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ON THE EDGEWORTH EXPANSION FOR ELEMENTARY
POLYNOMIALS BASED ON TRIMMED SAMPLES

YURI V. BOROVSKIKH AND N. C. WEBER

This paper develops a one term Edgeworth expansion under minimal conditions for
elementary symmetric polynomials of any degree based on trimmed samples. These
statistics are special cases of trimmed {/-statistics and natural extensions of the
trimmed mean.

1. INTRODUCTION AND RESULTS

Let Xi,..., Xn be independent and identically distributed, real-valued, random vari-
ables with distribution function F and let Xni ^ • • • ̂  Xnn denote the order statistics
of the X[s. We shall consider the behaviour of trimmed versions of the elementary sym-
metric polynomials studied in [12, 8, 9, 21], among others.

Consider the trimmed U-statistic sum of the form

(1) U(a,P)=(kA £ h(Xnil,...,XniJ
\ I

with the kernel
h(xi,...,xm)=Xf-xm, m ̂  1 ,

where 0 ̂  a < /? ̂  1 are any fixed numbers, kap = kp - ka, ka — [an], kp = [fin] and [•]
denotes the integer part.

If a = 0 and /3 = 1 then £/(0,1) corresponds to the ordinary elementary symmetric
polynomial of degree m which is a [/-statistic with product kernel based on the full sample.
Limit theorems, Berry-Esseen bounds, Edgeworth espansions and large deviation results
have been established for this class of statistic. See, for example, [8, 10, 4, 6].

For TO = 1, (1) gives the (a, ft) trimmed sample mean

(2) X(a,p) = (k0-ka)-
1

i=ka + \

The asymptotic normality of the trimmed mean was established in [3] and many prop-
erties were established in the theory of robust estimation. The approximation problems
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connected with sharpening the rate of convergence to the normal distribution of X(a, /?)
have been explored in many papers including [11, 13, 14, 15, 19, 22, 23, 24, 25].

For the general class of £/-statistics, the asymptotic normality of the trimmed statis-
tic was established in [17]. For fixed m ^ l w e shall obtain conditions under which the
1-term Edgeworth expansion holds for the trimmed elementary symmetric polynomials
given in (1).

We need the following notation. Write F~l(u) = inf{a; : F(x) ^ u}, 0 < u ̂  1, for

the left-continuous inverse-function of F and Fn{x) for the empirical distribution function.

The 7th quantile of F is £, = F'1^). The sample estimate of f7 is £7 = F'^-y) - Xnky.

Let

(3) l*={0- a)'1 / F-\u)du
J a

and w-f = 727 — \nj\ with 7 = a> P- Let Wt, i = 1 , . . . , n, denote Xi winsorised outside of

(£«,&], that is

(4) Wi = MM < 4a) + Xii(z, <x^ ^ ) + SeHXi > U).

where I(A) is the indicator of the event A. Then Wi = Q(Ui), i = l,...,n, where Ui are
independent random variables uniformly distributed on (0,1) and

(5) Q(u) = & / ( « < a) + F~ 1 (u) / (a < u < 0)

Furthermore, let Wni,i = l , . . . , n denote the order statistics corresponding to
Wlt...,Wn. Then

(6) Wni = f o / ( i < N a ) + XniI(Na < i ^

n
where 7V7 = J2 J(xi < 67) w i t h l = a,P- Note that

£ 7)- Let

v — I Q(u)du, a2 = I (Q{u) - vfdu ,
Jo Jo

^

73 = y (QW - vfdu , Aj = 7 3 /a3 , A2 =
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For x € R let

G(x) = *(*) - M ( A x + 3A2(z
2 - 1) + A3) ,

where $ is the standard normal distribution function, <f> = <£'.

THEOREM 1. Assume that f = F' exists in neighbourhoods of£a and & where
it satisfies a Lipschitz condition. Further assume that /(fo) > 0 and /(£#) > 0. Then

sup|Fff(x) - G(x)\ =
11

as n —> 00 .

To studentise U(a, /?) we need an estimate of a2. We shall use

kg — 1

~ 7T n*» n ^ ni n "** ~ n '

where

FOT x e R let

2** + 1)A, + 3(iJ + 1)A, - A,) .

THEOREM 2 . Assume that the conditions of Theorem 1 are satisfied. Then

sup|Fs(x) - H(x)\ = O((lnn)5/47T3/4),
X

as n —¥ 00 .

2. PROOFS

We begin with following lemma which gives a useful representation of U(ct, /3).

