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ABSTRACT. Dry snow o n the surfacc o f p o la r ice ice shee ts is first dcnsifi ed a nd 
metamorphoscdto prod ucc firn. Bubbly icc is thc ncx t stage of the tra nsformation proccss 
\\'hich ta kes placc bclow the depth of pore closure. This stage cx tends to th c transitio n zo nc 
\\'here, due to hi gh prcssures a nd 101V tem pera t u res, a i r I rapped in bubbles a nd ice beg i ns 
10 (orm the mixed a ir clathra te hydrates, while th e gas phasc progress i\'e1 y di sappea rs. 
H ere we deve lop a modcl of bubbly-ice rheo logy a nd ice-sheet d yna mi cs taking into ac­
co unt g lac ie r-i ce compress ibilit y. The interac ti o n be t\\'ee n hyd ros ta tic compress ion o f a ir 
bubbles, devi a to ric (uniax ia l) compress i\'e de[()rm a ti on of thc ice m atri x a nd g loba l dc­
lo rmations of the g lac ier body is considered. The icc-matri x pressure and the a bso lut e­
load press ure a rc di stingui shed. Simila rity theo r y a nd scale a na lys is a re used to exa l11ine 
th e res ulta nt m a th emati ca l m odel of bubbly-ice densifi ca tion. The initi a l ratc of bubble 
comprcssio n in ice shects appears to be rela ti\'e ly hi gh, so tha t the pressu re (dcnsity ) 
relaxati o n process ta kes pl acc o nl y 150-200 m in d epth (belo\\' pore c lose-ofT) to reach its 
asy mpto tic ph ase, wh crein the minim al dro p be twecn bubbl c a nd ice pressures is gov­
crncd by the ra te of loading (ice accumulation ). This makes it poss ible to conside r d e nsi­
fic ation under sta ti ona ry (present-day ) cond iti o ns o f ice form a tion as a spec ia l case of 
primary inte rcst. The computa ti o na l tes ts pcrfo rmed with th e m od el indica te tha t bo th 
ice-porosit y a nd bubble-pressure profil es in ice shec ts a rc sens iti\ 'C to \'<lri a tions o r the 
rheo logical pa ra metc rs o f pure ice. H O\l'c\ 'C r, o nl y the bubble-prcss ure profile distin­
g ui shes be twecn th e rh eo logical propcrti cs a t low a nd hi gh strcsscs. The porosit y pro fil c 
a t the asympto ti c phase is mos tl y detcrmincd b y the a ir contcnt in th e icc. In the co mp­
anion paper (LipenkO\' a nd o thers, 1997), \IT a ppl y thc model to ex perimenta l data from 
pola r ice co rcs a nd deduce, thro ugh a n im'C rse procedurc. the rhco logica l pro pe rti es of 
pure ice as wcll as th e mea n a ir content in H o loccnc a nd g lac ia l ice sediments a t \ 'osto k 
Station (Ant a rcti ca ). 

1. INTRODUCTION 

The lo rm ati on o r glacicr ice in the melt-free zo ne o f polar ice 
sheets res ults from a complcx process of densification of dr \' 
sno\\' depos it cd on th c surface a nd ca n be presented as a se­
quence o r lj\ 'C stages. For cxample, a t \ 'os tok Station thi s 
process has been desc ribcd by Salamatin a nd o thers (1985) 
a nd Lipenkov (1989). In the initi a l stagc, the de nsifica tion 
of snolV is m a inly a structura l re-a rrange lllent a nd sintering 
process duc to ice-gra in surface fo rces, the th erm a l g radicnt 
a nd ice load. Sno\\' has a minim a l \'olume co ncentration of 
closed (isola tcd ) pores and is prese nt down to a density of 
abo ut 0.55l\fg III '1. The second stage is lim. It is character­

ized by \'iscoplas tic deform a ti o n o rice g ra ins under inereas­
i ng O\'C rbu rclen press u rc. \ \' hen a ll porcs become closed, 
usua ll y a t 50 120 m below the surface, th e a tm osphcric a ir 
is trapped in th e form or bubbles, a nd thus th e third stagc, 
defined as bubbl y ice, comes into being. Further densifica­
ti on of sinking bubbl y-ice sedime l1ls is esscntiall y a relaxa­
ti on proccss co rres ponding to a ir-bubble constric ti on in a 
plasticall y ddo rming pol yc r ys ta lline ice ma trix driven by 
the press ure drop betll'ecn thc two phascs. At a depth of 
500 1000 m (dcpcnding on temperature) the bubble pres-

surc becomes suffic icnt fo r the l() rll1 a ti o n of th c mi xed a ir 

cla thra te hydra tes ( l\[iller, 19(9). Bel ow thi s depth, the t\\·o­

phase bubbly ice cha ngcs into a thrce-phase aggregate, 
which is th e m a in a ttribute or th c f() urth stage, ",herc a ir 

bubbl es a nd air-hydratc crys ta ls coex ist in th e icc matrix. 

The gas phase progress i, 'Cly di sappears with depth in th e 

trans ition zone tha t m ay be ha lf't o twice as thi ck as the bub­

bl y-ice stratum. Bel ow th e lower bo undary of the transition 

zone, th e two-ph ase aggrega te (di sling ui shed as the fifth 

stage ) consisting o r icc a nd hyd ra tes is present do\\'n to the 

bo tto m or th c ice shee t. Thc three phase transrorma tions o r 

g lac ier ice a ft er po re closc-off il1\'oh-e diffcrent mcchani sms 

a nd ra tes or dcnsilication, so they Illust bc disting uish ed 

(LipenkO\', 1989). The densili ca ti o n process \\'ithin th e 

bubbly-icc st ratulll considcrcd be low is or specia l inte rest 

because it is suit a ble ror stud ying th e rheological prope rties 

o f ice a t relati\'c1 y lovv stresses. Al so, th c densit y di stribution 

w ithin thi s stratum is prcs umed to record pas t \'ariations of' 

initi a l ice poros it y a nd bubble pressure a t pore close-o il: 

l\10dclling th c bubbl y-ice c1 ensification is still conside red to 

be a necessa ry ste p in the theo reti ca l study of a ir-hydra te 

fo rm a ti on in ice shee ts. 
The first CJu a ntita til'l' descriptions of th e densification of 
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bubbly glac ier ice under overburden pressure were given by 
Langway (1958), Bader (1965), Gow (1968), Shumskiy (1969) 
a nd Nakawo and Narita (1985) on the bas is of phenomeno­
logical approaches or simply as appropriate approximations 
of experimenta l data. Salamatin a nd others (1985) em­
ployed a more rigorous averagi ng procedure (Bensoussan 
a nd others, 1978) to develop in genera l the same densifica­
tion model as the onc constructed within the framework of 
the ce ll-structure approximation by Wilkinson and Ashby 
(1975) for simul ating ceramics production proccsscs. This 
model was applied to deduce the parameters of the power 
creep law of pure ice from porosit y profil es measured along 
five deep ice cores retrie"ed in A nta rctica and Greenl and. 
L ater, the inferred rheologieal pa ra meters of ice were used 
by Lipenkov a nd others (1989b) fo r simulating climatica lly 
induced signals in porosity (density) proliles in ice sheets. 
Using the same theoretical approach, Lipenkov and Sala­
matin (1989) a lso studied th e volume relaxation of the ice 
co res recovered at Vostok Station . Res ults of the investig­
a tions carried out in thi s fi eld in 1982- 89 have been 
reviewed by Sa lamatin and Lipenkov (1993). 

