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Wild non-abelian Hodge theory on curves

Olivier Biquard and Philip Boalch

ABSTRACT

On a complex curve, we establish a correspondence between integrable connections with
irregular singularities, and Higgs bundles such that the Higgs field is meromorphic with
poles of any order. Moduli spaces of these objects are obtained with fixed generic
polar parts at each singularity, which amounts to fixing a coadjoint orbit of the group
GL,(C[z]/2™). We prove that they carry complete hyper-Kahler metrics.

Introduction

On a compact Kéahler manifold, there is a well-known correspondence, named non-abelian Hodge
theory, and established by Simpson and Corlette (see [Sim92]), between representations of the
fundamental group (or integrable connections) and Higgs bundles. In the case of a curve, the
correspondence is due to Hitchin [Hit87] and Donaldson [Don87]. This correspondence has been
extended to the case when the objects on both sides have logarithmic singularities, at least in
the case when the singular locus is a smooth divisor, see [Sim90] on curves and [Biq97] in higher
dimensions.

In this article, we extend the correspondence to the irregular case, on a curve. This means that
we now look, on one side, at integrable connections with irregular singularities like

d+ And—i et Alﬁ + holomorphic terms (0.1)
z z

with n > 1, and, on the other side, at Higgs bundles (&£, 0) with the Higgs field 6 having polar parts

of the form

dz dz
Tnz—n+"'+T17. (0.2)

In this paper we need the following hypothesis near each singularity.

Main assumption. The connections and Higgs fields are holomorphically gauge equivalent to ones
with diagonal polar parts.

This is a generic condition and holds for example if the leading coefficients A,,, T}, are regular
semisimple; see Lemma 1.1 for a more detailed statement.

Sabbah [Sab99] has constructed a harmonic metric for integrable connections with irregular
singularities: this is a part of the correspondence. We construct the whole correspondence as follows.

THEOREM 0.1. Under our main assumption, there is a one-to-one correspondence between stable
(parabolic) integrable connections with irregular singularities, and stable parabolic Higgs bundles
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with singularities like those in (0.2). The correspondence between the singularities (0.1) and (0.2)
at the punctures is given, after diagonalization, by

For i = 1 there is the same permutation between eigenvalues of Ay, 11, and the parabolic weights
as in [Sim90]; more precisely, if on the connection side we have the eigenvalues p; of Ay and the
parabolic weights 3;, and on the Higgs bundle side we have the eigenvalues \; of T} and the parabolic
weights «;, then
i — B

5

a; =Rep; — [Rep], Ni=

where [-] denotes the integer part.

See § 6 for details about stability. When the weights of the local system vanish (Re\; = 0),
stability for integrable connections reduces to irreducibility, see Remark 8.2. The proof of
Theorem 0.1 also gives precise information about the asymptotics of the harmonic metric.

In [BoaOlb] the second author studied the symplectic geometry of the moduli spaces of
integrable connections with irregular singularities in the case when A, is regular semisimple:
complex symplectic moduli spaces were obtained by fixing the gauge equivalence class of the polar
parts of the connections (0.1) at each pole. (Said differently this amounts to fixing a coadjoint orbit
of the group GL,(C[z]/z"), or to fixing the formal type of the connections, at each pole.)

Now we will show that these moduli spaces carry more structure, namely we have the following.

THEOREM 0.2. Under our main assumption, the moduli space of integrable connections with fixed
equivalence classes of polar parts is hyper-Kéahler. If the moduli space is smooth then the metric is
complete.

The same result remains true if we add some compatible parabolic structure at each singularity.
We remark that a generic choice of parabolic structure leads to smooth moduli spaces (no semistable
points).

Also, at least generically, one can explicitly describe the underlying complex symplectic manifold
as follows.

THEOREM 0.3. For generic eigenvalues of the residues, all integrable connections are stable, and, if
the leading coeflicients are regular semisimple, the moduli space can be identified, from the complex
symplectic viewpoint, with the finite-dimensional quasi-Hamiltonian quotient of [Boa].

