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GREENBERG'S THEOREM FOR QUASICONVEX 
SUBGROUPS OF WORD HYPERBOLIC GROUPS 

ILYA KAPOVICH AND HAMISH SHORT 

ABSTRACT. Analogues of a theorem of Greenberg about finitely generated sub­
groups of free groups are proved for quasiconvex subgroups of word hyperbolic groups. 
It is shown that a quasiconvex subgroup of a word hyperbolic group is a finite index 
subgroup of only finitely many other subgroups. 

1. Introduction. 
Introductory remarks. There has been much interest recently in reintroducing geometric 
ideas into group theory. One of the most interesting examples is Gromov's work on the 
class of word hyperbolic groups [Gr]. The notion of a word hyperbolic group arose in the 
work of J. Cannon [C] and M. Gromov [Gr] as a generalization of certain group theoretic 
properties of discrete groups of isometries of classical hyperbolic spaces W, the origins 
of which are to be found in Dehn's solution of the word and conjugacy problems for sur­
face groups (see [De]). Word hyperbolic groups are finitely presented, and examples are 
provided by finite groups, finitely generated free groups, fundamental groups of compact 
surfaces (except for the torus and the Klein Bottle), and groups which act properly dis-
continuously and cocompactly on hyperbolic space of any dimension. Finite extensions 
of word hyperbolic groups, and free products of finitely many word hyperbolic groups 
are also word hyperbolic, though a direct product of two infinite word hyperbolic groups 
is not word hyperbolic. We will give some background information about word hyper­
bolic groups in Sections 2 and 3 and refer the reader to Gromov's original article [Gr], 
and the several commentaries that now exist (for instance [ABC], [Bol], [CDP], [GH]) 
for further information, and proofs of the basic results. 

The object of this note is to prove for word hyperbolic groups analogues of a theo­
rem of Greenberg for finitely generated subgroups of Fuchsian groups (see Theorem 1, 
Part (2) below). In our case these results concern quasiconvex subgroups (for the full 
definition see Section 2), which are a special kind of finitely generated subgroup. In­
deed, in a free group a subgroup is finitely generated if and only if it is quasiconvex. In 
a word hyperbolic group, all finite subgroups, all cyclic subgroups, and all subgroups of 
finite index are quasiconvex. Also, a quasiconvex subgroup of a word hyperbolic group 
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is word hyperbolic. It is not true in general that a finitely generated subgroup of a word 
hyperbolic group is word hyperbolic as there exist finitely generated subgroups of word 
hyperbolic groups which are not finitely related (see for instance [R], [BMS]). Moreover, 
recently N. Brady [Br] constructed a remarkable example of a torsion-free hyperbolic 
group which contains a finitely presented subgroup which is not itself word hyperbolic. 

An important part of Gromov's work involves the introduction of a "boundary" which 
compactifies the Cayley graph of a word hyperbolic group (in fact it compactifies a 6-
hyperbolic space). This construction generalizes the usual compactification of w-dimen-
sional hyperbolic space by a n — 1 dimensional sphere. A similar construction for groups 
was also investigated by Floyd in his thesis (see [F]). 

In Section 2 of this paper we define a very rudimentary form of boundary for the 
group, which is not in fact a compactification. We show that several results about word 
hyperbolic groups and their subgroups can be proved using exactly the same techniques 
which are used in classical hyperbolic geometry, provided certain preparatory work is 
done. We introduce the notions of a boundary of a subgroup of a group, and of the convex 
hull of a subset of the boundary. We then show in 2.4(i) that for a quasiconvex subgroup 
A, the quotient of the convex hull of the boundary of A by the action of A is finite. Using 
this, we obtain: 

THEOREM 1. Let Gbea word hyperbolic group, and let A be an infinite quasiconvex 
subgroup. 

(1) IfB is an infinite quasiconvex subgroup ofG, and A OB has finite index in A and 
in B, then AC\B has finite index in AW B, the subgroup generated by A andB in 
G. 

(2) The subgroup A has finite index in only finitely many distinct subgroups ofG. 
(3) The subgroup A has finite index in its virtual normalizer 

VNG{A) = {g G G | [A: A HgAg'1] < oo and \gAg~x:A HgAg'1] < oo}. 

In Section 3 we study the boundary of a ^-hyperbolic space (for instance the Cayley 
graph of a word hyperbolic group) as defined by Gromov, as a compactification of the 
space. The subgroup structure of word hyperbolic groups is now discussed from the point 
of view of understanding their limit sets in the boundary. 

We improve on the results of Section 2, and show (Proposition 3.4) that an infinite 
subgroup is quasiconvex if and only if the quotient of a convex hull (appropriately de­
fined) of its limit set by the action of the subgroup has finite diameter. 

It is not possible to use the standard notion of convexity and convex hulls when work­
ing with word hyperbolic groups. Indeed, as it was demonstrated in a remarkable example 
of M. Bridson and G. Swarup [BS], it can happen that a (classical) convex hull of a fi­
nite subset of a Cayley graph of a group coincides with the whole group. Thus certain 
adjustments have to be made and an appropriate substitution for the classical notion of 
convex hull should be used. 
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Our new characterization of quasiconvex subgroups of word hyperbolic groups 
stresses the similarity between quasiconvexity and geometrical finiteness for classical 
hyperbolic groups and immediately yields the following result of G.Swarup [Swa]. 

THEOREM 2. Let G be a torsion-free geometrically finite group of isometries ofW 
without parabolics. Then G is word hyperbolic and a subgroup A ofG is quasiconvex in 
G if and only if it is geometrically finite. 

We also obtain a criterion of commensurability for quasiconvex subgroups of word 
hyperbolic groups in terms of limit sets (Lemma 3.8) and obtain another proof of Theo­
rem 1 as well as 

THEOREM 3. Let A be an infinite quasiconvex subgroup of a word hyperbolic group 
G and let B be a subgroup ofG containing A. Then A has finite index in B if and only if 
A contains an infinite subgroup C which is normal in B. 

In Section 4 we remark that it is possible to give a criterion of quasiconvexity similar 
to Proposition 3.4 in terms of the elementary boundary we use in Section 1. 

Theorem 3 has also been obtained by Mihalik and Towle [MT] and results similar 
to those of Section 3 were independently obtained by E. Swenson [Swe] and R. Gitik, 
M. Mitra, E. Rips and M. Sageev [GMRS]. Parts (1) and (2) were originally proved 
for finitely generated subgroups of free groups by L. Greenberg [G], using the usual 
compactification of the hyperbolic plane by a circle. He showed that part of the boundary 
can be naturally associated to a subgroup A of a discrete subgroup G of PSL(2, K). He 
then showed that two subgroups have the same associated boundary if and only if they 
are finite extensions of a common subgroup. 

We would also like to bring to the reader's attention Stallings' beautiful paper "The 
topology of finite graphs" [St] where most of Theorem 1 is proved for finitely generated 
subgroups of free groups. 

Some comments on Theorem 1. Before proceeding to the definitions and proofs of our 
main theorem, we give some examples to illustrate the necessity of some conditions 
concerning infiniteness and quasiconvexity. Notice that a finite subgroup is always qua­
siconvex. 

Statement (3), may fail if// is finite or if// is infinite but not quasiconvex. Consider the 
group Q— (a,b\ [a, b]2 = 1) and H = {1}. Then Q is word hyperbolic (being a small 
cancellation group) and there are infinitely many distinct conjugates of the subgroup 
M = gp([a, b]) = Z2 of Q (by the usual small cancellation arguments). Thus H is a 
subgroup of finite index in infinitely many subgroups of G although H is quasiconvex in 

Q-
When G contains an infinite cyclic subgroup, the trivial subgroup H = {1} is con­

tained in infinitely many cyclic subgroups (each of which is quasiconvex when G is word 
hyperbolic). Concerning Theorem 3, there is a word hyperbolic group G which has a nor­
mal subgroup//isomorphic to the fundamental group of a closed hyperbolic surface with 
the quotient group Greenberg's theorem for quasiconvex subgroups of word hyperbolic 
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groups G/H isomorphic to Z. Again, in this case, the normalizer of H is all of G, and 
\G\H\ = 00. 