The mathem atical models mentioned above essentially 
use (a ) a power creep law for ice a nd consider (b ) bubbly­
ice densifieation as a process of hydrostat ic compression at 
(c) the averaged pressure in the ice matri x equa l to the ab­
solute load pressure. All of these ass umptions are som ewhat 
limiting. First, Pimienta (1987) and Pimienta and Duval 
(1989) have shown that asympto ticall y, as the bubble-ice 
prcss ure drop decrcases, the rheological behavior of ice 
becomes linear viscous. Although thi s is not revealed in 
ice-porosity prediction, it changes the estimate of air-bubble 
pressure at la rge depths. Secondly, due to the lateral con­
st ra ints, the deformation of the ice m atri x in the bubbly-ice 
densification process is a composition of hydrostati c and 
cb 'iato ric uniaxial (vertical) compression of comparable 
stra in rates. Thi rdl y, the deforma tion of bubbly ice on the 
micro-sca le of a single bubble is a lso subj ected to additional 
"externa l" dev ia toric strains induced by the globa l macro­
scale movement of the ice sheet. To acco unt for these peculi­
a riti es, specia l research has been carri ed out to derive gen­
era l rheo logical relations governing the creep flow of bubbly 
ice and its expansion (compression) in pressure relaxation 
processes (Salamatin and Duva l, 1997). The kinematic inter­
act ion of ice-sheet flow with compressibility effects has a lso 
been considered (Sa lamatin, 1991). In addition, a compre­
hensi" e ex peri mental stud y of bubbly-ice densification has 
recently been undertaken on the Vostok ice core. The new 
data set obtained ineludes for the fi rst time direct measure­
ments of bubble pressure in unrelaxed ice and enables theor­
etica l models to be more precisely validated by 
ex perimental da ta. Thus, wc need: (I) to develop a new 
model in order to overcome the above-mentioned draw­
backs by introducing all the recent theoretical results and 
(2) to revise the model applicati on, taking into account the 
new experimental data. In acco rdance with thi s two-fold 
purpose, our work will be presented in two parts: I. Theory 
a nd n. Applications. In this first paper, wc develop an im­
proved mathem atical model sufficient lor predicting bub­
bly-ice densifieation between the close-off level and the air­
hydrate formation zone; we a lso conduct a preliminary in­
vestigations and sensitivity study of the model. In the com­
panion paper (Lipenkov a nd o thers, 1997) (hereafter 
referred to as paper I1 ) wc use the model to interpret the 
ice-core data. 

388 

2. GENERAL EQUATIONS GOVERNING DENSIFIC­
ATION OF BUBBLY ICE 

Since bubbly ice is a two-phase heterogeneous medium from 
a mechanical point o f v iew, wc should distinguish two sp acc 
sca les when modeling the dens ification processes: (i) a 
micro-scale associated with a cha rac teri stic size of pores 
a nd (or ) a characteristic di stance between neighboring a ir 
inelusions, and (ii ) a m acro-sca le corresponding to the typi­
cal dimensions of the domain where bubbly-ice densification 
ta kes place. Here, we use a "macro-continual" approach to 
describe the behavior of the air- ice mix ture in terms of the 
m ac ro-scale, averaged characteri stics introduced conve n­
tiona lly in the mech anics of multi-phase media: 

c, ice porosity (air-volume concentra tion ); 

p , density of bubbly ice, P = Pi (1 - c), where Pi is the 
density of pure ice (Pi is ass umed to be constant ); 

v , averaged velocity vector; 

Pi, F\" averaged pressure in the ice matrix and the mean 
pressure in bubbles, respectively; 

T , deviator of m acro- tresses in the ice matri x. 

The mass and momentum ba lance equati ons governing 
the slow creep motion of glacier ice can be wriLLen in the 
fo rm: 

dp/dt+pV·v=O, VPi = "V·T + gp (2. 1) 

where g is the gravity vector, t is the time and V is the dif­
ferenti a l nabla opera tor. 

Equations (2.1) a re general. Rigorous definit ions of the 
above characteristics and correspondi ng constitutive rela­
tions completing the sys tem in Equations (2.1) may differ 
from onc stage of densificat ion to another. Howe\'er, in a ny 
case they must be based on and deduced from the ana lys is of 
deform ation processes on the micro-scale le,·el. Such an 
a na lysis has been undertaken for bubbly media by Salamatin 
a nd Duval (1997) within the framework of homogenizatio n 
methods for periodic structures (Bensoussa n and others, 
1978). The results a rc used below. 

First of all , a simple mass-balance (sta te) equation holds 
fo r a specific volume of ideal gas c/ ( l - c) in a unit m ass of 
ice provided neither phase change nor gas diffusion in the 
ice m atrix takes p lace: 

~[cP" ]-0 
dt T(l - c) -

(2.2) 

where T is the temperature (K ) treated hereafter as a 
known value. Equation (2.2) means tha t the quantity in the 
quare brackets is constant along bubbly-ice particle traj ec­

tor ies. 
The near-surface bubbly stratum of the ice sheet is com­

posed of poly crystalline iso tropic ice (see e.g. Lipen kov and 
others, 19S9a). Therefore, one can write, as in Glen (1955), 
Bucld (1969) and Shumski y (1969), the following relation 
be t ween deviato ric mic ro-stresses T a nd m icro-strain rates 
e in the ice matrix: 

T = 27)(4IQe. (2.3) 

Rheological coefficient 7) is a function of the second invar­
ia nt of the strain-ra te tensor II~ = 0.5e : e and temperature 
T. 
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In additi on, the m ac roscopic bubbl e-compress ion ra te w 

can be defin ed as: 

w=-\7·v/c . (2.4) 