LEMMA 1.

where

1=1 1=1
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r
where the summation is over all non-negative integers i l t . . . , ir satisfying ^ &1 = T, in

1=1
addition,

where

n

(11) ap(a, P) = J2W?- k"& ~ (n ~ **)$ + J » ~ JP(a) - JP(/3) + JP(P)
«=i

with, for 7 = a, /3,

PROOF: First we have Hoeffding's decomposition

where

5P(a,/3)=

Further, by Waring's formula, (see for example, [7]), we obtain for Sr(a,f3) the
representation (9) with

i=ka + l

Hence, it is necessary to prove that this TTI has the form (10). Indeed,

i=ka+l p=0 W p=0

where

(13) crp(a,/3) =

i=ka+l

Using (4) and (6) we can write

n n Ng

i=Na-\
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that

(14)

is,

Furthermore, we

£
have

t = l

kg Ng

(15) £ X* = £
i=ka + \ i=Na +

From (13)—(15) we obtain (11) and hence (10). Lemma 1 is proved.

Let Ui = l/(ay/n)f2g(Xi), where
a

g(Xi) = W{ -v,U2 = 1/iany/n) £ h(X{, Xj),

and

1

7(&)
1 , (m-l)

LEMMA 2 . Suppose that the conditions of Theorem 1 are satisfied. Then

mfj,m~1a
3/2 3/2

+

where /?„ and i?,, satisfy

P(\Rn\ > cvin^) = O(n-d), P ( | ^ , | > c(lnn)3/2n"1) = O(n~d)

as n —»• oo for some sufficiently large, positive constants c and d not depending on n.

P R O O F : We shall follow the approach in [13] and [11] to obtain sharp approxima-

tions for Jp(j) and Jp(y) in (12) by functions of N7 for 0 < 7 < 1 and any integer p ^ 1.

Let Uni < • • • < Unn be the order statistics corresponding to the independent random

variables Ui,...,Un uniformly distributed on (0,1).

ESTIMATING Jp(~f)- Under the conditions of the theorem

7,(7) ± N7)

i=k-, + l
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where

i=*7+l

and the constant c can depend on p, j and F. Conditional on yV7 the order statistics
Uni, 1 ^ i ^ Ny, are distributed as the order statistics from a sample of size 7V7 from the
uniform distribution on (0,7). Therefore for i — 1, . . . , Ny

and in (16)

(17) - fc7 +1) +

Denote for i = A;7 + 1 , . . . , 7V7

and note that

For 7jj we can write (see, for example, Lemma 3.1.1 in [20]),

(18) Pflial > cVh^i\N7) = O(n-d)

uniformly for ky +1 < i ^ Ny with some positive constants c and d which do not depend
on n. Furthermore

(19)

and

(20)
jnax

:=*,+!

7 - ki)2
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Combining (16)-(20) we find

(21) Jp(7) = - {Ni-^P^L i ^ ^ 2^

with P(\rn\ > cVhvn) = O(n~d).

ESTIMATING ~JP{I). By analogy with (16) we write

(22) Jp(-r)= {

where

Note that now conditional on iV7 the order statistics Uni, N^ + 1 ^ i < n are
distributed as the order statistics of a sample of size n — Ny from a uniform distribution
on (7,1). Hence for i — Ny + 1, . . . , n

n- iV 7 + l '

(n - Ny + l)2(n - iV7 + 2)

and if Ny + 1 ^ i ^ fc7 then

k — N

^ ^ ^ - ^ ( n - V + l)2

and
P(\rji\ > cyftnn\Ny) = O{rCd) ,

where rji — (Uni —fii{l))l^i{l)- Further, by analogy with (17)-(21) we obtain from (22)

(23) 7p(7) =

with P(\rn\ > c-v/hTn) = O(n-d).
Combining (10), (11), (21) and (23) we find

t=i

- kp)
2

n

\n a n
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where rnt satisfies P(max1^/^m Ir^l > cVln n} = O(n~d). Note that in (24) by Bern-
stein's inequality

(25) P(|iV7 - fc7| > o / n l n n ) = 0{rTd).

Furthermore, from (8)

(26) Via. 0) - ," - £ , - . , + j = g ^ ~ > ' « - »,) + T.K ffl ,

where

( ) "

ESTIMATING Tn(a, /?). We shall show that

(27) P(|y%rn(a,/3)| > cannon- 1 ) = 0{n~d).

