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ABSTRACT. Dry snow on the surface of polar ice ice sheets is first densified and
metamorphosed to produce firn. Bubbly ice is the next stage of the transformation process
which takes place below the depth of pore closure. This stage extends to the transition zone
where, duc to high pressures and low temperatures, air trapped in bubbles and ice begins
o form the mixed air clathrate hydrates, while the gas phase progressively disappears.

Here we dev t‘lnp a model of bubbly-ice rhe ology and ice-sheet dynamics tdkmu into ac-
count glacier-ice compressibility. The interaction between hydrostatic compression of air
bubbles, deviatoric (uniaxial) compressive deformation of the ice matrix and global de-
formations of the glacier Imch is considered. The ice-matrix pressure and the “absolute-

load pressure are dl‘:lillﬂ’Lll‘shLd Similarity theory and scale analysis are used to examine
the resultant mathematical model of bubbly-ice densification. The initial rate of bubble
compression in ice sheets appears to be relatively high, so that the pressure (density)
relaxation process takes place only 150-200 m in depth (below pore close-off) to reach its
asymptotic phase, wherein the minimal drop between bubble and ice pressures is gov-
crned by the rate of loading (ice accumulation). T'his makes it possible to consider densi-
fication under stationary (present-day) conditions of ice formation as a special case of
primary interest. The computational tests performed with the model indicate that both
ice-porosity and bubble-pressure profiles in ice sheets are sensitive to variations of the
rheological parameters of pure ice. However, only the bubble-pressure profile distin-
guishes between the rheological properties at low and high stresses. The porosity profile
at the asymptotic phase is mostly determined by the air content in the ice. In the comp-
anion paper (Lipenkov and others, 1997), we apply the model to experimental data from
polar ice cores and deduce. through an inverse procedure, the rheological properties of
pure ice as well as the mean air content in Holocene and glacial ice sediments at Vostok
Station (Antarctica).

1. INTRODUCTION

sure becomes suflicient for the formation of the mixed air
clathrate hydrates (Miller, 1969). Below this depth, the two-
e . e gt . ; 2 dhase bubbly ice changes into a three-phase ageregate,
I'he formation of glacier ice in the melt-free zone of polar ice B s i L - S [ S
; § SRR 4 which is the main attribute of the fourth stage, where air
sheets results [rom a complex process of densification of dry . o :
) i i bubbles and air-hydrate crystals coexist in the ice matrix.
snow deposited on the surface and can be presented as a se- TI : : g l i 6 Wt el
g ; g : 1e gas phase progressively disappears with depth in the

quence of five stages. For example, at Vostok Station this St Il 8 | l ““] HEE ik I ——
: § i . e I e el e e -

process has been described by Salamatin and others (1985) AEari e pone Faal may e Sl fvise Btk e s
and Lipenkov (1989). In the initial stage, the densification

of snow is mainly a structural re-arrangement and sintering

bly-ice stratum. Below the lower boundary of the transition
zone, the two-phase aggregate (distinguished as the [ifth
process due to ice-grain surface forces, the thermal gradient stage) consisting of ice and hydrates is present down to the

ariliee Toad Stove hasaerinizidl volithecontettral o et bottom ol the ice sheet. The three phase transformations of
closed (isolated) pores and is present down to a density of

about 0.55 Mg m

glacier ice alter pore close-ofl involve different mechanisms
must he distinguished
The densification process within the

and rates ol densification, so they
(Lipenkov, 1989
bubbly-ice stratum considered below is of special interest

" The second stage is firn. It is character-
ized by viscoplastic deformation of ice grains under increas-
ing overburden pressure. When all pores become closed,
usually at 50120 m below the surface, the atmospheric air because itis suitable for studying the rheological properties
is trapped in the form of bubbles, and thus the third stage, ol'ice at relatively low stresses. Also, the density distribution

defined as bubbly ice, comes into being. Further densifica- within this stratum is presumed to record past variations of

tion of sinking bubbly-ice sediments is essentially a relaxa-
tion process corresponding to air-bubble constriction in a
plastically deforming polyerystalline ice matrix driven by
the pressure drop between the two phases. At a depth of
500-1000 m (depending on temperature) the bubble pres-
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initial ice porosity and bubble pressure at pore close-oll:
Modelling the bubbly-ice densification is still considered to
be a necessary step in the theoretical study of air-hydrate
formation in ice sheets.

The first quantitative descriptions of the densification of
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bubbly glacier ice under overburden pressure were given by
Langway (1958), Bader (1965), Gow (1968), Shumskiy (1969)
and Nakawo and Narita (1985) on the basis of phenomeno-
logical approaches or simply as appropriate approximations
of experimental data. Salamatin and others (1985) em-
ployed a more rigorous averaging procedure (Bensoussan
and others, 1978) to develop in general the same densifica-
tion model as the one constructed within the framework of
the cell-structure approximation by Wilkinson and Ashby
(1975) for simulating ceramiecs production processes. This
model was applied to deduce the parameters of the power
creep law of pure ice from porosity profiles measured along
five deep ice cores retrieved in Antarctica and Greenland.
Later, the inferred rheological parameters of ice were used
by Lipenkov and others (1989b) for simulating climatically
induced signals in porosity (density) profiles in ice sheets.
Using the same theoretical approach, Lipenkov and Sala-
matin (1989) also studied the volume relaxation of the ice
cores recovered at Vostok Station. Results of the investig-
ations carried out in this field in 1982-89 have been
reviewed by Salamatin and Lipenkov (1993).