Finally, as proposed by Salamatin a nd Duva l (1997) fo r 
ice with mono-disp ersed spherica l bubbles, we have the fo l­
lowing rheological rela ti ons which d etermine the phase 
press ure drop a nd the dev iatori c stresses in bubbly ice in a 
defo rmati onal process: 

Pi-Pb = 

2 12~/ Ji 
/r) [77(e + 4Ih) + 4h:IIE7/ (e + 4IId] d~ , 

V 3 2('~/ Ji 

(2.5) 

a nd 

T = 2{ j1 [77 e~:~2 + ~IIE) 

+ ~ 4~~~2 77' (4~~~2 + 4IIE) 1 d(}E. (2. 6) 

H ere E is the devi a to r of the mac ro-stra in-rate tensor: 

E = (\7v)' - (\7. v / 3)8 (2.7) 

where t5 is the identity tensor and supersc ript "s" deno tes 
symme tri zati on; lIE = 0.5E : E ; H, is the tuning p a ra­
meter, which \'a ri es within the range 0 .4 :::; h: :::; 1 lo r differ­
ent a pproximati o ns o f micro-defo rm a tio ns in the bubbl e 
\-icinity. 

Equations (2.1 ), (2.2) a nd (2.4) (2.7) form a comple te 
model of bubbly-ice creep fl ow, including bubbl e-press ure 
(density) relaxati o n effects. The de\,ia to ri c deform atio ns o f 
ice (lIE) a nd the bubble compress io n (w) a rc closel y inter­
rela ted , since both processes arc represented equa ll y a nd 
symmetrica ll y in the m ac ro-sca le rheological Equa tio ns 
(2.5) and (2.6). 

Orig ina ll y, the la ller rela tions were derived for a pe ri­
odi c compos ition of ice with spherical bubbles. In realit y, 
the shap e of' a ir inclusions can be rather irregul ar, es pecia ll y 
in yo ung ice, immedi a tely a fter pore close-off. Yet, we be­
lieve Equati ons (2.5) a nd (2.6) rema i n approximatel y val id 
in thi s case because the a ir-volume concentration in ice is 
rela ti\ 'C ly low (c < 0 .1) a nd t1w deforma tion of ice-m a trix 
ce ll s each conta ining a sm a ll single bubble does not dep end 
a t fi rst order on t hc bubble shape. 

3. ANALYSIS OF DEFORMATION PROCESSES IN 
THE UPPER STRATUM OF THE ICE SHEET 

The compressible a i r bubbl e- ice medium fo rms a rela ti\"ely 
thin layer in the upper p a rt of ice-sheet thi ckness. Thi s sp ec­
ific st ra tum does not no ti ceably influence the O\'e ra ll m ove­
ment o f the glac ie r but is im-o h-ed in complicated 
dclo rma lion processes which arC' responsible for the di stri­
butio n of the \'erti ca l veloc ity near the ice-shee t surface 
(see Fig. la ). Here, wc consider the kinem a ti c interrela ti o n 
be t ween the globa l ice-sheet fl ow a nd the densifica tion, as 
initi a ll y looked a t by Sala m atin (1991). 

Interrelation of ice-sheet flow and cornpressibility 
effects 

Let s be the distance fro 111 th e ice di\' ide a long a ce rt a in fl ow 
tube confined betwee n two close fl owlines with a relati ve 

Safamalill and ollim : Bllbb[JI -ice densiJicalion in ice sheets: 1. Th eory 

width H (s), as shown in Fig ure la. The verti cal coordina te 
is noted as z (the z ax is is directed upward ); n. ware the 
corresp o nding longitudinal a nd vertica l \ 'elociti es; i, Zo arc 
respectively the ice-sheet surface and bed elevation; b is th e 
ice accumulation rate, a nd Uo, Wo are resp ec tivel y, the slid­
ing vel oc ity a nd melting ra te o f ice at the g lac ier bottom. 

It is a lso helpful to introduce the el evation o f glac ier sur­
face (i' ) a nd the modifi ed coordinate (z') measured 111 

equi\'alcnt of pure ice: 

z' = Zo + JI~ (1 - c)d z. i' = Zo + ~\ 1 -c)dz . 
) :::0 

(3 .1 ) 

The to ta l \ 'olume rate o f ice in the tube throug h its cross-sec­
ti on of unit width is 

1 f" 
A (s, t ) = H 10 (b - Wo - Ol' /at) H( s) ds. (3.2) 

the corresp onding fl ow ra te due to sliding is (i' - zo)/uo, 
and the rela ti\"C ri 'ac ti on of the fl ow ra te caused by plas tic 
shea r defo rmations wi th i n the glacier body is then defin ed 
as 

fJ = 1 - ([' - za)uo/ A. 

The la tter rati o va ri es from 0 (no shear within the 
glacier ) to I (no slip in th e basa l layer). In some cases a nd , 
in particul a r, in the ice-sheet densification m odeling this 
vari abl e is likely to be considered as a n adjusta bl e (tuning) 
parame te r. 

Close r exa minati on o f the general Equ a tions (2. 1) for 
ice-creep m oti on a long a fl ow tube unde r com-entiona l 
bounda ry-l aye r (shallow-ice) approxim ati o n assumptions 
a llows the profiles fo r the ve rtica l a nd longitudina l 
\"C lociti es to be written ex plicitl y ,,·ith the snow- firn bub­
bly-ice cOll1press ibility ta ke n into acco unt (Sa la matin, 1991): 

A 
-[' -[1 - fJ (l - G)]. 

- Zo 
U = 

b EJl Ol 
(1 - c)I:=1 + at + ul ::=l as 

1J)= 

j'" h [) + cwdh + ,-[ -;:;-(Hv l==l) 
. () L u S 

(3.3) 

+ 1 ~ z :.~ [fJHA (~ ~ ~ - Gl o= t)] 

fJ A [_ Ol' _ azo] + -[' - Z -;:;- + (1 - z)!:) (G - G 1_ = I) . 
- Za u S u S -

Here, h = [ - Z is the depth a nd Z = (z' - zo)/( i' - zo), the 
norma li zed yertica l coordina te. The functi o ns G(z) a nd 
F(z) desc ribing power-l aw shea r in the g lacier body are 
cOlwentio na ll y presented in a n integra l fo rm (sce e.g. 
Salama tin , 1991). 