One can also construct an example of an infinite, finitely generated (but not quasicon-
vex) subgroup Hoi a word hyperbolic group G which has finite index in infinitely many 
subgroups of G, as follows. Let Q be the one-relator group with torsion defined above. 
Now apply the construction of E. Rips [R] to obtain a short exact sequence 

l->K->G->Q-^l 

where G is a torsion-free word hyperbolic group (as it satisfies a small cancellation con­
dition), and K is an infinite, normal two-generator subgroup of G. Let q be a conjugate 
of [a, b] in Q and g be an element in the preimage of q in G. Put Kq = gp(K,g). Then 
g2 G K,g $K and AT is a subgroup of index 2 in Kq. Moreover, the image of Kq in Q is 
the cyclic group of order two gp(q). Thus for different conjugates q of g we get different 
subgroups Kq of G containing K as a subgroup of finite index. 

Hyperbolic groups with all finitely generated subgroups quasiconvex. We say that a 
word hyperbolic group G belongs to class (Q) when a subgroup v4 of G is quasiconvex 
in G if and only if A is finitely generated. 

Among the groups known to belong to the class (Q) are finitely generated free groups 
and fundamental groups of closed hyperbolic surfaces (see [Sho] and [Pi]). It is also clear 
that finite extensions and subgroups of finite index (in fact all quasiconvex subgroups) of 
groups in (Q) belong to (Q). G. Swarup has shown [Swa] that if G is a geometrically finite 
torsion-free Kleinian group without parabolics with a nonempty discontinuity domain 
(i.e. the limit set of G is not the whole sphere S2) then G is in (Q). The last observation 
is based on a result of W. Thurston [Mo]. 

Notice that any group G in the class (Q) has the Howson property, that is the intersec­
tion of any two finitely generated subgroups is finitely generated (indeed, the intersection 
of two quasiconvex subgroups is quasiconvex and so is finitely generated, finitely pre­
sentable and even word hyperbolic). This approach to Howson property is discussed in 
more detail in [Sho]. 

In the class (Q), Theorem 1 can be stated in terms of finitely generated subgroups. In 
[Ba] H. Bass proved Theorem 1(2) in these terms for the case when G is the fundamental 
group of a finite graph of groups Y with finite vertex groups. Such a group G lies in 
(Q) since it is virtually free. There are two natural proper hyperbolic spaces on which G 
admits a properly discontinuous cocompact isometric action. One is the Cayley graph of 
G with respect to some finite generating set. Another is the Bass-Serre universal covering 
tree for the graph of groups Y. The result can be established for G by studying either of 
these actions. The original proof of H. Bass employed the second action but the ideas 
involved in it are quite similar to ours. 

In the case when G is a free group of finite rank, the Bass-Serre tree coincides with 
the Cayley graph of G with respect to a free basis. This action was studied by J. Stallings 
in [Sta] to obtain the same statement for free groups. The original proof of this result 
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by L. Greenberg (which also applies to hyperbolic surface groups) used the fact that a 
free group G admits a discrete properly discontinuous geometrically finite action in U2 

and therefore the action of G on the (classical) convex hull of its limit set is properly 
discontinuous and cocompact. 

From our point of view the proof given in the present note captures the similarity of 
all these approaches. 

2. Definitions and Proof of Theorem 1. 
Some definitions. If (X, d) is a metric space and / is a connected subset of a real line, a 
map/: / —* Xis called geodesic if d(f{i)J{s)) = \t — s\ for any s,t G /. Sometimes the 
image of this map is also termed a geodesic. A metric space is termed geodesic if there 
is at least one geodesic joining each pair of points. 

If A is a geodesic triangle (that is a triangle with geodesic sides) in a metric space (X, d) 
with vertices x,y, z and geodesic sides [x,y]9 [x,y], [y,z] then there are unique points s, q, r 
on the sides [x,y], [x, z] and [y, z] such that d(x, s) = d(x, q), d(z, q) = d(z, r) and d(y, s) = 
d(y, r). The points s, q, r are called the vertices of the inscribed triangle in the triangle A. 
The triangle A is said to be 8-slim if, for any points s' on [x,y] and qf on [x,z] chosen 
such that d(x,sf) = d(x, q') < d(x,s) = d(x, q), we have d(s\ q') < 5 (and the analogous 
condition holds interchanging x, y and z). 

A geodesic metric space (X, d) is called 8-hyperbolic if all geodesic triangles are 6-
slim. 

Let G be a group generated by a finite set S. We define the S-length of an element 
g € G, denoted by ls(g), as the minimal number / such that g can be expressed in the 
form g = s\'-st where st G S^1. A minimizing expression is termed an S-geodesic rep­
resentative of g. We will often confuse formal words in the alphabet S with the elements 
they represent in G. 

The empty word e by convention represents the identity element of G. Define 
ds(g\,gi) — h(gilg2),gug2 G G. This defines a metric on G called the word metric 
associated to S. The word metric ds can be extended to a metric (also denoted ds) on the 
Cayley graph T(G, 5), by declaring each edge to be isometric to the unit interval. This 
metric is clearly invariant under the natural left action of G. 

A finitely generated group G is called word hyperbolic if for some finite generating 
set S of G there is 6 > 0 such that all geodesic triangles in the Cayley graph (T(G, S), ds) 
of G are 6-slim. (It turns out that this property is independent of the finite generating set 
chosen—see [Gr], [ABC], etc.). 

In general, a subsets of a geodesic metric space (X, d) is termed e-quasiconvex inXif 
any geodesic [a\, a{\ inXjoining points a\, ai G A is contained in an e-neighbourhood of 
A. If G is a finitely generated group and A is a subgroup of G, we say that A is quasiconvex 
in G if for some finite generating set S of G A is a quasiconvex subset of the Cayley graph 
T(G,S). 

The following properties of quasiconvex subgroups and word hyperbolic groups and 
their quasiconvex subgroups are of importance to us here: 
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PROPOSITION 2.0. Let G be a finitely generated group, and S a finite set of generators 
for G. 

(1) [GS] If A is a quasiconvex subgroup ofG then A is finitely generated. 

(2) [GS] If A is a quasiconvex subgroup ofG then for any finite generating set T of 
A and for any finite generating set SofG there is a constant B > 0 such that 
dT(a\,a2) <Bds(a\,a2),aua2 £ A. 

(3) [ShoJ If A i , . . . , Ak are quasiconvex subgroups of G, then A = AiH- • • HAk is 
quasiconvex in G. 

If in addition, G is a word hyperbolic group, then: 

(4) [BGSS, Theorem 3.1 J If A is a finitely generated subgroup ofG and for some finite 
generating set T of A and some finite generating set SofG there is a constant B > 
0 such that dr(a\, a2) < Bds(a\, a2), a\,a2 £A, then A is a quasiconvex subset of 
T(G, S). (Together with (2) this implies that the definition of quasiconvexity for a 
subgroup of a word hyperbolic group G does not depend on the choice of a finite 
generating set ofG). 

(5) [CDP, Chapter 3, Proposition 4.1] If A is a quasiconvex subgroup ofG then for 
any finite generating set T of A and for any finite generating set S of G A is a 
quasiconvex subset ofT(G, S). 

(6) [ABC, Lemma 3.8] If A is a quasiconvex subgroup of G then A is also word 
hyperbolic. 

(7) If A, B are subgroups ofG such that A has finite index in B, then A is quasiconvex 
in G if and only ifB is quasiconvex in G. 

(8) [GH, Chapter 4, Theorem 13] There are only finitely many conjugacy classes of 
elements of finite order in G. 