The mathematical models mentioned above essentially
use (a) a power creep law for ice and consider (b) bubbly-
ice densification as a process of hydrostatic compression at
(¢) the averaged pressure in the ice matrix equal to the ab-
solute load pressure. All of these assumptions are somewhat
limiting. First, Pimienta (1987) and Pimienta and Duval
(1989) have shown that asymptotically, as the bubble-ice
pressure drop decreases, the rheological behavior of ice
becomes linear viscous. Although this is not revealed in
ice-porosity prediction, it changes the estimate of air-bubble
pressure at large depths. Secondly, due to the lateral con-
straints, the deformation of the ice matrix in the bubbly-ice
densification process is a composition of hydrostatic and
deviatoric uniaxial (vertical) compression of comparable
strain rates. Thirdly, the deformation of bubbly ice on the
micro-scale of a single bubble is also subjected to additional
“external” deviatoric strains induced by the global macro-
scale movement of the ice sheet. To account for these peculi-
arities, special research has been carried out to derive gen-
eral rheological relations governing the creep [low of bubbly
ice and its expansion (compression) in pressure relaxation
processes (Salamatin and Duval, 1997). The kinematic inter-
action of ice-sheet flow with compressibility eflects has also
been considered (Salamatin, 1991). In addition, a compre-
hensive experimental study of bubbly-ice densification has
recently been undertaken on the Vostok ice core. The new
data set obtained includes for the first time direct measure-
ments of bubble pressure in unrelaxed ice and enables theor-
etical models to be precisely  validated by
experimental data. Thus, we need: (1) to develop a new

more

model in order to overcome the above-mentioned draw-
backs by introducing all the recent theoretical results and
(2) to revise the model application, taking into account the
new experimental data. In accordance with this two-fold
purpose, our work will be presented in two parts: 1. Theory
and II. Applications. In this first paper, we develop an im-
proved mathematical model sufficient for predicting bub-
bly-ice densification between the close-off level and the air-
hydrate formation zone; we also conduct a preliminary in-
vestigations and sensitivity study of the model. In the com-
panion paper (Lipenkov and others, 1997) (hereafter
referred to as paper II) we use the model to interpret the
ice-core data.

388
https://doi.org/10.3189/50022143000034961 Published online by Cambridge University Press

2. GENERAL EQUATIONS GOVERNING DENSIFIC-
ATION OF BUBBLY ICE

Since bubbly ice is a two-phase heterogeneous medium [rom
a mechanical point of view, we should distinguish two space
scales when modeling the densification processes: (i) a
micro-scale associated with a characteristic size of pores
and (or) a characteristic distance between neighboring air
inclusions, and (ii) a macro-scale corresponding to the typi-
cal dimensions of the domain where bubbly-ice densification
takes place. Here, we use a “macro-continual” approach to
describe the behavior of the air—ice mixture in terms of the
macro-scale, averaged characteristics introduced conven-
tionally in the mechanics of multi-phase media:

¢, ice porosity (air-volume concentration);
p, density of bubbly ice, p = pi(1 — ¢), where p; is the
density of pure ice (p; is assumed to be constant );
v, averaged velocity vector;
P, B, averaged pressure in the ice matrix and the mean
pressure in bubbles, respectively;
i B
The mass and momentum balance equations governing
the slow creep motion of glacier ice can be written in the
form:

deviator of macro-stresses in the ice matrix.

dp/dt+pV-v=0, VB=V -T+gp (2.1}
where g is the gravity vector, ¢ is the time and V is the dif-
ferential nabla operator.

Equations (2.1) are general. Rigorous definitions of the
above characteristics and corresponding constitutive rela-
tions completing the system in Equations (21) may differ
from one stage of densification to another. However, in any
case they must be based on and deduced from the analysis of
deformation processes on the micro-scale level. Such an
analysis has been undertaken for bubbly media by Salamatin
and Duval (1997) within the framework of homogenization
methods for periodic structures (Bensoussan and others,
1978). The results are used below.

First of all, a simple mass-balance (state) equation holds
for a specific volume ol ideal gas ¢/(1 — ¢) in a unit mass of
ice provided neither phase change nor gas diffusion in the
ice matrix takes place:

d[ eB ]_
dt [T(l - c)} =i

where T is the temperature (K) treated hereafter as a

(2.2)

known value. Equation (2.2) means that the quantity in the
square brackets is constant along bubbly-ice particle trajec-
tories.