The first fo rmul a in Equ a tio ns (3.3) direc tl y represents 
the long itudina l veloc it y Lt as the mean sla b-flow \"C loc ity 
and supe rposed shea r compo nent fo r fJ > O. The structure 
of the second fo rmula fo r vc rti ca l veloc it y w, a lthough more 
compl ica ted , is also clea r. Fi rst terms respecti \ 'ely show con­
tributio ns o f (1) snow acc umul a tion rate, (2) ve rtical motion 
of the ice-sheet surface, (3) densificati on rat e o f porous icc 
depos its, a nd (.~) \'erti ca l defo rma tion of the ice-sheet thick­
ness in th e sla b-like fl ow a t the surface hori zonta l veloc ity. 
The las t t wo terms (being proportional to fJ ) desc ribe the 
direct impact of' the shea r strains in the g lac ier body a nd 
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Fig. 1. Difjerenl scaLes qf ice deformation 10 be considered when modelillg bubb£y-ice densiJicatioll in ice sheets (see the textfor the 
meaning rf the denotations). (a) Fragment qf icej70w tube representing the "externa!" motion q/ the ice sheet. (b) Bubb£y-ice 
aggregat e 01' parlid e (macro -scale). (c) Unit cell cont a ining a sing! e bubble (micro -scale). 

the influence of the ice thickness and the bed-relief lateral 
va riat ions on the \'ert ical veloc ity profi le. 

According to Llibolltry (1981), the integrals G and Fcan 
Ix approxim ately evalua ted: 

G(z) = 0'0 + 2 [1 _ (1 _ z)"o+l] , 
0'0 + 1 

F(z) = z - (1 - z) [1- (1 - Z)"II+1] (3.4) 
0'0 + 1 

where 0'0 is the apparent exponent in Glen's power law mod­
ified in accordance with the non-isotherma l conditions in 
the basal laye r. Straightforward estima tio ns by Lliboutry 
showed that 0'0 > 5- 10. H ence, at leas t in the upper ha lf of 
the g lac ier thickness, the terms (1 - ztu+l in Equations 
(3.4) do not exceed 10 2 and can be omitted. This allows 
Equation (3.3) to be rewritten in the following (arm: 

1l = A [1 + _eJ ] . 
!:::" 0'0 + 1 ' 

v = - w + 8l/at + u81/os 

b 1" h a ----,--- - cwdh - ~- (Hv,) 
1 - cl,,=o 0 Has 

(3 .5) 

where ~ = I' - Zo is the thickness of the ice sheet in ice 
equi va lent and v is the downward ver tica l veloc ity of the 
ice sinking into depth relative to the glacie r surface. 

In central regions of ice sheets, where A anclu a rc rela-
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tively sm a ll , for example in Antarctica at Vostok Station, the 
accuracy of Equation (3.5) for v is not worse than 10 3 to 10 I 

down to a de pth of h ;:::: @~. 

Macro-strain rates in bubbly ice 

It is now possible to estimate the deviatoric macro-strain 
rates in the bubbly-ice stratum and to express the tensor E 
via parameters describing the g lobal now of the ice sheet 
and the bubble-compression rate w. Originally, the coord­
inate system h, s is curvilinear a nd not orthogonal. Never­
theless, in each point of the g lac ier bod y, wc can introduce 
the local or thogonal (downward a nd horizontal ) directions 
h. s (see Fig. la ) and the transverse onc. Let us now desig­
nate the normal (diagonal ) components of the deviator E 
a long these directions as qL, q2 a nd q3, respectively. By defi­
nition, from Equations (2.4), (2.7) and (3.5), taki ng into ac­
count that u does not depend on h in the upper part of the 
ice sheet, we have 

1 ov 1 7i oH 
ql=-cw+-. 

3 oh 
q3 = -cw+--. 

3 H os 
Then, direct substitution of'Equations (3.2) and (3.5) yields 

ql = - 2cw/3 + ql' . q2 = cw/3 + q2' , q3 = cw/3 + q3' 

(3.6) 
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where 

qt' = (1 + - ()- ) [~ 06 _ ~ (b _ Wo _ 01')] . 
ao + 1 6.2 OS 6. ot 

q2 
, (1 + ao: 1) 

[~ (b _ Wo _ 01') _ A (~ oH + ~ 06)] , 
6. ot 6 H os 6. os 

q/ =(1 +_()_) A ~ DH . 
. ao + 1 6.H os 

H ere, q/. i = 1,2,3, represent the norm al devia to ri c stra in 
rates of the "ex terna l" motio n of the ice sheet (sec Fig. la 
a nd b). Equa ti o ns (3.6) show tha t on th e mac ro-sca le le\"C I 
the compressive d eform ati o n in bubbly ice of a glacier 
occurs, as illustratcd by Figure lb a nd c, onl y in the ve rtical 
direc tion. 

It should a lso be noted tha t the introduced 17" s direc­
tions a re th e principa l direc ti ons o f th e deformatio n in the 
upper part of the ice-floll' tube, where th e . hea r stresses a nd 
tempera tures a rc compa rati\"C ly low, to provide no ti ceable 
shear stra in ra tes. Then, ql': q2' a nd q:J' a rc the onl y non-zero 
components of the tensor E induced by th e glac ie r m oti on 
a nd th e correspo nding effec tive stra in rate fIt can b e deter­
mined as: 

E/ = (q/)2 + (q/)2 + q/ q/. 

Further, it is r ele\ 'ant to define the rate of hori zonta l ice­
laye r thinning as El = - q l' a nd , using Equa ti o ns (3.6), to 
write the second ill\ 'a ria nt lIE in E quations (2.5) a nd (2.6) 
in the fo rm: 

(3.7) 

As a rul e, in the central par t of the ice shee t, n o t fa r from 
ice di\·ides. th e d efo rm ati on is close to a simple two -dimen­

siona l ex tensio n a nd () / (0.0 + 1) « 1. Thus, wc ha ve 

El ~ f" ~ b/ 6 . (3 .8) 

4. MATHEMATICAL MODEL OF BUBBLY-ICE 
DENSIFICATION 

Ice porosity and the rate of bubble compression 

H erea f"tc r lI'e will use subsc ript "c" to denote th e initi a l co n­

diti ons ('Fe .. PI"" CC, . .. ) at th e uppe r boundary of bubbly ice, 
i.e. a t the closc-o fTd epth 11,(' which co rresponds to the end of 
the po re-closure p rocess in th e ice sheet. These bo unda ry 
pa ra meters de te rmi ne th e consta nt qu antit y ( the m ass of 
a ir trapped in a n ice pa rticle ) g ive n by Equa ti on (2.2), from 
which wc obta in 

C = ,/b + .Ft) . ,= P,'Y.,T /T, (4 .1) 

where 

_ Cc A,cT., _ V 
"------ Pi· 1 - cc' P,T.· 

whil st T, a nd p, a rc the sta nda rd temperature a nd press ure 
(STP: T, = 273. 1 K , p, = O.IOI3 l\IPa ), A,e is de fin ed here as 
a bubbl e pressure pre\·a iling a t the end oepore clos ure a nd 
V is the a ir content expressed as a vo lume (STP) o f dry a ir 
enclosed in a unit o f'm ass of the ice sample. The dime nsion­
less compl ex 'Ys ( th a t must be di stin g ui shed ['rom , which is 
dimcnsiona l) is preserved in th e "m emory"of'a ny bubbly-i ce 
pa rticle in terms o f poros it y a nd , thus, has an impo rta nt role 
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as a p a leoc limatic i nciica tor. It may be a lso di rcctl y obta i necl 
thro ugh a ir-conte nt m easurements. 