(9) [GH, Chapter 8, Theorem 37] An infinite subgroup ofG contains an element of 
infinite order. 

(10) [ABC, Corollary 3.4] IfC is a virtually cyclic subgroup ofG then C is quasiconvex 
inG. 

(11) [N] Ifcf) G Aut(G) and A is a subgroup ofG, then A is quasiconvex in G if and 
only if<l>(A) is quasiconvex in G. 

Other interesting properties of word hyperbolic groups, for instance that G is finitely 
presented and has a linear isoperimetric function, will not be needed here. For proof of 
these results and further information about quasiconvexity and word hyperbolic groups, 
we refer the reader to [Sho], [Gr], [ABC], [GH] and the other hyperbolic references. 

An elementary boundary for a finitely generated group. In this section G is a finitely 
generated group, and S is a finite set of generators. The group G acts by left multiplication 
on the Cayley graph ^(G) , by isometries. We construct a 'boundary' for G, which is 
essentially the boundary defined by Gromov for word hyperbolic groups deprived of its 
topology. 

Consider the set of subsemigroups © = {{g1'• \ i > 0},g e G} =def {{g+} \ g € G}. 
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We now extend to a larger set (where there is an obvious left action induced by left 
multiplication), and define E = G x 6 = {{hgf},h9g G G) = {hg+,h,g G G}. 

We define an equivalence relation on I by: hg+ ~ h'g'* if {/ig2'; / > 0} lies in a 
bounded neighbourhood of {h'gfJ'J > 0} and {h'gfJ;j > 0} lies in a bounded neighbour­
hood of {hgLJ > 0}. 

This is clearly an equivalence relation, and we denote the equivalence class of hg+ by 
[hg+] (and [hg~] = [h(g~l)+]). Notice that [g+] = [g7*] if and only if g and g' have a 
common (positive) power: there is some word d and infinitely many pairs (ij) of positive 
numbers such that g2 = gfJd. 

The elementary boundary of G is defined to be dG — (2 / ~) — {[1]}. 
We remove the equivalence class of the identity element due to its special nature—it 

clearly contains all elements of finite order. One consequence of this is that a torsion 
group will have empty boundary. 

It is clear from the construction that G acts on dG on the left by h • [hfg+] = [hh'g*]. 

LEMMA 2.1. (i) If[g+] = [(g~] then g has finite order in G, and[g+] = [1]; 
(ii) The left action ofG on dG by left multiplication is the same as the action induced 

by conjugation h • [h'g+] = [(**''h~l)(hgh~l)+l 
(Hi) The definition ofdG is independent of the choice of finite generating set. 

PROOF, (i) If the positive powers of G lie in a bounded neighbourhood of the neg­
ative powers of g, then there is some element d in G such that g* = g~Jd, and g* = g~ed 
for some ij, k,£>0. It follows that d = g/+y" = g*+£ in the group G. As this happens for 
infinitely many such quadruples, g has finite order. 

(ii) Notice that d(hgih~\hgi) = £s(h), so that {(hh'h'1) • /zg2 = hh'gf \ i > 0} lies in 
a £s(/z)-neighbourhood of {{hh'h~x) • hgh~x = hh'gh~x \ i > 0} and vice versa. 

(iii) Choosing a finite set of generators Y for G changes length in the group by at most 
a constant factor, so that equivalence is unchanged. 

Notice that as a result of part (ii) of this lemma, in each equivalence class there is 
a representative of the form {g+}, i.e. 1 / ~ = 6 / ~ . We now study subsets of this 
boundary which correspond to subgroups. 

DEFINITION. Let A be a subset of G. We define the boundary of A in G, to be: dGA = 
{[a1] | a e A}. Notice that, by (ii) above, dGG = dG. 

For a subset Y of the boundary dG, we define the stabilizer of 7 to be: 

StabG(7) = {geG | g 7 = 7}. 

For a fixed finite set S of generators for G, define the convex hull of 7 to be: tHs(Y) = 
{v G G such that there are g^, h,h' G G such that [/*g+], [/*Y+] G 7, and there are two 
infinite, strictly increasing sequences «/, w/, such that v lies on a ^-geodesic from hg"' to 

Notice that, while the definition of the stabilizer is independent of the choice of gen­
erating set, the convex hull does depend on the choice. We will however refer to Stab(//) 
and 9{(Y) when the ambient group and generating set are clear from the context. 
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EXAMPLES. 0. By Lemma 2.1(i) above, the boundary of a finite group, (or indeed 
of an infinite torsion group) is empty. 

1. The boundary of the infinite cyclic group has two elements, (which we can think of 
as ±00), and the stabilizer of each of these elements is the entire group. With the single 
generator 1, the convex hull of the boundary is clearly the whole group, as is the case for 
any finite set of generators. 

2. The free abelian group of rank two: each maximal cyclic subgroup has a naturally 
associated "slope", and each rational number &, n > 0 (and 0,00) defines a cyclic sub­
group {xmyn). The boundary of this cyclic subgroup is two points, and the boundary of 
the group is a countable set (of rational slopes). All rank two subgroups have the same 
boundary, that of the whole group. Notice that the convex hull of the boundary of any 
nontrivial subgroup is the whole group. 

3. The free group of rank two: each cyclically reduced element g which is not a proper 
power has its own equivalence class [g+]. The Cayley graph with respect to a set of free 
generators is a tree, and the convex hull of the boundary of a cyclic subgroup generated 
by a cyclically reduced word g is the 'axis'—the line containing the elements of this 
subgroup (i.e. vertices corresponding to initial segments of powers of g). 

For a noncyclically reduced word, the convex hull is the translated axis of the cycli­
cally reduced part; if w = vwv"1 with u cyclically reduced, then the elements of tH(d(w)) 
are the vertices of the Cayley graph corresponding to vw', where u' is an initial segment 
of the word um

9 for m G Z. 

LEMMA 2.2. Let G be a finitely generated group, S a finite set of generators and 

YcdG. 

(i) Stab(F) acts freely on the convex hull ?(s(Y). 

(ii) If A is a subgroup ofG,A C HG(A) C Stab(<M). 
(Hi) If A andB are subgroups ofG, and A has finite index in B, then dGA — dcB. 

PROOF, (i) G acts freely on itself on the left. It suffices to show that if v G Ms(Y), 
and b G Stab(Y), then bv G &s(Y). 

Suppose that v lies on geodesies from hg1 to /z'g77, [hg+], [h,gf+] G Y. For b G G,bv 
lies on a geodesic from bhg to bh'g'\ and for b G Stab(F), it follows that bv G ^s(Y). 

(ii) As in Lemma 2.1 (ii) above, for a eA,d(a^9a^a~l) < \a\, so {ag1} ~ {ag*a~~1}. 
In fact, as long as a normalizes A, this is an element of dgA. 

(iii) If b G B, then bk = a for some a G A, k > 0, so [b+] = [a+]. m 

(Notice that in the proof of (iii) we did not use the fact that k can be chosen to be 
bounded. Thus it was actually proved that if A is a subgroup of B and for each element 
of B some power of it belongs to A, then OQA = dgB). 

We now concentrate on word hyperbolic groups and their quasiconvex subgroups, 
which have particularly nice properties. Recall that all cyclic subgroups in a word hy­
perbolic group, are quasiconvex. 
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LEMMA 2.3. Let A be a quasiconvex infinite cyclic subgroup of the finitely generated 
group G. Then: 

(i) H(dGA) is infinite; 
(ii) if, in addition, G is a word hyperbolic group, then 9f(dGA) is contained in a 

bounded neighbourhood of A, and is thus quasigeodesic too. 

PROOF. Fix a finite set of generators S for G. 
(i) Let (c) be a A^-quasiconvex infinite cyclic subgroup. We show that all geodesies 

from cm to c~m pass through a ball of bounded radius about the identity vertex, for all m 
sufficiently large. Notice that these geodesies all lie in a AT neighbourhood of the quasi-
convex subgroup (c). 