The near-surface bubbly stratum of the ice sheet is com-
posed of polyerystalline 1sotropic ice (see e.g. Lipenkov and
others, 1989a). Therelore, one can write, as in Glen (1955),
Budd (1969) and Shumskiy (1969), the following relation
between deviatoric micro-stresses 7 and micro-strain rates
é in the ice matrix:

7= 2n{4I1,)é. (2.3)
Rheological coeflicient 7 is a function of the second invar-
iant of the strain-rate tensor IL, = 0.5¢€ : € and temperature
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In addition, the macroscopic bubble-compression rate w

can be defined as:
w==V:v/e. (2.4)

Finally, as proposed by Salamatin and Duval (1997) for
ice with mono-dispersed spherical bubbles, we have the fol-
lowing rheological relations which determine the phase
pressure drop and the deviatorie stresses in bubbly ice in a
deformational process:
I)i_ﬂ} =~

9 B RE] . 5
7 [-:,(5 + 4IL;) + dsITgy (£ + 4II|.;)] d&,
e/ V3

(2.5)
and
1 9 g
detws
T =2 1 — + 41T
[ L ( 3z T [)
dccw* 4Pt
+r “‘,’- (' L 4 4XIE ) |d¢ (2.6)
3¢*
Here E is the deviator of the macro-strain-rate tensor:
E = (Vv)'—(V-v/3)6 (2.7)

where ¢ is the identity tensor and superscript “s" denotes
symmetrization; Iz = 0.5E: E: & is the tuning para-
meter, which varies within the range 0.4 < 5 < 1 for differ-
ent approximations of micro-deformations in the bubble
vicinity.
Equations (21), (2.2) and (24)—(27) form a complete
model of bubbly-ice creep flow, including bubble-pressure

(density) relaxation effects. The deviatoric deformations of

ice (IIg) and the bubble compression (w) are closely inter-
related, since both processes are represented equally and
symmetrically in the macro-scale rheological Equations
(2.5) and (26).

Originally, the latter relations were derived for a peri-
odic composition of ice with spherical bubbles. In reality,
the shape of air inclusions can be rather irregular, especially
in young ice, immediately after pore close-off, Yet, we be-
lieve Equations (2.5) and (2.6) remain approximately valid
in this case because the air-volume concentration in ice is
relatively low (¢ < 0.1) and the deformation of ice-matrix
cells each containing a small single bubble does not depend
at lirst order on the bubble shape.

3. ANALYSIS OF DEFORMATION PROCESSES IN
THE UPPER STRATUM OF THE ICE SHEET

The compressible air bubble-ice medium forms a relatively
thin layer in the upper part of ice-sheet thickness, This spec-
ific stratum does not noticeably influence the overall move-
ment of the glacier but is involved in complicated
deformation processes which are responsible for the distri-
bution of the vertical velocity near the ice-sheet surface
(see Fig. la). Here, we consider the kinematic interrelation
between the global ice-sheet flow and the densification, as
initially looked at by Salamatin (1991).

Interrelation of ice-sheet flow and compressibility
effects

Let s be the distance from the ice divide along a certain flow
tube confined between two close lowlines with a relative
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width H (s), as shown in Figure la. The vertical coordinate
is noted as z (the z axis is directed upward); u, w are the
corresponding longitudinal and vertical velocities; [, 2z, are
respectively the ice-sheet surface and bed clevation: b is the
ice accumulation rate, and g, wy are respectively, the slid-
ing velocity and melting rate of ice at the glacier bottom.

It is also helpful to introduce the elevation of glacier sur-
face (') and the modified coordinate (/) measured in
equivalent of pure ice:

vz 1
gl =3 & / (1-c)dz, =z +/ (1—ec)dz
(3.1)

The total volume rate of ice in the tube through its cross-sec-
tion of unit width is

(b — o — Bl /Bt) H(
0

A(s,t) == s)ds, (3:2)
the corresponding flow rate due to sliding is (I — 2)/uq.
and the relative fraction of the flow rate caused by plastic
shear deformations within the glacier body is then defined

as
a= 1 === (ll == 2”)&“/44 .

(no shear within the
glacier) to 1 (noslip in the basal layer). In some cases and,
n particular, in the ice-sheet densification modeling this

The latter ratio varies from 0

variable is likely to be considered as an adjustable (tuning)
parameter.

Closer examination of the general Equations (2.1) for
ice-creep motion along a {low tube under conventional
boundary-layer (shallow-ice)
allows the

approximation assumptions
profiles for the vertical and longitudinal
velocities to be written explicitly with the snow firn-bub-

bly-ice compressibility taken into account (Salamatin, 1991);

= T ],
b +('.)l+ | al
—— B Rk AT Wi
. Q-0 ot "=l
L h o .
+.£ LM“"-'-EE(H”L‘ (3.3)
—2 i F
pd=d TR { 114(1 — —GI_:l)}
oA :fl)ff ()‘VU
Z— [‘f).ﬁ =2 }(C’ Cls=)-

Here, h = [ — zisthedepthand z = (2 —
normalized vertical coordinate.