M ass-ba la ncc Equa ti on (2. 1) togcther with Equa ti o n 
(2.4) lead to 

dc/c1t = -c( l - c)w. (4.2) 

which can be tra nsfo rmed into a nothe r equi vale nt fo rm: 

- In -- =w. cl (1 -c) 
dt c 

Substitu tion of Equa ti o ns (+.1 ) fin a ll y g ives: 

w=~~ (Pb) . 
A ,dt T 

(4.3) 

Absolute load pressure and the pressure in the ice 
matrix 

Next, wc introduce the load pressure 

A = P alm + gPih' (4 A ) 

where P'tlll is th e a tmospheric prcssure in the ice eq ui va lc nt: 
h' = I' - i . 

The m'eragecl ptTSS UIT in the icc m a tri x A (sce Equa ti on 
(2. 1)) a nci thc load pressurc Pt a rc no t equa l. This bccom es 
e\·ident if ll'c wr it e th e p roj ection of' the m omcntum-ba la ncc 
E qua ti ons (2.1) on the h ax is: 

oA / ah = aTI/Dh + gPi(1 - c:) 

where T I is th c fi rs t cUlIlponent in the di agonal of the st rcss 
te nso r T f'o r th e h cl i rcc ti on (additio na l terms with shear 
strcsses a re omitte cl s ince they a re negli g ible in th e fra m e­
wo rk of' the sha llow-i ce a pprox im ati o n ). The integra ti o n of 
the la tter eq uat io n ta king into acco un t Equation (..J..4) y ields 
the fo ll owing rela ti o nship be twee n the two press ures: 

P;=P;+T[ . (4.5) 

H e nce. Pi and PI III ay be equal (which was ass umed in prC\'­
io us m odel s) onl y if T I is neglig ible. This is nottruc in gen­
e ra l (sec thc di sc uss io n a nd scnsiti\ 'ity tests beloll·). 

Formulation of the model 

Thus, summar iz ing Equa ti ons (2.5) (2.7), (3.6), (3.7) a nd 
Equa ti ons (4.1), (+ 3) (+5), onc obta ins the modcl of'bub b ly­
ice d e nsi fi cati on: 

w= ~i (A') . 
A, clt T 

(4. 6) 

The interrela ti o n o f' th e deform a ti o n processes occ u r­
ri ng in the glac ier a t di rre rent sca lc level s (schematicall y de­
pic ted in Figure I) is a hi ghlight of the modcl. Uni\ 'C' rsal 
bubble-constricti o n ra te w duc to the la tera l constra ints 
(sec Fig. Ib ) influences d e\'iatori c stra in rates ql, q2 a nd q:3 
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in a n ice cell surrounding a bubble (see Equation (3.6) and 
Fig. le). As a result, it is equa lly represented in the second 
invariant lIE of the macro-stra in-rate tensor E in Equations 
(2.5) and (2.6) together with the globa l stra in rates 
q/, q2 /, q3' (i. e. El and EH ) of the glacier motion. Conse­
quentl y, both appear (as lIE) in the main Equa tion (4.6) rel­
a ting 11, and w. 

For given parameters El, Ea a nd close-off conditions 
he, Pbe · ,s (i.e. Cc, Te). as functions dependent o n time tc 
a nd the longitudinal coordina te s, the problem in Equations 
(4.6) is an integro-differenti a l equa tion with resp cct to the 
bubble pressure 11, pre\'ailing in the particl e of bubbly ice 
which was fo rmed at close-off depth at the mom en t t = tc. 
The traj ectory of the particle: s = set) . h = het ). t > tt, 
is calculated on th e basis of Equations (3.5): 

ds/ dt = u(s. h. t) dhl dt = v(s, h , t ): (4 .7) 

h ll=l, = he · 

To determine the ice temperature T, the energy equa­
tion has to be so lved simulta neo usly with Equations (4.6) 
a nd (4.7). 

5. MODEL INV ESTIGATION 

Ice -flow law 

For practica l use of the genera l modcl in Equa tions (4.6) and 
(4.7), we have to assume a concrete form of the constitutive 
law in Equation (2.3). Let us accept the polynomi a l relation­
ship between effecti ve shear strain rate e = j'ff,:" a nd stress 
T = JIr;: as 

(5 .1) 

Here, et is a creep exponent a nd All and Ah are the rheo­
logical coefficients, which are functions of temper a ture: 

[ 
Q (T - T)] l\Ij = /-Lj exp Rs~s -T- . j = l. 2 (5 .2) 

where ~il and /-L 2 are the consta nt factors, QI a nd Q 2 are the 
apparent activation energi es a nd Rs is the gas constant: 
Rs = 8.314J (mol ·K ) 1. 

The rheologica l law given by Equation (5. 1) was found to 

fit closely a wide \'a ri ety of exp eri mental data (Budd, 1969; 
Shumski y, 1969) and the fol lowi ng tentative esti mates can be 
suggested: et ~ 3.5. QI ~ Q2 ~ 60 kJ mol I, while the fac­
tors /-LI and /-L2 are of the orders of I MPa yea r and 
10 2 MPao yea r, respecti vely. 

The appa rent viscosity TJ in Equati on (2.3) is de termined 
as a fun ction of A = 4IIf by 

[11 l\I1 + A~TJ 1 Ahl'17 = 1 , ( )

0 - 1 
(5 .3) 

which is an immediate conseq uence of Equation (5. 1). 

Dirnen s ionless presentation 

At this stage, it is rcle\'ant to establi sh the main dimension­
less numbers of the process a nd to apply similarity theory 
and sca le analysis in order to examine Equa tion s (4.6) and 
(4.7). 