Consider a geodesic triangle with vertices l,cm,c~m. Let v\9V2 be adjacent vertices 
on the geodesic a joining c™ and c~m such that there are positive numbers p, q > 0 
with d{vuc~P) < K and </(v2,c*) < K. Then d{c~P9(fl) < 2K + 1; this bounds/? + 
q, and in particular bounds/? and q. Hence the geodesic a passes through a bounded 
neighbourhood B of the identity element. It follows that there is an infinite sequence 
[mi] and geodesies 7/ joining cW/ and c~mi, and a vertex v G 2?, such that every 7/ passes 
through the vertex v. Thus Hs(dGA) is nonempty, and by 2.2(i) it is therefore infinite. 

(ii) Suppose that v G ?is(dGA). Let {hg1} and {h'gfJ} be sequences representing 
elements ofdGA such that v lies on infinitely many geodesies joining the points hg* and 
h'g0'. There is a constant C > 0, and a, b G A such that {hg1 | / > 0} and {h/g/j \ j > 0} 
are contained in C neighbourhoods of the cyclic subgroups (a) and (b). 

Choose ij sufficiently large so that min{rf(v,g'), d(v,g'J)} > 28 + C Let a'\b' G A 
be nearest elements of A to ftg1' and h'gf*. 

By studying the quadrilateral with geodesic sides and vertices a'', b\ hg*, h'g'\ we see 
that the vertex v is at distance at most 28 from some point on a geodesic joining a' and 
b'.AsA is quasigeodesic with constant K, this means that v is at distance at most K + 28 
from A. m 

COROLLARY 2.4. Let A be a quasiconvex subgroup of the word hyperbolic group G. 
(i) The quotient space 9fx{A)jA is finite, 

(ii) A has finite index in Stab(9<^4)-

PROOF. AS Of {A) lies in a bounded AT-neighbourhood of A, and A acts freely on 
9f(A), each element of the quotient space has a representative of length at most AT. These 
represent the cosets of A in Stab(&4). • 

It is now easy to deduce Theorem 1: 

PROOF OF THEOREM 1. (1) If A Pi B has finite index in A, and A is quasiconvex in G, 
then A H B is also quasiconvex in G. By Lemma 2.2 it follows that dGA = dG(A HB) = 
dGB. As A and B both stabilize dG(A n B), so does A V B. Hence A (IB < AM B < 
Stab(§G04 n #)), and applying 2.4(H) and the quasiconvexity of A n B gives the result. 

(2) If A has finite index in B9 then dGA = dGB, and A < B < Stab(g^) = C. 
If A is quasiconvex then B is a finite index subgroup of C, of index at most [C : A]. 
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There are only finitely many such subgroups. In fact, if {1, g i , . . . ,gk} is a set of coset 
representatives for A in C, then B is obtained by adjoining some subset of the {g,} to A. 

(3) Suppose that g G VNG(A). Put U = gAg~x HA. Since U is of finite index in A 
anding,4g_1 ,^ = dG(U) = dG(A) = dxigAg~x). However dx(gAg~l) is equal to the set 
{g[a+] | a G A} that is to gK. Thus gK = K and g G StabG(X). Since g <E VNG(A) was 
chosen arbitrarily, we conclude that ,4 < VNG(A) < StabG(K). By Corollary 2.4(h) this 
implies that A has finite index in VNG(A). 

Notice that part (2) of the theorem gives another way to see that (a, b \ b~l ab = a2) is 
not word hyperbolic. The subgroup (a) has index 2 in (bab~l), and index 2n in (bnab~n). 

3. Gromov boundary and quasiconvexity in hyperbolic groups. 
Definitions and notations. In order to obtain stronger results than those obtained in the 
Section 2, we require a boundary with a topological structure. Such a boundary has been 
defined by Gromov for ^-hyperbolic spaces (see also Floyd's work [F]). For the detailed 
discussion and proofs of the basic properties of this compactification (for instance that the 
elementary boundary of Section 2 can be viewed as a dense subset), the reader is referred 
to [Gr, Chapter 1,3,7], [CDP, Chapter 2], [GH, Chapter 5-7] and [ABC, Chapter 4]. We 
here give some of the basic definitions that we shall need. 

A metric space (X, d) is said to be proper if all closed metric balls in X are compact. 
Any proper ^-hyperbolic metric space (X, d) can be compactified by adding points of 
the ideal boundary (or visual boundary) dXto X. Each point of the boundary dXis an 
equivalence class of geodesic rays r: [0, oo) —* X where rays r\ and ri are equivalent 
if sup(d(ri(0,r2(0)} < 00. It is not hard to see that if r\ and r2 are equivalent then 
sup{4n(0,r2([0,oo)) \te [0,oo)} <max{4r1(0),r2(0)),2^}. 

There is another way to think about points of the boundary. Fix a point/? £ Zand put 

(x,y)p = (l/2)(d(x9p) + d(y,p) - d(x9yj) 

for any x,y G X. Notice that, considering a geodesic triangle with vertices/?,x,y, we see 
that (x,y)p is equal to the distance from/? to the two vertices of the inscribed triangle 
which lie on the sides \p,x] and \p,y] (see the introduction to Section 2). 

We say that a sequence (#/)/eN of points in X converges to infinity if 

lim{inf(x/,x,)n} = 00. 

Two sequences (x/)/eN and (y/)/GN converging to infinity are said to be equivalent if 

lim {inf (x/, v,)p} = 00. 
n—>oo ij>n 

One can check that the last two definitions do not depend on the choice of a basepoint 
p G X. It follows from the definition that if (x/)/GN and (y/)/GN are sequences of points 
in X such that for some finite K, d(xt,yi) < K for each i G N then (JC/)/GN converges to 
infinity if and only if (y/)/GN converges to infinity, and the sequences are equivalent in 
this case. 
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The points of the ideal boundary 8X can be identified with equivalence classes of 
sequences converging to infinity. If a is the equivalence class of (X/)/GN

 w e vvrite 
lim^oo*/ = #• It is obvious that if r: [0,oo) —> Xis a geodesic ray then the sequence 
xt = r(/) converges to infinity. It is also clear that if n , r2 are equivalent geodesic rays 
then the sequences (n(0) N

 a n d (^(0) N
 a r e a l s o equivalent. 

Moreover, since (X, d) is proper, any sequence converging to infinity is equivalent to 
the sequence (r(7)). N for some geodesic ray r. This gives an identification between the 
points of ideal boundary and equivalence classes of sequences converging to infinity [Gr, 
7.5]. 

It can be shown (see [CDP, Chapter 2, Theorem 2.1]) that for any two distinct points 
a,b G dX there exists a (not necessarily unique) bi-infinite geodesic r: (—oo, oo) —> X 
such that limz-KX) r{—i) — a and lim^oo r(i) = b. This geodesic r is sometimes denoted 
by (a, b) and referred to as a geodesic joining a and b. 

Analogously, for any point a G dX and for any point x G X there is a geodesic ray 
r: [0, oo) —> X such that r(0) = x and lim,-^ r(i) = a. Such a ray r is referred to as a 
geodesic joining x and a and is sometimes denoted [x, a). 

Fix a basepoint p oiX and let r\, ^2: [0, oo) —•» X be geodesic rays joining p to points 
a and & in the boundary. We put 

(n,r2)p = sup (r1(0,r2(0)_ = #lim(r1(0,r2(0) -

We define (a, fe)^ to be the infimum of the numbers (r\, r2)p where r\, 7*2 vary over all 
geodesic rays joining p to a and Z>. In fact it can be shown that for any such r\ and r2, we 
have\(rur2)p-(a,b)p\ < 105. 