3(])/(:’-'. —= Z“), the
The functions G(z) and
F(z) describing power-law shear in the glacier body are
conventionally presented in an integral form (see c.g.
Salamatin, 1991),

The first formula in Equations (33) directly represents
the longitudinal velocity « as the mean slab-flow velocity
and superposed shear component for ¢ > 0, The structure
of the second formula for vertical velocity w0, although more
complicated, is also clear. First terms respectively show con-
tributions of (1) snow accumulation rate, (2) vertical motion
of the ice-sheet surface, (3) densification rate of porous ice
deposits, and (4) vertical deformation of the ice-sheet thick-
ness in the slab-like flow at the surface horizontal velocity.
The last two terms (being proportional to o) describe the
direct impact of the shear strains in the glacier body and
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Fig. 1. Different scales of ice deformation to be considered when modeling bubbly-ice densification in ice sheels ( see the text for the
meaning of the denotations ). (a) Fragment of ice-flow tube representing the “external” motion of the ice sheet. { b) Bubbly-ice
aggregate or particle (macro-scale). (¢) Unit cell containing a single bubble ( micro -scale).

the influence of the ice thickness and the bed-relief lateral
variations on the vertical velocity profile.

According to Lliboutry (1981), the integrals & and F'can
be approximately evaluated:

,z_CI‘(J+2 = _ =yoetl

e = 7 {1 (1-3) ] :
f____(]-72) o __ zyoutl ;
Flf) =5~y [1 (1—7%) } (3.4)

where ay is the apparent exponent in Glen’s power law mod-
ified in accordance with the non-isothermal conditions in
the basal layer. Straightforward estimations by Lliboutry

showed that ag > 5-10. Hence, at least in the upper half of

the glacier thickness, the terms (1 — 3:)“"+1 in Equations

(34) do not exceed 10 ? and can be omitted. This allows
Equation (3.3) to be rewritten in the following form:

A 14 o
U= — —,
z A ag+ 1]
v= —w+ Ol/Ot +udl/ds

b & h
- cwdh — ——(Hu)  (3.5)
I-¢eh—g Jo H s
where A = ' — z is the thickness of the ice sheet in ice
equivalent and v is the downward vertical velocity of the
ice sinking into depth relative to the glacier surface.
In central regions of ice sheets, where A and u are rela-
-390
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tively small, for example in Antarctica at Vostok Station, the
accuracy of Equation (3.5) for v is not worse than 10 1010
2

down to a depth of h = (5)A.

Macro-strain rates in bubbly ice

It is now possible to estimate the deviatoric macro-strain
rates in the bubbly-ice stratum and to express the tensor E
via parameters describing the global flow of the ice sheet
and the bubble-compression rate w. Originally, the coord-
inate system h, s is curvilinear and not orthogonal. Never-
theless, in each point of the glacier body, we can introduce
the local orthogonal (downward and horizontal) directions
h, s (see Fig. la) and the transverse one. Let us now desig-
nate the normal (diagonal) components of the deviator E
along these directions as g1, g2 and g3, respectively. By defi-
nition, from Eguations (24), (2.7) and (3.5, taking into ac-
count that u does not depend on h in the upper part of the
ice sheet, we have

i e 1 L BOE
h=gtgry BEgWT g WEFVTESs

Then, direct substitution of Equations (3.2) and (3.5) yields

g =—2ew/3+q, p=cw/3+e, @=a/3+q¢

(3.6)
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Here, g,
rates of the “external” motion of the ice sheet (see Fig la

[
0

i = 1,23, represent the normal deviatoric strain

and b). Equations (3.6) show that on the macro-scale level
the compressive deformation in bubbly ice of a glacier
occurs, as illustrated by Figure 1b and ¢, only in the vertical
direction.

It should also be noted that the introduced h. s direc-
tions are the principal directions of the deformation in the
upper part of the ice-flow tube, where the shear stresses and
temperatures are comparatively low, (o provide noticeable
shear strain rates. Then, ¢, g2" and g3 are the only non-zero
components of the tensor E induced by the glacier motion
and the corresponding effective strain rate ¢, can be deter-
mined as:

"2 2 Bl
=(q) + (") +a'e .

Further, it is relevant to define the rate of horizontal ice-
layer thinning as ¢; = —¢," and, using Equations (3.6), to
write the second invariant II; in Equations (2.5) and (2.6)
in the form:

1 55 9
Iy = gr'-lu;‘ + cwep + €,” (3.7)

As arule, in the central part of the ice sheet, not far from
ice divides, the deformation is close to a simple two-dimen-
sional extension and /(o + 1) < 1. Thus, we have

1R €y 2 BIA (3.8)

4. MATHEMATICAL MODEL OF BUBBLY-ICE
DENSIFICATION

Ice porosity and the rate of bubble compression

Hereafter we will use subscript “c” to denote the initial con-

ditions (Ti., Pye. ¢e, ...) at the upper boundary of bubbly ice,

1.e. at the close-ofl' depth fi. which corresponds to the end of

the pore-closure process in the ice sheet. These boundary

parameters determine the constant quantity (the mass of

air trapped in an ice particle) given by Equation (2.2), from
which we obtain

ce=v/(v+Hh), v=PrT/T, (4.1)
where
O
L li=ep BT, =Va
whilst 7% and P, are the standard temperature and pressure
(STP: Ty = 275.1 K, £, = 01013 MPa), B, is defined here as

a bubble pressure prevailing at the end of pore closure and

Vis the air content expressed as a volume (STP) of dry air

enclosed in a unit of mass of the ice sample. The dimension-

less complex 7, (that must be distinguished from ~ which is
»

dimensional) is preserved in the “memory” ol any bubbly-ice
particle in terms of porosity and, thus, has an important role
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as a paleoclimatic indicator. It may be also directly obtained
through air-content measurements.
Mass-balance Equation (21) together with Equation
(2.4) lead to
de/dt = —¢(l — c)w (4.2)

which can be transformed into another equivalent form:

(I1 l—e e
mu = = .