According to (9) Sr(a, 0) is a polynomial of degree r on r variables TTI, . . . , nr. Each
of these variables we can estimate, with the help of the representation (24). At first let
£ = 1. Since EWl = v = a£a + (P- a)/j, + (1 - j9)§j, then in (24)

(28) 7T! = ^

( ip fcg) 1
2/(C)n

where

p n = ( V o - fcQ|3/2 + V , - A ; , | 3 / 2 ) r n l + ( ( a o )

By Bernstein's inequality P(|7r!| > cy/n In n) = O(n~d), as n —̂ oo. If in (24) £ > 2
then we can clearly bound \TT(\ by en for some positive constant c not depending on n.
This argument shows that for any r ^ 3 and all non-negative integers i\,..., ir satisfying

= 0(n"
1=1

a s n - > o o . This proves (27).
Further consider ir\ — 7T2 in (26). From (24) and (28) we have

(29) l '" " 2

+ 4 = HZ* - M)2 + (i - PWe - P)2 - (« - M)2] + Pn,
y 71
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where P(\pn |> c(lnn)3/2n~1) = O(n-d).

Finally, we obtain the representation for 71"! from (28):

(30) ( | | \
^ t=i t=i

a(l-a)

where P( |rn l | > cOnn)3/2^1) = 0{n'd).
Combining (26)-(27) and (29)-(30) we obtain the proof of Lemma 2.

PROOF OF THEOREM 1: Using the notation of Lemma 2, let <p(t) = E exp(itg(X!)),
tsR, _

Fa[x) = P{UX + U2 ^ x} and,

G{x) = *(x) - ~ ^ ( z ) ( z 2 ~l),xeR,

where K3 = JB53(X!) + 3£r5(Jf1)p(AT2)/i(Xi,X2). Simple calculations show that

and if |t| > 2/(/3 — a) then |v(t)| < 1 and hence the Cramer condition is satisfied. Since
the functions g and h are bounded then the theorem giving the asymptotic expansion for
[/-statistics holds (see, for example, [2, 5, 18])

(31) sap\Fo(x) - G{x)\ = 0{n~l).

Now we shall apply Lemma 2. First we note that

( ) | ) = O(n-d)

for 7 = a and 0. Therefore

(32) Fa(x) = F

And from

- G{x)\ < snp\Fa{x) - G(x)\

•sup
x

(33)
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we obtain the proof of Theorem 1. D

PROOF OF THEOREM 2: By Bahadur's theorem (see, for example, [1], or [11])

(34) Xnkl = £ , - N"~in
 f \ , + Pn ,

where

(35) P(\Pn\ > c(lnn/n)3'4) = 0(n-
d)

for some c > 0 and every d > 0 not depending on n. Furthermore, with the help of
(11), (13), (21) and (23) for p = 2 and (34) with 7 = a,/3 we obtain the following
representation for 5 2

(36) 5 « - 2 +
n .

where

and the remainder term pn satisfies (35). The details of the proof are similar to the proofs

in [13] and [11]. Here we omit the details since the proof follows that of Lemma 2.

Recall
P( |E(7(*' < &) - 7)| > cV^) = O(n-d)

for 7 = a and 0. Applying this observation to the representation in Lemma 2 and using
(36) we can write (7) as

V Vl + (a2n)-iEr=1^(^)+^2Pn / ^ '

as n —¥ 00. By the inequality from [16]

, n s -1/2 1 n

( 1 + (a'n)-1 ] [>(*) + a-2pn j = 1 - — £tf(jrO + O ((In n/nf")

with probability 1 — 0{n~d) for every d > 0. Thus we can write

F,(x) =
+ O(n~1), x£R.

Here with probability 1 — O(n~d) for every d > 0
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U2) (l -

where

v 1 c »**"-î

and

Therefore

with A = -

= h{Xi,Xi)-1^{g{Xi)rl>(Xj)

Ff (i) = P{UX + £/3 + A ̂  x) + 0{n-x)

+ . Denote

ff(i) = 9{x) - -^fcj>(x)(x2 - 1), x&R

K3 = [Eg3(Xl) + 3Eg(X1)g(X2)h(X1,X2)]a-3 .

Further by analogy with (31) - (33) we have after simple calculations

|Fs(x) - H(x)\ = sup|P(tfi + U3 < x) - H{x + A)| + 0 ( 0
X

^ sup\P(Ui + U3^x)- H{x)\ + sup|^(i) -H(x

This proves Theorem 2.
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