Theboundaiy5ArofJfistopologizedbyputtinglim/_,00a/ = a i f l im/^oo^/ ,^ = oo, 
where a, at G dX. 

It is easy to describe this topology in the language of sequences converging to infinity. 
Namely, let an, n = 1,2,..., be the equivalence class of a sequence (xW)/)/eN and let a be 
the equivalence class of a sequence (x,-)/eN- Then lim;_+oo a„ = aif 

lim {inf (xhxmJ)p} —* oo. 
m—+oo ij>n 

All the definitions given above do not depend on the choice of a basepoint. More­
over dXandXU DXare compact with the topologies described above [CDP, Chapter 2, 
Proposition 3.2]. 

We need one more piece of notation. If x G Zand r is a geodesic ray joining/? with a 
point a G dX, we put (x, r)p = lim(x, r(f)) = sup{(x, r(tfj \ t G [0, oo)}. One observes 
that if a, b are distinct points in dX, and points x G r\ = [p, <z), >> G A*2 = [/?, &) are chosen 
such that M = (JC,6)P = 0 , ^ , andd(x,/?) > 50(M + 1)5, rf(y,p) > 100(M + 1)5, then 
(x,^)/?, (^,r2)p, and (r\,y)P) are within 105 of (rur2)p. 

Convex hulls and limit sets in hyperbolic spaces. Let X be a proper 5-hyperbolic space 
for some 5 > 1. 

We need the following obvious lemma. 
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LEMMA 3.1. Any ideal geodesic quadrilateral, that is a quadrilateral with vertices 
on the boundary of X, is a 1008-quasiconvex subset of X. 

PROOF. This follows immediately from the fact that ideal quadrilaterals in X are 
105-thin, that is any side is contained in a 10<5-neighborhood of the union of other sides. 

We can now define the convex hull of a subset of the boundary. We can now use 
infinite rays where in Section 2 we had to make explicit reference to infinite families of 
geodesies. 

DEFINITION, (see [Gr, 7.5.A]) Let X be a propers-hyperbolic space with 5 > 1, and 
let K be a subset of dX containing at least two points. Then the set CK = LU&eA:(a> °)ls 

called the convex hull ofK in X. 

LEMMA 3.2. LetXandK be as above. Then CK is 1008-quasiconvex in X. 

PROOF. Let x,y G CK. Then x G (a,b) mdy G (c,d) for some a,b,c,d G K. 
Assume that the points a, b, c, d are distinct (it will be clear from the argument that the 
case when some of them coincide is completely analogous). 

Join points b and c by a geodesic (b, c) and points d and a by a geodesic (d, a) in X. 
By definition of CK the ideal quadrilateral 

D = (a9b)U(b9c)U(c,d)U(d9a) 

is contained in CK. By Lemma 3.1 a geodesic (x,y) is contained in 100£-neighborhood 
of D and so in 1006-neighborhood of CK. Thus CK is 1005-quasiconvex. 

Let (X, d) be as above and suppose a group G acts on Xby isometries so that the action 
is properly discontinuous (i.e. for any compact QinX the set {g G G \ QC\gQ ^ 0} 
is finite) and cocompact (that isX/G with the quotient topology is compact). The action 
of G on X induces an action of G on dX by homeomorphisms: namely an element g of 
G takes the equivalence class of a geodesic ray r to the equivalence class of the ray gr. 
Equivalently, if (a/);<=N is a sequence converging to infinity, then an element g of G takes 
its equivalence class to the equivalence class of the sequence (ga/)/GN (which obviously 
also converges to infinity). 

Pick a basepoint/? G X. For any subgroup A < G define the X-limit set of A, denoted 
by dx(A), as the collection of all those b G dX which are the limits of some sequences of 
points from Ap (in the topology of XU dX). It is easy to see that this definition does not 
depend on the choice of the basepoint/? G Zand that dx(A) is always closed. 

Analogous to the results of Section 2, the limit sets defined above have the following 
properties: 

LEMMA 3.3. Let (X, d)bea proper, S-hyperbolic space, and G a group acting prop­
erly discontinuously and cocompactly by isometries on X. Let A and B be subgroups of 
G. Then: 

(1) The group G is word hyperbolic. 
(2) dx(A) = 0 if and only if A is finite. 
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(3) If(c) is an infinite cyclic subgroup ofG then dx((c)) consists of two distinct points 
c+ = lim/_*ooC* andc~ — lim/_KX)c

_/. 

(4) If A is contained in B then dx(A) C dx(B). 
(5) If A has finite index in B then dx(A) = dx(B). 
(6) If A is infinite then dx(A) contains at least two distinct points. 
(7) If A is infinite then the sets dx(A) and Cdx(A) are A-invariant. 

PROOF. Statement (1) follows from the fact that in these circumstances, X and G 
are quasi-isometric (see for instance [ECHLPT, Theorem 3.3.6]) and so G is word hy­
perbolic as a group quasi-isometric to a proper hyperbolic metric space [GH, Chapter 5, 
Theorem 12]. Statements (4), (5) and (7) are immediate from the definitions, while (2) 
follows immediately from (6). Statement (3) follows from the fact that an infinite cyclic 
subgroup is quasiconvex in G (though this is not used in 2.1) and from [CDP, Chapter 3, 
Theorem 2.2]. Statement (6) is a consequence of Proposition 2.0(9) together with (3) and 

(4). 
We give a sketch of a proof of (6) independent of Proposition 2.0(9), using Proposi­

tion 2.0(8), which is easier to prove. 
If A has an element of infinite order, the statement is trivial. Suppose now that every 

element in A has finite order. Since there are only finitely many conjugacy classes of 
elements of finite order in G, we can find an integer TV such that the order of any element 
of A divides N. 

Fix a basepoint p G X. Since Ap is infinite and XUdX'xs compact, the set dx(A) 
contains at least one point q. Assume q = dx(A). Then Aq = q. Fix a geodesic ray 
r = \p,q) inX. Let A = {at\i = 1, 2,. . .} be an enumeration of A such that at ^ aj when 
i 7̂  j . Since atq = q the rays azr and r are 2^-close far away from/?. Thus the action of 
at on r far away from/? is 4<§-close to a translation by //. Since the action of G on the set 
of vertices in X (and so in r) is free and ,4 is infinite, we conclude that lim^oo U — oo. 
Thus for big enough / we have // > 1000M). But for such / the action of af on r far away 
from/? is 16M>-close to a translation by Ntt. This contradicts the fact that af — 1 and (6) 
is proved. • 

As the set Cdx(A) is vl-equi variant, the quotient space Cdx(A)/A inherits a metric 
from the restriction of d to Cdx(A): put d(Ax,Ay) = inf{d(a\x,a2y) \ a\9ai € A} for 
x,y G X. 

Clearly ifx,>> G X then mf{d{a\xia2y) \ a\,a2 G A} = inf{d(x,ay) \ a G A}. 
Moreover, for any x,y G X inf{d{x,ay) \ a G A} = min{d(x,ay) | a G A}. Indeed, let 
M = inf{d(x, ay) \ a G A}. Then there is a0 € A such that d(x,aoy) < M+ 1. Since 
the closed metric ball B = B(y, 2M+ 2) is compact and the action of G on X is properly 
discontinuous, the set {a G A \ d(aoy, ay) < 2M+ 2} is finite. Therefore the set {a G A | 
d(x,ay) < M+ 1} is finite and so mf{d(x,ay) \ a G A} = min{d(x,ay) | a G A}. Thus 
whenever d(Ax,Ay) = 0 we have^x = Ay. Besides for any z e X, a\ G A d(Ax,Ay) = 
min{d(x,ay) | a G A} < d(x,a\z) + mm{d(ay,a\z) \ a G A} = d(x,a\z) + d(Ay,Az). 
Since a\ G A was chosen arbitrarily, this implies that d(Ax,Ay) < d(Ax,Az) + d(Az,Ay). 
Thus (Cdx(A)/A, d) is indeed a metric space. 
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We are now in a position to prove an improved, metric version of Proposition 2.4 (the 
necessary condition has become an equivalent condition). 