Substitution of Equations (4.1) finally gives:
= T4 (B
“ Bdt\T "

Absolute load pressure and the pressure in the ice

(4.3)

matrix

Next, we introduce the load pressure

‘pl = -Palln + yﬂihl

(4.4)
where P, is the atmospheric pressure in the ice equivalent:
W=UI-7

The averaged pressure in the ice matrix P, (see Equation

S 1 |

(2.1)) and the load pressure A are not equal. This becomes
evident if we write the projection of the momentum-halance
Equatons (21) on the A axis;

AdP,/dh = aT,/0h + gpi(1 — ¢)
where T is the first component in the diagonal of the stress
tensor T for the & direction (additional terms with shear
stresses are omitted since they are negligible in the frame-
work of the shallow-ice approximation). The integration of
the latter equation taking into account Equation (4.4) yields
the following relationship between the two pressures:

F=R+T. (4.5)

Hence, It and A may be equal (which was assumed in prev-
1ous models) only i 7} is negligible, This is not true in gen-
eral (sec the discussion and sensitivity tests below),

Formulation of the model

Thus, summarizing Equations (2.5)(2.7). (36). (37) and
t]

Equations (41}, (4.3) (4.5), one obtains the model of bubbly-

ice densification:

- T d }); L e
T WS - I

9 "2/ 3

\/:E J2ew/V3

])'nm = !”Jihf - H) =

£

[1(€ +4I0g) + 4kTIen (€7 + 4T0;;) |dg (4.6)
4 3 A 4t
—|cw+ = 1
3(’ +2“)./,' "( 3¢ " i)

4 ']u,'" A

G — 411 1

St 3(2 ( 3C + I ) dg

b e el
i ; TN b
II: = —}ru. +wey + 6,7, Yo = T—h% Py
The mterrelation of the deformation processes occur-

ring in the glacier at different scale levels (schematically de-
picted in Figure 1) is a highlight of the model. Universal
bubble-constriction rate w due to the lateral constraints
(see Fig. 1b) influences deviatoric strain rates g;, g2 and gy
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in an ice cell surrounding a bubble (see Equation (3.6) and
Fig. lc). As a result, it is equally represented in the second
invariant Ilg of the macro-strain-rate tensor Ein Equations
(2.5) and (2.6)
q' g2 g’ (ie
quently, both appear (as lg) in the main Equation (4.6) rel-
ating I, and w.

For given parameters €;.€, and close-ofl conditions
he, Poey Vs (e, c., Ty, as functions dependent on time f,
and the longitudinal coordinate s, the problem in Equations

together with the global strain rates
e, and €,) of the glacier motion. Conse-

(4.6) is an integro-dillerential equation with respeet to the
bubble pressure B, prevailing in the particle of bubbly ice
which was formed at close-ofl’ depth at the moment ¢ = {..
The trajectory of the particle: s = s(t), h = h(t), t > t..

is calculated on the basis of Equations (3.5):
ds/dt = u(s. h.t) dh/dt = v(s,h,t); (4.7)

Sjt=t, = B¢ h-\r:r. = hr-

To determine the ice temperature T, the energy equa-

tion has to be solved simultancously with Equations (4.6)
and (4.7).

5. MODEL INVESTIGATION
Ice-flow law

For practical use of the general model in Equations (4.6) and

(4.7), we have to assume a concrete form of the constitutive

law in Equation (2.3). Let us accept the polynomial relation-

ship between effeune shear strain rate ¢ = /IL, and stress
IL- as

2 =7/My + 7%/ M>. (5.1)

Here, a is a creep exponent and M; and Ms are the rheo-
logical coeflicients, which are functions of temperature:

I: —— T
M; = pjexp [ RQ:;-. (T)] )

where g1 and s are the constant factors, ) and () are the

j=i9 (53

apparent activation energies and R is the gas constant:
R, = 8314 ] (mol-K)

The rheological law given by Equation (5.1) was found to
fit closely a wide varicty of experimental data (Budd, 1969;
Shumskiy, 1969) and the following tentative c\llm ates canhbe
suggested: o = 3.5, Q1 = Q2 =~ 60k mol ', while the fac-
tors pq and po are of the orders of 1 MPayear and
10 * MPa® year, respectively.

The apparent viscosity 7in Equation (2.3) is determined
as a function of A = 411, by

1 a—1
[1/M + (A?r;) /Moy =1, (5.3)

which is an immediate consequence of Equation (5.1).
Dimensionless presentation

At this stage, it is relevant to establish the main dimension-
less numbers of the process and to apply similarity theory
and scale analysis in order to examine Equations (4.6) and
(4.7).