The difference between a bso lute load pressure a nd bub­
ble pressure is maximal at the close-off level where it is orthe 
order of Br - P"trn. The typical value pO of (Plc - Palm) is 
then to be taken as a sca le fo r stresses in the bubbly-ice 
stratum. L et us a lso designate as bO the typica l va lue of the 
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acc umulati on rate b. Then the space (hO) and time (to) 
scales are written as 

Th e corresponding di mension less 
g ui shed hereafter with super bars: 

variables a rc disti n-

,- _ gpJ1' - _ gPi bOt R- _ 11, 
1 - p o ' t - p o' b-pO' 

(5.4) 

Consequently, the m odel in Equation (4.6) can be trans­
form ed into the fo llowing dimensionlcss form: 

w= ie 
c=---- . 

ie + Pb 

P~t'n+h-A, = 

+ ~ c:~2 ry' (C:~2 + Ea 2) 1 d( : (5.5) 

Ea2 = c2r:;} + 3cWE1 + 3Ea2 

where fi(A) is the solution orthe modifi ed Equation (.'i 3) 

_ + 'I 1) _ 1 K = gPi ° I 
[ 

1 ( A~il)(l- ll _ 4 b l\I 
K [ K 2 - , I 3(PO)2' 

](? = gp, - -bO AI? ( 2 )0+[ 
- (po),,+l J3 (5 .6) 

At a given temperature T, pa ra me ters KI and K 2 a re 
the mai n sim i larit y niteria of the de nsification process. Pre­
liminary estima tes show that K [ '"'-' 0.5 5.0 ancl ](2 '"'-' 0.03-
0.3 a t et = 15 fo r typ ical ranges of the sca les: p O '"'-' 0.4-
0.7 MPa, bO cv 2.0- 50 M g m-3 a I and Te cv - 50° to - 20°C 
(see paper II for more detailed data ). Another 
dimensionlcss p a ra me ter le, which is a characteristic (equil­
ibrium) \'alue of the a ir-\'olume concentration in the ice, has 
the order of 10 2. 

T n case or the es timate in Equa tion (3.8), El and Ea are or 
the same orcler as the characteri stic sp ace scale divided by 
the glacier lhickness a nd for t::,. '"'-' 1000- 3000 m they a re 
sm a ll values: 

El ~ Ea ~ pO 1 (gPi t::,. ) = hO 1 t::,. '"'-' 10- 2 
- 10- 1 

. 

Since c is also small: c < 0.1 and w cv 1, the first term on 
the righthand side of the integral Equation (5.5) is d om­
inan t. This sugges ts that P; may be ver y close to 11, whereas 
the relati\'e externa l deviatoric m acro-strain rates (El a nd 
Ea ) may hm'e onl y a secondary influence on the bubble-com­
pression rate in cen tral parts of ice sh eets. However, a cer­
ta in (eyen small ) p e rturbation of the latter equation leads 
to the corres ponding relative cha nge in w which, in turn, 
results in a cumul a tive (integrated ) influence on the predic­
tions of the decreas ing porosit y c. The significance of thi s 
effec t wi ll be demonstrated below in sensitivit y tests. It is 
a lso obvious tha t in high-rate-deforming parts of ice sh eets, 
particu larly in m a rg inal zones, El a nd Ea are not small and 
m ay play a primary role in densifi cation processes. 

At the same ti m e, a small rat io hO 1 t::,. is evidence that the 
re laxation of bubbly ice occurs within a relatively thin layer 
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a nd short time interval. \ Vith this in mind, one eould exam­
ine bubbly-ice densifi cati o n as a stati ona r y process und er 
constant (m ean, present-day ) conditi ons b. Pat III , hc· ceIl·, 
Pbl a nd Te (if the typical time-sca le of their nuctu ations is 
much la rger than to ) and without rega rd to possibl e geogra­
phica l va ri a ti ons of the c1 osc-olf characteristics. 

Consequentl y, Equati on (4.2) takes the form: 

voc/oh =-cW 

where v = 1/ / bo In acco rda nce with the definition in Equa­
ti on (3.6), a lter dillcrentia ti on o[ Equati on (3.5) for // with 
respec t to h, 'vve come to the dimensionl ess re la tion 

(1 - c)av/8Fi = -CW - El . 

Combining the two la tter equations, we obta in 

a[(l - c)v] /ari = -El ' 

Hence, 

a ncl th e depth-age rela ti onsh ip is gi\Tn by 

dl = d/l/ (1 - E] /1) . (5 .7) 

Thus, using Equ il ti on (5.7) to elilllin il te tilt' time f from 
Equati on (5.5), wc find th a t, for approxima tely cons tant 
temperature T ~ t·, 

(5 .8) 

This enables direc t calculatio n o[ the pro file s o [ c a nd A, \·s 
depth 1i I'rom Equati ons (5.5)-(5.8) [or the hig h-rate quas i­
sta ti onar y stage o[ densifiea ti o n. 

The corresponding bounda ry conditi on a t p o re close-off 
ca n be written as 

(5 .9 ) 

ASYIllptotic phase of the process 

Note that the abO\'e model a nd in pa rticul a r Equati ons 
(5.7)-(5.9) r em ain va lid [or a ny ice pa rtiel e eyen if the 
close-ofT conditi ons, at which it was formed, a nd the acc um­
ula tion ra te h3\'e cha nged in the pas t, i.e. [o r ice found a t 
great depths: 11» 1. Th erefore, the asympto ti c behavior of 
c a nd A" as h --+ CXJ (i.e. as th e age or the pa rticle becomes 
la rge ), is important and gives a key for reconstructing the 
va ri ati ons o[ the close-oIT cha racteristics which a re asso­
cia ted with climate, provided that the present-day 
conditi ons a r e compa ra ti vely stead y. 

Indeed , when c --+ 0, [o r 11» 1 the bubbl e press ure A, 
becomes la rge in compa ri son with the integra l o n the right­
ha nd side o f Equati on (5.5). H ence, we have 

clA,/clh ~ dA / cl/;: = 1 

and, using Equ ati on (5.8), wc es timate W as 

W~ (1 - El ll)/A,. (5. 10) 

Furthermo re, asy mptotica ll y, as c --+ 0 a nd w decreases, 
Equati oll (5.5) aIlel (5.G) yield 

A, = P "tll1+11 -1';:; i] (r,2 + 3E,,2) cl~ - 1.5E] E l , 

C = ie/ A" 11» 1. (5. 11) 

The m od el in Equatio ns (5.10)-(5.11) is local in time, i. e. 
A, a nd c fo r la rge depth /1 d o not depend o n the hi story o[ 
the process. It is a lso impo rta nt tha t at this stage of densifi­
cati on, which wc hereaft e r refe r to as a n asympto tic phase, 
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the bubble pressure does not dep end o n the geneti c compl ex 
is (or ie), for which possible \'a ria tions in accord a nce with 
Equati ons (5.11) a re, thus, direc tly r ecorded in th e p o rosity 
pro fil e. 