For example, over the projective line the moduli space contains a dense open subset, parameter-
izing connections on trivial holomorphic bundles, which may be described as a complex symplectic
quotient of finite-dimensional coadjoint orbits. However, in general there are stable connections on
non-trivial holomorphic bundles and the quasi-Hamiltonian quotient incorporates these points as
well. An example will be given in § 8.

Note that Martinet and Ramis [MR91] have constructed a ‘wild fundamental group’, so that
connections with irregular singularities can be interpreted as finite-dimensional representations of
this group. From this point of view, Theorem 0.1 really generalizes the earlier correspondences

between representations of the fundamental group of the curve (or the punctured curve) and Higgs
bundles.

We remark that moduli spaces of meromorphic Higgs bundles have previously been studied
algebraically by Bottacin [Bot95] and Markman [Mar94], who have shown that they are algebraic
completely integrable systems.
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Also the study of Higgs bundles with such irregular singularities has a physical interest, since
some of them arise from the Nahm transform of periodic monopoles, see [CK01]. The corresponding
hyper-Kéhler metrics have been studied in [CKO02].

The correspondence of Theorem 0.1 can be extended to the case in which the connections are
locally equivalent to ones with A,,..., Ay diagonal but with residue A; having a nilpotent part.
Then the nilpotent part of the residue T} of the corresponding Higgs field is the same as that
of A;. We will not prove this here in order to lighten the definitions of the function spaces required;
our main interest was to understand the new phenomena introduced by the more singular terms.
(The phenomenon induced by such a nilpotent part in the residue is complicated, but has been
carefully analysed in [Sim90, Biq97] — the two behaviors, coming from the higher-order poles and
from the nilpotent part of the residue can be basically superposed.) The hyper-Kéhler metrics will
be incomplete in this case. See also Remark 2.2.

On the other hand, it is not clear at all how to extend the correspondence to the case where
the leading coefficient A, has a nilpotent part. For example, in the case of an order-two pole, if we
suppose that 75 in (0.2) is nilpotent, then the eigenvalues of 6 have only a simple pole, so the Higgs
bundle satisfies the ‘tameness’ condition of Simpson [Sim90], and we are back in the simple pole
situation. In particular, in that case we cannot construct new metrics; actually, by a meromorphic
gauge transformation, the Higgs field can be transformed into a Higgs field with only a simple pole.
The same kind of consideration holds on the integrable connection side.

One of the main features of connections with irregular singularities is that formal equivalence
does not come from holomorphic equivalence, resulting in the well-known Stokes phenomenon.
Sabbah [Sab99] studies carefully this Stokes phenomenon around the puncture in order to construct
a sufficiently good initial metric to which he can apply Simpson’s existence theorem for harmonic
metrics [Sim90].

Our method is different: we use a weighted Sobolev space approach, which enables us to forget
the difficult structure of irregular singularities, at the expense of developing some analysis to handle
the operators with highly singular coefficients that we encounter. In particular, we strengthen the
Fréchet symplectic quotient of [Boa0Olb] into a hyper-Kéhler quotient.

In § 1, we develop the local models which are a guide for the behavior of the correspondence,
and we then define the admissible deformations in suitable Sobolev spaces in § 2. Next we study
the local analysis needed on a disk in §§ 3 and 4. This enables us to construct the C"*°-moduli space
of solutions of Hitchin’s self-duality equations in § 5, and prove that it is hyper-Kéhler. It remains
to identify this moduli space with the ‘De Rham moduli space’ of integrable connections and the
‘Dolbeault moduli space’ of Higgs bundles: these moduli spaces are studied in §§ 7 and 8, and
the correspondence is stated in § 6 and then proven in § 9.

1. Local model

Look at a rank 7 holomorphic bundle .# in the unit disk, trivialized in a basis (7;) of holomorphic
sections, and consider the holomorphic connection

d d
D=d+ A= 4+ A, (1.1)
z z

where the A; are constant matrices; then D is an integrable connection, that is, the curvature
Fp = D? vanishes.