The difference between absolute load pressure and bub-
ble pressure is maximal at the close-offlevel where it is of the
order of Pio — Patm. The typical value P° of (Pc — Paim) is
then to be taken as a scale for stresses in the bubbly-ice
stratum. Let us also designate as b the typical value of the
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accumulation rate b. Then the space (h°) and time (£7)
scales are written as

h' = P°/(gp)- t' ~ P'/(gpit")
The corresponding dimensionless variables are distin-
guished hereafter with super bars:

- gph o _gwd® 5 R wP' o T
h = po t= PO B.—P”, wzm‘ T_’f::
p_Pm o _aP . &P o RT_,
L T gpib®’ €a = gp:b?’ T~ PO Tslt=te:
(5.4

Consequently, the model in Equation (46) can be trans-
formed into the [h[luwing dimensionless form:

= r }31) ;Yr
W= (&
}D]' df '7( =I5 'Ph

BPim+h—B = j (7 (€ +EJ2) + kE,7 (5 A T >)]d£

3 1 (‘2 =
s (C’_‘l‘zf{)[ (CZ ‘f’h\)

E? = @ + 3cwe, + 3&°
where 7j(\) is the solution of the modified Equation (5.3)

1 ()t Agpibo M,
Ky Ky ] 3(Pl])2

gpbOMy 2\ ;
I(Q = W -ﬁ . (J.G)

At a given temperature i parameters K and Ks are
the main similarity criteria of the densification process. Pre-
liminary estimates show that K7 ~ 0.5-5.0 and Ky ~ 0.03
0.3 at a = 3.5 for typical ranges of the scales: P¥ ~ 04—
0.7 MPa, b ~ 20-50 Mgm *a ' and T, ~-50° to ~20°C
(see paper II for more detailed data). Another
dimensionless parameter 7, which is a characteristic (equil-
ibrium) value of the air-volume concentration in the ice, has
the order of 107

In case of the estimate in Equation (3.8), € and €, are of
the same order as the characteristic space scale divided by
the glacier thickness and for A ~ 1000-3000m they are
small values:

Qe P (gnd)=h" /A ~1072 =107,

Since ¢ is also small: ¢ < 0.1 and @ ~ 1, the first term on
the righthand side of the integral Equation (5.5) is dom-
inant. This suggests that P, may be very close to B, whereas
the relative external deviatoric macro-strain rates (€; and
€,) may have only a secondary influence on the bubble-com-
pression rate in central parts of ice sheets. However, a cer-
tain (even small) perturbation of the latter equation leads
to the corresponding relative change in @ which, in turn,
results in a cumulative (integrated) influence on the predic-
tions of the decreasing porosity ¢. The significance of this
effect will be demonstrated below in sensitivity tests. Tt is
also obvious that in high-rate-deforming parts of ice sheets,
particularly in marginal zones, € and €, are not small and
may play a primary role in densification processes.

At the same time, a small ratio k" /A is evidence that the
relaxation of bubbly ice occurs within a relatively thin layer
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and short time interval. With this in mind, one could exam-
ine bubbly-ice densification as a stationary process under
constant (mean, present-day) conditions b, Py, hie. ¢ P,
B and T, (if the typical dme-scale of their fluctuations is
much larger than t”) and without regard to possible geogra-
phical variations of the close-off characteristics.

Consequently, Equation (4.2) takes the form:

e Oh = —cw

where 7 = 1/b". In accordance with the definition in Equa-
tion (3.6), after differentiation of Equation (3.5) for v with
respect to h, we come to the dimensionless relation

(1—¢c)dp/Oh = —c— € .
“ombining the two latter equations, we obtain
r'j)[(! - (')u} 10h = —& .
Hence,
r=(1—gh)/(1-2c)
and the depth age relationship is given by
dt = dh/(1 —&h). (5.7)
Thus, using Equation (5.7) to eliminate the time f from
Equation (5.3), we find that, for approximately constant
temperature 1’ = T,
= e hdpb,
=B a

This enables direct calculation of the profiles of ¢ and B, vs

w

depth h from Equations (5.5)-(3.8) for the high-rate quasi-
stationary stage of densification.

The corresponding boundary condition at pore close-off
can be written as

il = P (5.9)
Asymptotic phase of the process

Note that the above model and in particular Equations
(57)(59) remain valid for any ice particle even il the
close-oft conditions, at which it was formed. and the accum-
ulation rate have changed in the past, i.e. for ice found at
great depths: h 3 1. Therefore, the asymptotic behavior of
cand Py, as h — o (i.c. as the age of the particle becomes
large), is important and gives a key for reconstructing the
variations of the close-off’ characteristics which are asso-
ciated with climate, provided that the present-day
conditions are comparatively steady.

Indeed, when ¢ — 0, for i > 1 the bubble pressure F,
becomes large in comparison with the integral on the right-
hand side of Equation (5.5). Hence, we have

dB,/dh = dR/dh =1
and, using Equation (5.8), we estimate w as
@ (1 —eh)/B,. (5.10)
Furthermore, asymptotically, as ¢ — 0 and w decreases,
Equation (5.5) and (5.6) yield

Pi; = lenﬁLﬁ = / )_](El e 3fn2)d-§ = 1.5(_‘| I\—] i
J0

¢ =%/ P, h>1.

