2 = ¢4 f(fa)( ga) +(1 ﬂ) f(f)( Eﬁ) — o ﬂ )

1
’)’3=/ (Qu) —v)’du, A = ys/0d, /\2=’Yz/03,
0

all-a)  f(L-p)
2 20

+ s [0l — 7+ (1= B)(Ea — - (0= ]}

A5 = 607 { (6a = 1)wa — (€5 — w)wp ~
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For z € R let
R = P e p) - ) <)
G(z) = &(z) — 65:/”2 (M +3x(z2 = 1)+ X3) ,

where @ is the standard normal distribution function, ¢ = ®'.

THEOREM 1.  Assume that f = F' exists in neighbourhoods of £, and £z where
it satisfies a Lipschitz condition. Further assume that f(€,) > 0 and f(£3) > 0. Then

sup|F,(z) — G(z)| = O((Inn)**n=3/4)

asn — 0Q.

To studentise U(a, B) we need an estimate of o2. We shall use

kB 1
kg+1
SZ = f nke T Z —szkﬂ - 3; )
l—-k°+1
where o
ka — —kp+1
Un = nka + Z Xni + ﬂ Xnkp-
t—lc.,+1
Forz € R let
V(B — a)
(7) Fy(z) = P(W (Ula, B) — u™) < Z) ,
H(z) = &(z) + it )((2x + DM+ 32+ DA — Ag)

6v/n
THEOREM 2. Assume that the conditions of Theorem 1 are satisfied. Then
sup|Fy(z) — H(z)| = O((In n)®/4n=%1),

asn — 00.

2. PROOFS

We begin with following lemma which gives a useful representation of U(«, §).

LEMMA 1.
—1) (m—-r+1) —
(8) ; kaﬁ(kaﬂ — 1 (kaB — T+ 1) . ’ Sr(a’ ﬂ) 3
where
9) Se(o, ) =) _(=1) Fia+tie H(t""iz!)“ II=.

=1 =1
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where the summation is over all non-negative integers i, .. .,1, satisfying ¥ ¢i; = r, in
addition, B
‘(e
(10 =3 ( ) (=)o ),
p=0 \ P
where

(1) op(e ) =3 WP = kol — (n = k)& + Jy(0) = Ty(e) = Jo(8) + To(B)

with, for vy = a, 3,

(12)  Jp(y) = I(ky < N) Z( &), Tp(7) = I(k, > N,) Z n—gr).

i=ky+1 i=N,+1

PRrROOF: First we have Hoeffding’s decomposition

(m-1)---(m=r+1) .,
Vte rz:k hap— 1) (hap —r + 1) (@ B)

where

Se(@B) = D (Xey s (X, — ) -

ka+1<i1 < <ir kg

Further, by Waring’s formula, (see for example, [7]), we obtain for S,(a, ) the
representation (9) with

kg
Z (Xni - /J’)l-

i=ka+1

Hence, it is necessary to prove that this 7, has the form (10). Indeed,

4
Z Z ( ) WPXE = (:;) (=) Pop(, B)

i=ka+1 p=0 p=0

(13) op(a, B) = Z

i=ka+1

Using (4) and (6) we can write

S WP=) WE =N+ Z +(n - Np)&g,
i=1 i=1

i=Ng+1
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that is,

Ng
(14) o Xn= Z WP — Nakh — (n — Np)&j .

i=Ng+1

Furthermore, we have

)y Y Xk Z XE + Jy(a) — Tp(a) + To(B) — Jp(B)

t=ka+1 1=Na+1

+ (No — ka)fg + (kﬂ - Nﬂ)f; .
From (13)-(15) we obtain (11) and hence (10). Lemma 1 is proved. 0
Let Uy = 1/(o+/n) Zg }, where

9(Xi) = W; ~ v, Uz = 1/(on/n) Z h(X:, X;),

and o
1
X, X;) = —(I(Xi € &) — o)(I(X; < &) — 0‘)?(5—0)
1 (m—1)

(Wi = v)(W; —v).

TS =PI < &) = D5y * (g ey

LEMMA 2.  Suppose that the conditions of Theorem 1 are satisfied. Then

VB =) (150, ) — ) = Uy + Uy + 2

mu™lo

sf

where R, and R, satisfy
P(|Ra| > ¢vInn) = 0(n™%), P(|Ra| > c(lnn)¥*n7') = O(n™%)
as n — oo for some sufficiently large, positive constants ¢ and d not depending on n.

PRrOOF: We shall follow the approach in [13] and [11] to obtain sharp approxima-
tions for J,(7) and J,(7) in (12) by functions of N, for 0 <y < 1 and any integer p > 1.
Let U, < -+ € Up, be the order statistics corresponding to the independent random
variables U, . .., U, uniformly distributed on (0,1).