PROPOSITION 3.4. Let Gbea word hyperbolic group and A be a subgroup ofG. The 
following conditions are equivalent 

(i) A is quasiconvex in G; 
(ii) for any proper 8-hyperbolic space X and for any properly discontinuous cocom-

pact action ofG onXby isometries the quotient space Cdx(A)/A has finite di­
ameter; 

(Hi) for some proper 8-hyperbolic space X and some cocompact properly discontinu­
ous action ofG onXby isometries the quotient space Cdx(A)/A has finite diam­
eter. 

Proposition 3.4 provides an alternative definition of quasiconvexity which highlights 
the connection of the theory of word hyperbolic groups with the theory of classical hy­
perbolic groups (i.e. discrete groups of isometries of IM"). 

Before proving Proposition 3.4, we must do a little preliminary work. 
Recall that if (X, d), (7, d\) are metric spaces, a map/:X —* Y is called a K-quasi-

isometry of X if there is K > 0 such that for eachxi,JC2 G X (l/K)d(x\9x2) — K < 
di{f(xl)J(x2)) <Kd(xux2)+K. 

The m a p / is called a K-quasi-isometry ofX onto Y if in addition the image f(X) is 
K-cobounded in 7, that is, for each y G Y there is x E X such that d\ (y,/(*)) < K. In 
this latter case we say that the two spaces are quasi-isometric. 

A A^-quasi-isometry of a connected subset of the real line to Y is called a A'-quasigeo-
desic. In a 5-hyperbolic spaceX, there is a constant e, depending onXandK, such that if 7 
is a AT-quasigeodesic joining two points x, y, and a is a geodesic joining the same points, 
then a is contained in a e-neighbourhood of 7, and 7 is contained in a e-neighbourhood 
of a. For a proof of this essential result ("quasigeodecis are close to geodesies"), and 
more about quasi-isometries, see [Gr, Chapter 7], [GH, Chapter 5], [CDP, Chapter 4], 
etc. 

A proper metric space (X, d) is said to be A-quasigeodesic (A > 1), if for any pair of 
points x,y G X there is a sequence JC = xo, x\9... ,xn — y such that d(xi,xi+\) < A for 
/ = 0,. . . ,«— 1 and \i —j\ < A d(xt,Xj) + A for any ij. 

The following lemma will be needed in the proof of 3.4 (it is analogous to Theo­
rem 3.3.6 of [ECHLPT]). 

LEMMA 3.5. Suppose a group G acts by isometries on the X-quasigeodesic spaceX 
properly discontinuously and cocompactly. Choose a basepointp G XThen the following 
hold: 

(1) The group G is finitely generated. 
(2) IfS is a finite generating set ofG then the map f: (G, ds) —+ (X, d) defined by 

/'• g l~~)> gP Is a quasi-isometry of the Cayley graph (^(G), ds) onto (X, d). 

PROOF. We use B(x, r) to denote the closed metric ball of radius r centered at x. 
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To see that G is finitely generated we follow the chain argument as in [ECHLPT, 
Theorem3.3.6]. PutM = diam(AT/G). PutS = {g G G \ B(p,M+\)ngB(p,M+\) ^ 0}. 

The set S is finite since B(p,M+ A) is compact and the action of G is properly discon­
tinuous. 

We claim that S generates G. Indeed, let g G G. Consider a A-quasigeodesic sequence 
p = xo, x\,...,xn = gp connecting p and gp. Put B = B(p,M). Clearly GB = X. 
Therefore for any / = 1,...,« — 1 there is gt G G such that xt G g/5. Put go = l,gn — g-
Then {xi+ugip) < d{xi+uXi) + d(xhgip) < M+ A and d(xi+ugi+\p) < M for / = 0, 
1 , . . . , « - 1 . Thus grlxi+i G B(p,M+ \)nB(grlgi+lp,M) and so ht = gfxgi+\ G S. But 
clearly g = /i0^i • • • hn-\ and hence G is generated by S. 

We will prove statement (2) of Lemma 3.5 for this particular choice of a finite gener­
ating set S of G. The general statement will then follow immediately from the fact that 
changing a finite generating set of a group induces a quasi-isometry of the word metrics. 

Put N = max{d(p,sp) \ s G S}. By definition the set S is symmetric that is S = S~l. 
Let gi,g2 G G. We need to estimate d(g\p,g2p) in terms of dsig\,gi). If ^i • ^ is a 
ds-geodesic representative for g1~

1g2 then putj>o = g\P,yi = gi^i • • • ^ for / = 1, . . . , k. 
Then ^(y/,^+0 = d(p,si+[p) and so d(gxp,g2p) = d(y0,yk) <Nk = Nds(gug2). 

Now we need to estimate ds(g\,gi) in terms of d(g\p,g2p). Consider a A-quasigeo­
desic sequence z$ = g\p, ...,z„ = g2p connecting g\p with g2p (instead of a geodesic 
path \g\p,g2p] as it is done in [ECHLPT, 3.3.6]). Now for any / = 1,. . . ,n — 1 there 
isyj G G such that z, G ftB(p,M). Put^o = g i , / , = g2 and hi = fj~lfi+i- As before, 
d{fiP,fi+\p) < 2M+ A and hence ht G «S for each i = 0, l,...,n— 1. Again gf!g2 = 
hoh\ - - - hn-\ and so ds(gug2) < n < A d(g\p,g2p) + A since the sequence zo,.. . ,z„ is 
A-quasigeodesic. Thus 

(l/N)d(gip,g2p) < ds(g\,g2) < \d(gip,g2p) + \. 

It remains to note that the set/(G) — Gp is cobounded in G. But we have already seen 
that GB = GB(p, M) = X and so for any x G X there is g/? G G/? such that d(x, gp) < M. 
This completes the proof of Lemma 3.5. 

We need to introduce one extra piece of notation before proving Proposition 3.4. If Y 
is a set and d\, d2 are real-valued functions on Y x Y we term them equivalent and write 
d\ ~ d2 if for some C > 0 we have (\/C)d\ — C < d2 < Cd\ + C. Also if Z is a set, 
7 is a set equipped with a real-valued function d on 7 x 7 and /*: Z —> 7 is a map, we 
term the function J j o n Z x Z given by d\(z\,z2) = d(h(z\),h(z2f) the h-pullback ofd 
and denote it /**(*/). 

Thus, for instance, two finite sets of generators for a finitely generated group give rise 
to equivalent distance functions. 

PROOF OF PROPOSITION 3.4. (i) implies (ii): Let A be a quasiconvex subgroup of G 

and suppose that G acts o n l a s in (ii). If A is finite the the statement is obvious since 
dx(A) is empty. Assume now that A is infinite so that it has at least two distinct limit 
points in dX. Pick a basepoint/? G X so that/? G Cdx(A) and a finite generating set S 
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for G. As in Lemma 3.5, the map/: (G, ds) —> (X, d) given by/(g) = gp is a A^-quasi-
isometry for some K > 0. Consider a point JC G Cdx(A); by definition x G (t\9q\) for 
some /i, q\ G 3*04). This implies that for some points t G [x, t\) and # G [x, #i) far from 
x, and for some a,b EA9 the values (/,ap)x,(q,bp)x are big. 

More precisely, for some L > 10005, the points t,q and a,b e A are such that 
(t, ap)x > L, (q, bp)x > L. Consideration of the quadrilateral formed by ap, bp, t and 
q, shows that there is a point y G [ap, bp] with d(x,y) < 68. 