The model in Equations (5.10) (5.11) 1s local in time, 1.¢.

(5.11)

P, and ¢ for large depth A do not depend on the history of
the process. It is also important that at this stage of densifi-
-ation, which we hereafter refer to as an asymptotic phase,
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the bubble pressure does not depend on the genetic complex
s (or 3., for which possible variations in accordance with
Equations (3.11) are, thus, directly recorded in the porosity
profile.

The above theoretical investigation provides a clear gen-
eral picture of bubbly-ice densification and opens the way to
numerical simulation of the process.

6. COMPUTATIONALTESTS AND DISCUSSION

Finite-difference and iterative methods have been used to
solve Equations (5.5)—(5.9) numerically. A special interac-
tive computer system’ has been developed to study the den-
sification process in glacier ice. It directly calculates
porosity and bubble-pressure profiles vs depth h for given
close-oll conditions and pure-ice rheology, and solves the in-
verse problem of inferring the air content and rheological
parameters of pure ice from porosity and/or bubble-pressure
measurements, In this section, we discuss the sensitivity of
the model results to variations of the different parameters
taken in the dimensionless form.,

The following values, typical for polar ice in the central
parts of Antarctica and Greenland, [or instance in Antarc-
tica at Vostok Station, and consistent with the above esti-
mates, have been chosen as basic tentative proxy of the
1]](’)([(“ l]ﬂ]'[ll]]l'[t‘l's:
p=38, Ky=25, K=006 Fuu=01s Be=1012
te= LOTS (7. =000, =g =002 k=05 (6L

Preliminary computations were performed to evaluate
the influence of the tuning factor £ and the “external® strain
rates €, € on the model predictions. As expected, it was
found that variations ol both £, within its uncertainty range
from 04 to 1.0, and €,. €, from 0 to 0.04 (a plausible upper
bound for the central parts of the ice sheets), do not change
the solution notably. The maximum deviation of the poros-
ity ¢ and the bubble pressure B, from the basic profiles was
observed o be within £1.5-2%. Subsequently, these para-
meters (£, €,, €1) were fixed in accordance with Equations
(6.1) and remained unchanged for all the following comput-
ational runs.

Sensitivity to the rheological parameters of pure ice

The main series of the tests focused on the model sensitivity
to the rheological parameters My and My (i.e. to variations
of the eriteria iy and K). The two terms of the polynomial
law in Equation (5.1) obviously represent linear and power
asymptotes for low and high stresses 7, respectively. Since
the micro-scale stresses associated with bubbly-ice densifica-
tion [all mostly in the transition zone between linear and
power rheolgical behaviors, both of the criteria are impor-
tant. The transition zone is centered at 7 2= (M /My) bRty
and lor the corresponding range of stresses Equation (5.1)
can be rewritten in the following normalized [orm:

(6.2)
7= (My/My)"/* Ve

é= 7+7,
é = 2M, (M ) My)' 1 Vg,

Relation (6.2) is represented in logarithmic scales in Fig-
ure 2a as curve 1 (the dashed lines show its asymptotes). Let

* - 2 . "
T'he code of the system for IBM-PC compatible computers
is available from the authors on recuest.
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Fig. 2. Influence of pure-ice rheology and boundary conditions at pore close-off on ice-porosily and bubble-pressure profiles in ice
sheets as revealed by computational tests. ( a) Polynomial rheological laww of ice in the normalized form. The curves 1—3 corvespond
to the various parameters Ky and Ko (indicated on the figure ). The dashed lines are asymptotes of curve 1. (b)) Relative bubble
pressure By, vs normalized depth h. The profiles 1-3 are computed with the same pairs of the parameters Ky and K» as in ( a ). and
under fixed elose-off conditions (¥. = 0.01). The dotted and dashed lines represent absolute load pressure Py and the pressure P,
in the ice matrix, respectively. (¢ ) Porosity (¢)—depth (h) profiles I-3 calculated with the same model parameters as referved to for
identically numerated Py, — h profilesin (b). (d) Porosily profiles I-IT1 calculated with fixed ice theology corresponding lo the
basic curve 1 in (a ), and for various v (as indicated on the figure ). The profile 111 ( dotted line) is simulated with the same

parameters as the curve IT but P, is presumed to be identical to P,

us assume now that curve 1 corresponds to the basic values:
K, = 25, K5 = 0.05. Then, if the criteria K and K5 are al-
ternately changed the initial curve is modified, for example:
at K| = 1.0 and K3 = 0.05 we obtain curve 2, while at K| =
2.5 and Ky = 0. we get curve 3 in Figure 2a. Thus, Figure
2a illustrates a selective response of the polynomial rheolog-
ical curve at low (high) stresses to a change mostly of the
criterion K (K%). When using the ice-flow law given by
curves | =3 in Figure 2a to simulate the densification process
under fixed close-ofl’ conditions (. = 0.01), we obtain the
corresponding profiles of bubble pressure B, (curves 1-3 in
Figure 2b) and ice porosity ¢ (curves I3 in Figure 2¢) vs
depth h.