The above theore tical investi gation provides a clea r gen­
era l picture of bubbl y-ice densification a nd opens the way to 
numerical simul a ti o n of the process. 

6. COMPUTATIONAL TESTS AND DISCUSSION 

Finit e-diflcrence a nd iterative m e thod s have been used to 
solve Equa ti on s (5.5)-(5.9) numerically. A specia l interac­
ti\ 'e computer system * hils been d eveloped to stud y the den­
sification process in glacier ice. It directly ca lculates 
porosity and bubble-press ure profiles vs depth h [o r given 
close-oll'conditio ns a nd pure-ice rheology, and solves the in­
verse problem of inferring the a ir content a nd rheolog ica l 
pa ra meters of pure ice from porosi ty a nd /o r bubble-pressure 
measurements. In thi s secti on, we di scuss the sensitivit y of 
the model results to vari ati ons o f the different p ara meters 
ta ken in the dimensionless form. 

The [ollowing \'a lues, typica l fo r pola r ice in the central 
p a rts 0 [' Anta rc ti ca a nd Greenl a nd , fo r instance in Anta rc­
tica a t Vostok Sta tion, and consiste nt \\'ith the above esti­
m ates, h3\'e been chosen as basic tentative proxy or the 
m odel parameters: 

0' = 3.5 , K1 = 2. 5, K 2 = 0.05 P alm = 0.1 , :. P hl = 0.12 , 

c, = 0.075 (i, = 0.01 ), Ej = Ea = 0.02 , h; = 0.7. (6.1 ) 

Preliminary computations we re p erfo rm ed to evalua te 
the influence of th e tuning fac to r f<L a nd the "ex tern a l" stra in 
ra tes Eo, El on the model predi c ti o ns. As expec ted , it was 
fo und that vari a ti o ns of both h" within its uncertainty ra nge 
from 0.+ to 1.0, a nd E",El, frol11 0 to 0.0+ (a plausible upper 
bo und for th e centra l parts or the ice sheets), do not change 
the so lution nota bl y. The maximulll d ev iati on of the poros­
it y c and the bubble pressure AJ ['rom th e basic profiles was 
obse r\ 'Cd to be w ithin ± 1.5-2% . Subsequently, these p ara­
m eters (h" fa . f l ) were fixed in acco rda nce with Equa ti o ns 
(6.1) and remained unchanged for a U the following comput­
ational runs. 

Sensitivity to the rheological paraIlleters of pure ice 

The main se ri es o f th e tes ts foc used o n the model sensiti vity 
to th e rheo logical p a rameters }.11 a nd J1h (i. e. to va ri a ti ons 
o f the criteria Kl a nd K 2 ), The two terms o[ the polynomi al 
law in Equati o n (5.1 ) ob\'iously represent linear a nd power 
asymptotes for lo w a nd hi gh stresses T, respecti vcl y. Since 
the micro-scale stresses associa ted with bubbly-ice d ensifi ca­
tion fall mos tly in the transition zone between linear and 
power rheolgica l behaviors, both of the criteri a a rc impor­
ta nt. The tra nsitio n zone is centercd a t T ~ (lIfl / lIfz ) l / (o - t) 

a nd for the corresp onding ra nge o f stresses Equa tio n (5.1) 
ca n be rewritten in the following no rm alized form: 

e = f + fO . (6 .2) 

e = 2M t (M J/Md /(o - l)e, f = (M /l1h )1/ (n - I)T . 

Rei at ion (6.2) is represent ed in logarithmic sca les in Fig­
ure 2a as cUr\'e I ( the dashed lines show its asympto tes ). Let 

* The code of the system for IBM-PC compatibl e computers 
is a\'a il able fro lll th e authors o n request. 
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Fig. 2. Influence cif /Jure -ice rheology and boundaT.-JI conditions at pore close -riff 011 ice-porosity and bubble-pressure jnrifiles ill ice 
sheets as revealed b)' computationaL tests. ( a) Po[ynomiaL rheoLogicallaw rif ice in the 110rmaLizedfonn. The curves 1- 3 correspond 
to the various parameters ]{l and K 2 (indicated on thefigure). The dashed lines are asymjJtotes rifcurve 1. (b) R elative bubble 
pressure A, vs normalized dej)th fi. The jJTOjiles 1- 3 are computed with the same jJOirsqjlhe parameters KI and](2 as in (a), and 
under jixed close-riffronditions (1e = 0.01). The dolled and dashed Lines represent absoLute load jJTessure A al1d the pressure A 
il1 the ice matrix, respectivery. (c) Porosity (c)- depth (fi) prcifiLes /- 3 caLcuLated with the same modeL parameters as riferred tojor 
identicaLry numerated h - ;1 jmifiles in (b). (d) Porosity prcifiles 1- 111 calculated withJixed ice rheology corresponding 10 the 
basic curve I in (aJ, andjor various 1e (as indicated on Ihejigure). The prqfile III (dotted line) is simulated with the same 
parameters as the curve J[ but A is JJTeSU med to be identical to A. 

us assume now that curve I corresponds to the basic values: 
]{l = 2.5, K2 = 0.05. Then, if the criteria KI and K2 are al­
ternately changed the initial curve is modified, [or example: 
at Kl = 1.0 and K2 = 0.05 we obtain curve 2, while at]{j = 
2.5 and K 2 = 0.1 we get curve 3 in Figure 2a. Thus, Figure 
2a illustrates a selective response of the polynomial rheolog­
ical curve at low (high ) stresses to a change mostly of the 
criterion Kl (K2)' When using the ice-flow law given by 
curves 1-3 in Figure 2a to simu late the densification process 
under lixed close-off conditions (1e = 0.01), we obtain the 
corresponding profiles of bubble pressure Pb (curves 1-3 in 
Figure 2b) and ice porosity c (curves 1- 3 in Figure 2c) vs 
depth h. 