Consider now a tffc-geodesic sequence of points go = a, g\,...,gn = b in G, that 
is ds(gi,gj) = |/ — y|. Since/ is a A>quasi-isometry, the broken line a = [ap,g\p] U 
[gi/?,gip] U • • • U [gn-\P, bp] is a 2XM-quasigeodesic where M = max{d(p, sp), s G 5}. 
As quasigeodesics are close to geodesies, there is a constant e = e(Z, ̂ , Af) such that a is 
e-close to the geodesic [ap, bp], and so there is k, 0 < k < n such that d(y,gkp) < M+ e. 
Therefore d(x,gkp) < 68 + M + e. Now A is e-quasiconvex in (G, ds) and go = tf, 
g i , . . . , gn = b is a afc-geodesic sequence. Therefore there is a\ £A such that ds(gk, a\) < 
e. This impliesd(gkp,a\p) <Ke + Kandsod{x,a\p) < 68+M+e+Ke + K = K\. This 
implies diam(Cdx(A)/A) < K\ since x G 3;r(4) was chosen arbitrarily. 

(ii) implies (iii): Let {X, d) be the Cayley graph of G with respect to some finite gen­
erating set. Then X is <5-hyperbolic for some 8 > 1, geodesic, has compact closed metric 
balls and the action of G on X by left multiplication is properly discontinuous and co-
compact. 

(iii) implies (i): Assume (X, d) and an action of G on X are as in (iii). Fix a finite 
generating set S for G and word metric ds on G. HA is finite then it is obviously quasi-
convex in G. Assume now that^4 is infinite. By Lemma 3.3, the boundary dx{A) contains 
at least two points and so C = Cdx(A) is nonempty. Moreover C is 1005-quasiconvex in 
Xby Lemma 3.1. Therefore the closure (in X) C is 1026-quasiconvex and ^4-invariant. 
It is easy to see that (C, d\c) is A-quasigeodesic for A = 100005, as follows. Con­
sider any two points x,y G C and a geodesic segment [x,y] in X. Choose a sequence 
vo = x, vi,...,vM = y of points on [x,y] so that d(v„-\,vn < 1 and rf(V|,v,-+i) = 1 
for / = 0, . . . ,« — 2. Then for each / = 1,...,«— 1 there is a point xt G C such that 
d(vj,X() < 1028. Put JCO = x and xn = y. Then the sequence x = xo, x i , . . . ,x„ = y is a 
required A-quasigeodesic sequence connecting x and^ inside C (in fact it is a (2045 +1)-
quasigeodesic). 

Now C is ̂ 4-invariant and C/A is compact since C/A is bounded and X has compact 
closed metric balls. Thus Lemma 3.5 implies that A is finitely generated. Pick a finite 
generating set T fox A. Take a point/? G C and define/: G —> Xby/(g) = gp. Notice 
that/(v4) C C since p G C and C is /4-invariant. 

The word metric dT on ̂ 4 is equivalent to the/-pullback of the restriction of d to C by 
Lemma 3.5. On the other hand the word metric ds on G is equivalent to the/-pullback 
ofdby[ECHLPT, 3.3.6]. 

Therefore 

dT~f*(d\c)=Md)\A~ds\A. 

Thus dr ~ dsU and so A is quasiconvex in G. 
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LEMMA 3.6. Let Xbe a S-hyperbolic space (S > I) and K be a closed subset ofdX 
with at least two elements. Let C = CK and K\ be the limit set ofC in dX, that is K\ is 
the union of all limits of sequences of points ofC converging to infinity. 

ThenK = Kl. 

PROOF. Clearly K c Kx. 

Pick a point/? G C and put C\ — CU (uaGA:[/?,fl)). Then C\ is contained in the 105-
neighbourhood of C since ideal triangles inXare 105-thin. Indeed,/? G (x,j>) for some 
x,y G K. Let a G K be an arbitrary element different from x, y. Then the ideal triangle 
with sides [p,x), [p, a) and (JC, a) is 10£-thin (here \p,x) C (x,y)). Thus [/?, a) is contained 
in the 10<5-neighbourhood of [/?, JC) U (X, A) and so in the 10<5-neighbourhood of C. 

Suppose b = limi—ooJC/ where x; G C and b G ATi. By the previous remark, we 
may assume that each x, lies on a geodesic rt = [p, a,) for some az G Â . Since 5Z is 
compact, after passing to a subsequence, we may assume that lim at = a. Clearly a G K 
since K is closed. Fix a geodesic ray r = [p, a). We are going to show that a — b, and 
thus that K\ = K. Since lima/ = a, we conclude that lim(r/,r)p = oo. If b ^ a and 
JC, —> 6, there is M > 1,M < oo such that (x/,r)p < M for each /. Now d(p,Xi) —> oo. 
Therefore we may assume, after passing to a subsequence, that for each i(xi9 r)p < Mand 
d(p,Xi) > 1000M5. But the last two inequalities imply that (r,, r)p is 105-close to (x/5 r)p 

which contradicts lim(r/, r)p = oo. • 
Recall (see [Bo2] for details) that a discrete group G of isometries of a ^-dimensional 

hyperbolic space W without parabolics (that is any element of infinite order fixes exactly 
two points in the boundary S"_1) is termed geometrically finite if Conv( A(G)) / G is 
compact, where A(G) is a limit set of G in S"~l and Conv(A(G!)) is a (classical) convex 
hull of the union of all geodesies with endpoints in A(G). The following theorem, which is 
due to G. Swarup [Swa], follows immediately from our new definition of quasiconvexity. 

THEOREM 3.7 [SWA]. Let G be a torsion free geometrically finite group of isome­
tries of Un without parabolics. Then G is word hyperbolic and a subgroup A of G is 
quasiconvex in G if and only if A is geometrically finite. 

PROOF. Take X to be the (classical) convex hull of the limit set of G. As a convex 
subset of W,Xis 10-hyperbolic with the metric induced from W. The group G is geomet­
rically finite and without parabolics. Thus the action of G onXis properly discontinuous 
andX/G is compact. 

Therefore by Theorem 3.3.6 of [ECHLPT] G is finitely generated and has a Cayley 
graph which is quasi-isometric to a 10-hyperbolic metric space X, so that G is word 
hyperbolic. The stated properties of quasiconvex subgroups now follow directly from 
Proposition 3.4 and the definition of geometrical finiteness. 

Indeed, if A < G is geometrically finite then Conv(A(v4)) jA is compact and so 
has bounded diameter M < oo. On the other hand A(A) = dx(A) = K and CK C 
Conv(A(^)) is .4-invariant. Thus diam(CK/A) < Mand,4 is quasiconvex in G by Propo­
sition 3.4. 
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Suppose now that A < G is quasiconvex in G and A(A) = dx(A) = K as above. 
Then dmm(CK/A) = N < oo. It is easy to see that CK C Conv(A(^)) and Conv(A(^)) 
is contained in a 1000«-neighborhood of CK (where n = dim HP). This implies that 
Conv(A(^4)) J A has bounded diameter and so is compact. Thus A is geometrically finite. 

We now obtain the analogue of Lemma 2.2 (ii). 

LEMMA 3.8. Suppose G is a word hyperbolic group acting by isometries on a proper 
b-hyperbolic space X so that the action is properly discontinuous and cocompact. Let A 
be an infinite subgroup ofG, K = dx(A) andH = Stabc(AT) = {g G G \ gK = K}. Then 

(1) For any subgroup E of H, containing A, dx{E) = dx(A). In particular dx(H) = 
dx(A). 

(2) If A is normal in a subgroup E ofG then dx{E) = dx(A). 

PROOF. (1) Let C = CK. Notice that K has at least two points so that C is nonempty. 
Pick a point p G C. It is clear that K = dx(A) C dx(E). Since K is E invariant, C = CK 
is also is-invariant. Thus Ep C C and therefore dx(E) is contained in the limit set of C 
which by Lemma 3.6 is equal to K. Therefore dx(A) = K = dx(E). 