The difference between curves | and 2 in Figure 2b
illustrates the fact that the bubble-pressure profile is signific-
antly influenced by variations of the rheological parameter
M. The maximal perturbations are observed, as expected,
at large depth, i.e. in the low-stress range. On the other
hand, when M, is changed (compare curves I and 3 in Fig-
ure 2b), only the upper part of the bubble-pressure profile is
alfected significantly in the zone where the effective stresses
are relatively high. Thus, the bubble pressure is closely and
selectively linked to the rheological properties of pure ice.
On the contrary, no significant change in the simulated por-
osity profile is observed at great depth, even if the “linear”
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viscosity M, is changed, while the upper part of the profile
equally depends on both of the rheological parameters M
and Ms (see the curves 1-3 in Figure 2¢). Therefore, the im-
pacts of the factors M, and M5 on density relaxation are
practically indistinguishable,

Sensitivity to the pore close-off conditions

According to Equation (4.1), when B, = 7, the porosity cis
approximately proportional to the air content V. Therefore,
¢ keeps “memory™ about past close-ofl conditions. Indeed, a
high sensitivty of the ice-porosity profile to realistic var-
1ations (see, for instance, paper IT) of the genetic complex
Ye 18 evident when comparing the profiles I (7. = 001) and
IT (7. = 0.02) in Figure 2d (both of the profiles were simul-
ated with the same rheological parameters as those used for
curves 1 in Figure 2b and c). On the other hand, numerical
experiments show that alter pore close-off” the bubble pres-
sure P, very quickly becomes insensitive to plausible
changes in . This is in agreement with approximate Equa-
tions (5.10) and (5.11). All of the computational tests have
confirmed that the asymptotic phase starts from h = 3.0,

Significance of the model improvements

Summarizing the results presented above, we come to the
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following conclusions: (i) the stationary model is sulficient
for interpreting the experimental data on bubbly-ice densi-
fication; (ii) both ice-porosity and bubble-pressure experi-
mental profiles are necessary to obtain an adequate
solution of the inverse problem of inferring rheological
parameters of pure ice; (i11) the porosity profile can also be
employed to deduce past variations of the pore close-off con-
ditions expressed in terms of the dimensionless complex 7,
which is proportional to air content in ice. The improve-
ments made in the present consideration with respect to the
earlier studies by Salamatin and Lipenkov (1993), such as
incorporating the generalized rheological model of bubbly
ice and taking into account the difference between absolute
load pressure and averaged pressure in the ice matrix, are
important for both inverse and forward problems. The sig-
nificance of the latter factor for predicting the ice-porosity
profile in the relaxation phase of bubbly-ice densification
has already been discussed in section 5 and 1s demonstrated
in Figure 2d. One can see here that the discrepancy between
simulated profiles 11 and IIT obtained with the same initial
data, except that B = B for profile III, may be similar to
the impact of the principal model parameters: K, Ky and
Fe. The effect of using constitutive relations more sophistic-
ated than the power-creep law is also shown to be substan-
tial for simulating the densification process with respect to
bubble-pressure relaxation. However, this mnovation does
not significantly influence the results while modeling the
post-drilling relaxation of ice density (Lipenkov and
Salamatin, 1989), since the latter process takes place at a
relatively high bubble-ice pressure drop, 1.e. within the stress
range where the power-law ereep of ice is valid.

7. CONCLUSION

A generalized model of bubbly-ice densification beneath the
close-off depth has been developed and investigated on the
basis of similiarity theory and scale analysis. The inter-
action between the universal compression of bubbles and
deviatoric strains in a non-linear viscous ice matrix is the
principal peculiarity of the deformation process in the
upper stratum of ice sheets. Due to this, the rate of bubbly-
ice densification may be considerably influenced by the
global flow of the glacier but mainly in its hydrodynam-
ically active regions.

Two phases of the densification have been identified.
The first is a relatively short phase of densification governed
by the initial difference between the absolute load pressure
of ice sediments and the average pressure in air bubbles at
the pore close-off depth. This phase takes place within the
depth interval 1.0 < h < 3.0, where h is the ice-equivalent
depth normalized so that h = 1 at close-ofl. The difference
hetween the absolute load pressure and the averaged pres-
sure in the ice matrix is important especially when model-
ing porosity variations within this depth range. The second,
the asymptotic phase of bubbly-ice densification, takes place
at h > 3.0, under minimal bubble-ice pressure drop which
is governed by the present-day accumulation rate. The rate
of bubble compression at this stage is not sensitive o past
changes in the pore close-off conditions and the bubble pres-
sure does not depend on the air content in ice. On the other
hand, the ice-porosity profile is found to be responsive to
air-content variations.

Both ice-porosity and bubble-pressure profiles in ice
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sheets are sensitive to the rheological parameters of pure
ice but only the bubble-pressure profile distinguishes the
rheological properties at low and high stresses. Finally, the
stationary model of bubbly-ice densification appears to be
sullicient for interpreting the experimental data, provided
that the conditions at the pore close-ofl depth are relatively
steady during the typical duration of the process. In the
accompanying paper (paper II), we shall formulate the in-
verse problem and use the model to deduce rheological
properties of pure ice as well as to estimate the air content
from porosity and bubble-pressure profiles measured in ice
sheets.
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