The difference between curves I and 2 in Figure 2b 
illustrates the [act that the bubble-pressure prolile is signific­
antly influenced by variations of the rheological parameter 
lvh . The maximal perturbations are observed, as expected, 
at large depth, i.e. in the low-stress range. On thc other 
hand, when ltI2 is changed (compare curves I and 3 in Fig­
ure 2b), only the upper part of the bubble-pressure profile is 
alTected significantly in the zone where the effective stresses 
are relatively high. Thus, the bubble pressure is closely and 
selectively linked to the rheological properties of pure ice. 
On the contrary, no signi fi cant change in the simul a ted por­
os ity profile is observed at great depth, even if the " linear" 
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viscosit y !vII is changed, while the upper part of the profile 
equa ll y depends on both of the rheological parameters Nh 
and NI2 (see the curves 1- 3 in Figure 2c). Therefore, the im­
pacts of the factors NIL and fl!h on density relaxation are 
practically indistinguishable. 

Sensitivity to the pore close-off conditions 

According to Equation (4 .1 ), when A, » rc, the porosity c is 
approximately proportional to the air content V. Therefore, 
c keeps "memory" about past close-olT conditions. Indeed, a 
high sensitivty of the ice-porosity profile to realistic var­
iat ions (see, for instance, paper II ) of the genetic complex 
1e is evident when comparing the profiles I (1e = 0.01) and 
II (1c = 0.02) in Figure 2d (both o[ the profiles were sim ul­
ated with the same rheological parameters as those used for 
curves I in Figure 2b and c). On the other hand, numerical 
experiments show that after pore close-off the bubble pres­
sure A) very quickly becomes insens itive to plausible 
changes in 1e. This is in agreement with approximate Equa­
tions (5.10) and (S.lI ). All of the computational tests have 
confi rmed that the asymptotic phase starts from h ~ 3.0. 

Significanee of the tnodel irnprovetnents 

Summarizing the results presented above, we come to the 
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foll owing conclusions: (i) the sta ti onary model is suffi cient 
fo r interpre ting the experimenta l data on bubbl y-ice densi­
fi cati on; (ii ) b oth ice-porosity a nd bubble-pressure ex peri­
mental profi les a re necessar y to obtain a n adequate 
solution of the ill\"Crse problem of inferring rheological 
pa rameters of pure ice; (iii ) the porosity profil e can also be 
employed to d educe past \'ari a ti o ns of the pore close-off co n­
diti ons expressed in terms or the dimensionless complex "t, 
which is prop o rti onal to a ir content in ice, Th e improve­
ments made in the present co nsiderati on with resp ec t to the 
ea rli er studies by Salama tin a nd LipenkO\· (1993), such as 
inco rporating the ge nerali zed rheologica l m odcl of bubbly 
ice a nd ta king into account the differencc be tween absolute 
load pressure a nd a\'C raged pressure in the ice matrix, are 
important fo r both inverse a nd fo rward problem s, The sig­
nifi cance o f the lalter [actor for predicting the ice-porosity 
profile in the rel axation phase of bubbly-ice d ensifica tion 
has alread y b een di sc ussed in sec ti on 5 a nd is dem onstrated 
in Figure 2d, Onc can sce here th at the di screpa ncy between 
simul ated pro fil es II a nd III obta ined with the same initi a l 
data, except th at A == Pt [or pro file Ill, m ay be similar to 
the impac t o f the principa l m odel parameters: E J , K 2 and 
ic. The effect of using constitutive relations more sophistic­
a ted than the power-creep law is also shown to be substan­
ti a l fo r simula ting the densificati oll process with respect to 
bubble-pressure rclaxati on, H owever, thi s inno\'a ti on does 
not significantl y influence the res ults whil e m odeling the 
post-drilling relaxation of ice density (Lipenkov and 
Sa lamatin, 1989), since the la ller process ta kes place at a 
relati\'ely hig h bubble-ice pressure drop, i, e, within the stress 
range where the power-law creep of ice is \'a licL 

7. CONCLUSION 

A genera li zed model of bubbl y-ice dellsificati o n benea th the 
close-off depth has been de\'e loped a nd ill\'Cs tigated on the 
bas is of simili a rit y theory a nd sca le analys is, Th e inter­
ac ti on between the uni\ 'C rsal compression of bubbles a nd 
de\'iatori c stra ins in a non-linea r viscous ice m a tri x is the 
principal p ec uli a rity of the deform ati on p rocess in the 
upper stratum of ice sheets. Due to thi s, th e ra te of bubbly­
ice densifica tion may be considerabl y influe nced by the 
globa l fl ow o f the glacier but ma inly in its hydrod ynam­
icall y acti\ 'e regions, 

Two ph ases of the densificati on ha\'(' been identifi ed. 
The first is a rela ti\ 'Cly short ph ase of densificati o n gO\'C rned 
by the initial difference between the abso lute load press ure 
of ice sedime nts a nd the average press ure in a ir bubbles at 
the pore d ose-off depth, Thi s ph ase takes pl ace within the 
depth interva l LO < /i :s 3,0, vvhere h is the ice-equi\ 'a lent 
depth norm a li zed so that /1 = 1 at close-on: Th e difference 
between the a bso lute load pressure and the a\ 'e raged pres­
sure in the ice m atrix is importa nt espec ia ll y when model­
ing poros ity \'a ri ati ons within thi s depth ra nge, Th e second , 
the asymptotic phase of bubbl y-ice densificati o n, ta kes place 
a t /1> 3,0, under minima l bubble-ice pressure drop which 
is gO\'C rned by the present-day acc umul ati o n ra te, The rate 
or bubble compress ion a l thi s stage is not sensiti ve to pas t 
cha nges in the pore close-off co nditi ons and the bubble pres­
sure does no t depend on the a ir content in ice. On the other 
hand , the ice-poros ily profile is found to be res po nsive to 
ai r-content va ri a ti ons. 

Both ice-poros ity a nd bubble-pressure pro files in ice 

Salamalill alld olhers.' BlIbb£l' -ice dfl7Silicatioll ill ice sheets,' I Tlte01~Y 

sheets arc sensitive to the rheo logical pa ra meters o f pure 
ice but onl y the bubble-pressure pro fil e di stingui shes the 
rheological prope rti es a t low a nd high stresses. Fina lly, the 
sta ti onary model o f bubbly-ice de nsificati on appears to be 
suffi cient for interpre ting the experimenlal data, pro\'ided 
tha t the conditi o ns a t the pore close-o ff depth are rela ti\ 'cJ y 
stead y during th e typica l durati o n of the process, In the 
accompanying p a per (paper Il ), wc shall formul ate the in­
verse problem a nd use the model to deduce rheological 
properti es of pure ice as well as lO estimate the air content 
from porosit y a nd bubble-pressure pro fil es measured in ice 
shee ts, 
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