(2) If A is normal in E, for any g G E we have gAp = Agp. The limit set of Ap is 
equal to the limit set of Agp and is equal to K. Thus gK = K and so A <E< Stabc(K). 
By Part (1) this implies dx(A) = dx(E) = K. 

Commensurability in hyperbolic groups. It is possible to obtain the following crite­
rion of commensurability for quasiconvex subgroups of hyperbolic groups; this is the 
promised strengthened form of 2.4. 

LEMMA 3.9. Let G be a word hyperbolic group and let E,H be subgroups of G 
with H < E. Let (X, d) be a proper 8-hyperbolic metric space (8 > I) equipped with 
properly discontinuous isometric cocompact action ofG. Suppose that H is infinite and 
quasiconvex in G and let K = dx(H). Then the following conditions are equivalent. 

(a) H has finite index in E; 
(b) the set C = CK is E-invariant; 
(c) E is quasiconvex in G and dx(E) = dx{H); 
(d) E is contained in StabG(/Q where StabG(£) = {g G G \ gK = K}. 

PROOF. Notice that if p e X, h G H then Hp = hHp and so K = hK. Thus H < 
StobG(K). Now the implications (a) => (b), (a) => (c), (a) =» (d), (d) => (b) and (c) => (b) 
are clear. 

Suppose now that (b) is satisfied. Then the closure (in X) C is E-invariant and quasi-
convex mX. Thus diam(C/F) < diam(C///) < oo and therefore C/E is compact. This 
implies by Lemma 3.5 that E is finitely generated. Moreover, if Y is a finite generating 
set for G, Z is a finite generating set for E,p eCK and/: G —-> X is given by/(g) = gp, 
then again by Lemma 3.5: 

dY ~fi(d), dz - (fMc)\E) and so dz - (/*(<%))!* = IfMk - {dY)\E-

Thus E is quasiconvex in G. 
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Observe that AT is a closed subset of dX as it is a limit set of a subgroup and so by 
Lemma 3.6 the limit set of C is K. We claim that dx(E) = K. Clearly K C dxiJE) since 
H < E. On the other hand C is ̂ -invariant, p G C and £/? C C. The limit set of E which 
is, by definition, the limit set of Ep is contained in the limit set of the larger set C, and 
this limit is K. Thus 8X(E) = A\ 

We have shown that (b) implies (c). We will now show that (b) implies (a). 
Indeed, suppose Y and Z are as above and S is a finite generating set of//. Let e be an 

arbitrary element of E. Since diam(C///) < M < oo and/(e) = ep e C, there is a point 
hp e C for some h e H such that d(ep,hp) < 2M. Since/ is a A-quasi-isometry from 
(G, </K) onto (Z, d), we conclude that dY(e, h) < 2MX + A — M\. Thus for any e e E 
there is an element ge G G with </(&,, 1) < Mi such that ege G //. Therefore H has finite 
index in E. This completes the proof of Lemma 3.9. 

COROLLARY 3.10. Let G be a word hyperbolic acting by isometries properly dis-
continuously and cocompactly on a proper hyperbolic space X. Let H be an infinite qua-
siconvex subgroup of G and K = dx{H). Then StabG(^0 = VNG(H). 

PROOF. It is clear that H < VNG(H) < StabG(K). On the other hand H has finite 
index in StabG(£) by Lemma 3.9(d). Thus for any g G StdbG(K) we have \H:gHg~x D 
H\ < oo and \gHg~l : gHg~l D / / | < oo. Therefore g G VNG(H) and so VNG(H) = 
StabG(AT). 

Theorem 1 now follows immediately from this proposition, as in Section 2. 

PROOF OF THEOREM 1. Let X be the Cayley graph of G with respect to some finite 
generating set S. Put K = dx(A). 

(1) It is obvious that dx(A) = dx(B) = dx(A D B). Denote this set by K. Thus A, B < 
StabG(K) and so E = sgp(A U B) < StobG(K). Thus by Lemma 3.9(d) A D B has finite 
index in E. 

(2) Suppose there are infinitely many subgroups of G containing A as a subgroup 
of finite index. Let E be the subgroup of G generated by their union. Then A has infinite 
index in E. On the other hand any subgroup of G having^ as a subgroup of finite index has 
K as its limit set and so leaves K invariant. Thus K is ^-invariant, that is E < StabG(K). 
Therefore A has finite index in E by Lemma 3.9(d). This contradicts our assumptions. 

(3) It is clear that ,4 < VNG(A). Suppose now that g G VNG(A). Put U = gAg~l D// . 
Then U has finite index in A and in gAg~l. Since U is of finite index in A and in gAg~[, 
K = dx(U) = dx(A) = dxigAg~l). However dx(gAg~l) is equal to the limit set of gA 
that is to gK. Thus gK = K and g G StabG(K). Since g G VNG(A) was chosen arbitrarily, 
we conclude that A < VNG(A) < StabG(K). Thus by Lemma 3.9 A has finite index in 
VNG(A). 

PROOF OF THEOREM 3. Let X be the Cayley graph of G with respect to some finite 
generating set S. VutK = dx(A). The " i f implication is clear. So suppose that A contains 
an infinite subgroup C which is normal in B. Then by Lemma 3.8 dx(Q = dx{B). Since 
C < A < B, we conclude that K = dx(A) = dx(B). Thus B < StabG(Zf) and by 
Lemma 3.9(d) A has finite index in B. 
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4. Some additional remarks about the elementary boundary. Let S be a finite 
generating set for the word hyperbolic group G and (X, ds) be the Cayley graph of G 
with respect to S. Fix a number 6 > 1 such that (X, ds) is <S-hyperbolic. The elementary 
boundary dG (in the sense of Section 2) is a subset of dX(m the sense of Section 3) and 
moreover, a dense subset (see [Gr]). The map from the elementary boundary into the 
Gromov boundary is given by [hg+] t—> linv^oo hg?h~x = l inv^^ hg1. 

It is also not hard to see, using the compactness argument, that if g G &G(Y) for a 
subset Y of dG then there is a pair of points a(g), a(h) G Y such that g lies on a certain 
geodesic (a(g)9a(h)) (this is a bi-infinite geodesic the sense of Section 3). Moreover, if 
a(g), a(h) G Y are two distinct points, then there is a geodesic (a(g), a{h)) such that any 
point (vertex) of (a(g), a{h)) belongs to Hj(Y). 

This immediately implies 

LEMMA 4.1. Let G,X, 6 be as above, and let Y be a subset ofdG with at least two 
elements. 

Then 9JG(Y) is 1008-quasiconvex in X. 

PROOF. The proof is exactly the same as that of Lemma 3.2 if one takes into account 
the remarks above. 

The previous observation combined with Corollary 2.4 allows one to obtain a criterion 
of quasiconvexity similar to Proposition 3.4 in terms of elementary boundary, making the 
condition of 2.4 necessary and sufficient. 

PROPOSITION 4.2. Let G be a word hyperbolic group, S a finite generating set and 
Xbe the Cayley graph ofG with respect to S. Let A be an infinite subgroup ofG. 

The following conditions are equivalent: 
(i) A is quasiconvex in G; 

(ii) the quotient 9{0GA)/A is finite. 

PROOF. The implication (i) => (ii) was established in Corollary 2.4. Suppose now 
that (ii) is satisfied. As A is infinite, 8A contains at least two points and so C = 9f(dcA) 
is nonempty and even infinite. Now C is 30<5-quasiconvex in Xby Lemma 4.1 and so 
it is A-quasigeodesic for A = 3000£ (the argument is exactly the same as in the proof 
of Proposition 3.4). Now C is discrete (as C C G) and has compact metric balls. Fix a 
basepoint/? G C. We know that C/A is finite and therefore compact. Thus by Lemma 3.5, 
A is finitely generated and the orbit map a \—» ap, a G A is a quasi-isometry of A onto C. 
The rest of the argument goes exactly as in Proposition 3.4. 
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