ESTIMATING Jp(%). Under the conditions of the theorem

Jo() 10k, < N3) X2 [(F7 (U)° - (F7 ()]
(16) 1=k7;_ Ny
= I(ky < N. ){ ) —;1( m-—7)+r(7)},
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where
N‘7

lrM| <e Y Uni—)?

i=k.,+1
and the constant ¢ can depend on p,7y and F. Conditional on N, the order statistics
Uni, 1 €1 < N,, are distributed as the order statistics from a sample of size N, from the
uniform distribution on (0, ). Therefore for i =1,..., N,

) = B |N3) = 705, 02 = B((Uns = )" | W) = et D

and in (16)

Ny N,

(17) iz%;l(Um’ -) = (N_+1)(N ky)(Ny —ky +1) + i=;§-l(Uni - w(7)

> Um-7)? <2y ((N+1 +2Z - ()’

i=ky+1 i=ky+1

Denote fori =k, +1,..., N,
0 = (Uni — pi(7)) /0:(7)
and note that

N, -k
2 <y r
UI(’Y)\’Y (N7+1)2

For n; we can write (see, for example, Lemma 3.1.1 in [20]),
(18) P(Im] > evVInn|N,) = O(n™%)

uniformly for k,+1 < i < N, with some positive constants ¢ and d which do not depend
on n. Furthermore

N’Y
> (Oni = w())| € Ny = ko), g (U= )

(19) izky+1 ky+1<i<N,
1 3/2
\7(N.,+1)(N“’ ky) 08X ||
and
v 9 ,
(20) ' ;H(Um' —u(7) < (N, -k )’C +T$§N., (Uni — 1:(7))
1=Ky

1
¥ 2
N, - max c.
(N +1)2 W k)? Ey 1INy i
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Combining (16)-(20) we find

(Ny = ky)? p 5”7’—1
2 f(&)

(1) Jp(1) =1k, < V)

n

1 1
+ ;le — k|2 + E(Nv ~ ky)?r]

with P(|ra| > cvInn) = O(n™9).

ESTIMATING J,(7). By analogy with (16) we write

22) B0 > 3) {2 5> G- +70}

6‘7) i=N,+1

where
[7(7)] Z (Uni —)*.
t“N~,+1
Note that now conditional on N, the order statistics Upn;, Ny + 1 < ¢ £ n are
distributed as the order statistics of a sample of size n — N, from a uniform distribution
on (v, 1). Hence for i = N, +1,.

(V) = EUni | Ny)=v+(1 - 7)n(i—NiVl)1 7

(1) = B((Uni = B)* | V) = %Z”},fi]ff{,f(f ;,i 3))

and if N, +1 <7 < k, then

k,— N.
2 < (]l =~ 7
g5 (7) = (1 7) (’I’l _ N‘Y + 1)2

=2

and

Pl > eVIRAIN,) = O(n™9),
where 7; = (Uni — B;(7)) /@i(7). Further, by analogy with (17)-(21) we obtain from (22)

= _ (Ny —ky)%p f";_l l 1 13/2= i )22
(23) Jp(7) = I(ky > N,) n 2 7 (&) + nlN'r k"0 + 2 (Ny = ky)°Ty,

with P(|rs| > ¢VInn) = O(n~9).
Combining (10), (11), {(21) and (23) we find

e = Z(W,- — 1)t = ko€ — 1)t — (n — kg)(&s — 1)

(Na - ka)2 e(&a - ﬂ)l—l + (Nﬁ - kﬂ)2 e(gﬂ - /‘)l_l
n 2f(&a) n 2f(&p)

1 32 L Lino g2
+(;|Na"kal |Nﬂ kel )Tnt

+(%(Ncx — ka)? + 2(Nﬂ - kﬁ)z) Tnt »

(24) -
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where 7, satisfies P(maxigsem |rael > cvinn} = O(n™%). Note that in (24) by Bern-
stein’s inequality

(25) P(INy = k4| > cvnlnn) = O(n~%).

Furthermore, from (8)

(26) Ula,B) - p™ = ilz—p”"lm + m{m — 1) um'zé(frf —m3) + Thla, B),

ap kap(kap ~ 1)

where m ( oo )
m(m-—1).--(m—-r+1 m—r
Tn(a,ﬁ)zgkaﬂ(kaﬂ—1)"'(kaﬁ’_7'+1)u Sr(ay:B).

EsTIMATING Tp(c,8). We shall show that
(27) P(l\/ﬁTn(a, B)| > clinn)*?n") = O(n4),

According to (9) S,(e, 8) is a polynomial of degree r on r variables =i, ..., n,. Each
of these variables we can estimate, with the help of the representation (24). At first let
£=1. Since EW, = v = afy, + (8 — a)u + (1 — B)&s, then in (24)

(28) =D (Wi—v)+ (ba — p)wa — (& — )wp

B _Ma—hal 1 (Np—kg® 1
n 2f(%) n 2f(&)

+ P,
where
oo = (21Na = Kol 4 Z1Np = ksl Jrua + (5 (N = ke + =5 (Vs — kp)?) 2,
n plite « n n? « n2 nl

By Bernstein’s inequality P(Jm| > cvninn) = O(n™?), asn — co. Ifin (24) £ > 2
then we can clearly bound |m| by cn for some positive constant ¢ not depending on n.
This argument shows that for any r > 3 and all non-negative integers 4, . . ., i, satisfying

12:: lig=r
p(\/ﬁlg(n"m"l > c(ln n)mn-‘) — O(n™)

as n — oo. This proves (27).
Further consider 72 — 7, in (26). From (24) and (28) we have

(29)

L -m) = = 5 W= )W)

nv/n 1€i<ign

+ Vi,-,[a@u— W+ (L= B)(E& — w)* — (v~ )] +7,
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where P(|p, |> c(lnn)¥/?n~1) = O(n™9).
Finally, we obtain the representation for 7, from (28):

n

LI RS S . _ . o)
ﬁwl—ﬁZ(W‘ v) s Z (I(Xi € &) — o) (I(X; € &) a)f(§a)

P 1<i<i<n
) 1
(30) +;\17-ﬁ<,;(1(xi <) - ot)r/2 + s;(I(Xi <&p) — ﬁ)r/z)"nl

+‘\71—E [(fn ~ p)wg — (&8 — p')wﬂ - az(;(;ac;) + '82(}-(;“5)] + T,
where P([Fn1| > c(lnn)*?n"!) = O(n™9).
Combining (26)-(27) and (29)-(30) we obtain the proof of Lemma 2.
PROOF OF THEOREM 1: Using the notation of Lemma 2, let ¢(t) = E exp(itg(X;)),
te R,

F,(z) = P{U + Uy < z} and,

Glz) = 0() - ——"4(z)(a? ~1), s € R,

o3/n 6
where k3 = E¢*(X)) + 3E9(X1)g(Xz)h(X,, X,). Simple calculations show that

le@®] <1-(B-a)+20t]"", teR

and if |t} > 2/(8 — &) then |<p(t)| < 1 and hence the Cramér condition is satisfied. Since
the functions g and h are bounded then the theorem giving the asymptotic expansion for
U-statistics holds (see, for example, [2, 5, 18])

(31) sup|F,(z) - G(z)| = O(n™?).
Now we shall apply Lemma 2. First we note that

P(lzn:(f(xi <&) - ’Y)l > CM) =0(n™%

for v = o and B. Therefore

(32) F,(z)=F, (z - é% +O((Inn)¥*n=3/%)) + O(n'l) )
And from

sgp[F,(z) - G(z)| € sgplf,(z) - G(z)| +O(n™")

G(z) ~ @(z - 6_/\\/3—5_ +O((In n)5/4n‘3/4)),
(33) = O((Inn)*/*n=%*)

+ sup
z
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we obtain the proof of Theorem 1. 1]
PROOF OF THEOREM 2: By Bahadur’s theorem (see, for example, [1], or [11])

_ N,—-vvm 1
(34) Xﬂkq - E‘Y - n f(f'y) + Pn
where
(35) P(lpa) > e(lnn/n)**) = O(n~%)

for some ¢ > 0 and every d > 0 not depending on n. Furthermore, with the help of
(11), (13), (21) and (23) for p = 2 and (34) with v = o, we obtain the following
representation for 5?2

(36) r=ot+— Zw ) + Pn,

where
2a 2_
w(xi)=(1(X.~sfa)—a)m(v—sm((m-v) o?)+(I(X: < &) - ﬂ) ( )(v £s),

and the remainder term g, satisfies (35). The details of the proof are similar to the proofs
in [13] and [11)]. Here we omit the details since the proof follows that of Lemma 2.

Recall n
P[>t < )= )| > ovalim) = 0~
t=1
for v = a and . Applying this observation to the representation in Lemma 2 and using
(36) we can write (7) as

Ui + U + A3/(6y/n) + O((In n)¥/4n=3/4)
V1+(02n) 1L $(X) + 0725,

as n — oo. By the inequality from [16)

Fy(z) = P( < x) +0(n™")

1/2

<1+ (o%n)” Zz/)X)+o p,,) =1—21 Z¢(x,-)+o((1nn/n)3/4)

2
n
=1 g

with probability 1 — O(n~9) for every d > 0. Thus we can write

Fy(z) = P((Ul + Uz)(l - Ez/) X)) + 7_— +0((Inn)**n=3/%) < x)
+0(n™Y), zeR.

Here with probability 1 — O(n=9) for every d > 0
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(Uy+ Uy) ( ) =U;+U; - \/_ (X1)¢(X1)+O((lnn)
where

Us = h(X;, X;),
O'TL\/— 1<§<n
and 1
h(Xi, X;) = h(Xi, X;) - F(g(xi)w(xj) + 9(X;)$(X5)).
Therefore
Fy(z) = P(Ul +Us +A<7)+0(n7?)

' -__1 5/4,,~3/4

with A = 203\/ﬁEg(X1)1/1(X1) 6\/_ + O((lnn) ). Denote

1I€3

\/_ —
= [Eg®(X1) + 3Eg(X1)9(X2)h(Xy, Xp)]o ™3

d)( Wz?-1), z€R

Further by analogy with (31) - (33) we have after simple calculations

sup|Fy(z) ~ H(z)| = sup|P(U1 +U; < z) - H(z + /\)| +0(n™)

165

1),

< sup|P(Uy + Us € z) — H(z)| + sup|H(z) — H(z + N)| + O(n7?)

= O((Inn)¥/*n=%4).

This proves Theorem 2.
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