We now rephrase our main assumption in the following way.

Main assumption. The matrices A,, ..., A; are diagonal.
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In fact we could have taken D to be any connection which is locally equivalent to a connection
having diagonal polar part. To understand this, and see that it is a generic condition, we note the
following sufficient conditions.

LEMMA 1.1. Let | > 0 be an integer and consider a connection

d d
i +o 4+ Bl—Z + holomorphic terms.
z

D=d+B,—

If B,, is regular semisimple (generic case), or more generally if

1) for some k with n > k > 1, the stabilizer of (B, ..., By) (under the diagonal adjoint action)
is a maximal torus, and Bj_1, ..., By are arbitrary, or
2) By,,...,Bj are already diagonal,

then locally D is holomorphically gauge equivalent to a connection which differs by O(2') from D
in (1.1) (for some diagonal A,,, ..., A;).

Proof. First one inductively splits D up to O(2!) along the spectrum of B,, using transformations
of the form 1 + Xz™. One then splits along the spectrum of the resulting B,,_1,..., B in turn.
For details, see e.g. [BV83, Lemma 1, p. 42]. Up to O(2!), the resulting connection is block diagonal
with diagonal polar part. The first [ holomorphic terms of each block may then be removed since
the connection is integrable and the polar part of the connection in each block is scalar. D

This lemma also holds (with the same proof) in the case of a meromorphic Higgs field rather
than a connection, provided we take [ = 0.

We will suppose that % comes with a parabolic structure with weights 3; € [0,1], meaning
basically that we have on the bundle .# a hermitian metric

22
h = ; (1.2)
2

the fiber F at the origin is filtered by Z5 = {s(0),|s(z)| = O(|z|%)}. In the orthonormal basis
(7;/|2|%), we get the formula
- dz dr
D=d Ai— — f— 1.3
+ ; b ﬁ r’ ( )
where [ is the diagonal matrix with coefficients (1, ..., 3.
Recall that, in general, we have a decomposition of D into a unitary part and a self-adjoint part,
D = D" + ¢,
and we can define new operators
D// _ (D+)O,1 + ¢1,0
D/ _ (D+)1’0 + ¢0,1'

The operator

D" =d% 16 (1.4)
is a candidate to define a Higgs bundle structure, and this is the case if the pseudo-curvature
Gp = —2(D")? (1.5)

vanishes. In the case of a Riemann surface, the equation reduces to 976 = 0.
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In our case, we get, still in the orthonormal basis (7;/|2]%),

1o~ | dz dz 1o~ | dz dz dr
+ _ T A = = P * 7 R
D _d+2§ AZZZ. A== o 2§:A1Zi+AZ B—,

vz’ zt r

a__ZAzfi’ ZA%—Q%

It is clear that Gp = 0, so that we have a solution of Hitchin’s self-duality equations.

Formulas become simpler if we replace the orthonormal basis (7;/|z|%) by the other orthonormal
basis (e;) given on the punctured disk by

e; = |z|7“m’” ex i— A + A; Ti
i P\ 20—z 20 - ) )

where the pu; are the eigenvalues of the residue of D (the diagonal coefficients of A;). Indeed, in the
basis (e;), the previous formulas become

1 — dz dz dr
+ _ ; i it i bl
DT =d+Re(A1)idd, ¢ = 5 El A; = + A — = ﬁr (1.6)
and
dz 1 — dz ﬁdz
9F = — —Re(Al) 0= 521)4@ o (1.7)

This orthonormal basis (e;) defines a hermitian extension E of the bundle over the puncture.
Now look at the holomorphic bundle induced by 0¥ on the punctured disk. A possible choice of

a basis of holomorphic sections is

o1 |o[Rera—Repl, (1)
We see that |o;| = |2|*, with

a; = Re p; — [Re p;]. (1.9)
This choice of o; is the only possible choice for which 0 < «; < 1. The sections (0;) define an
extension & of the holomorphic bundle over the puncture, and the behavior of the metric means

that this extension carries a parabolic structure with weights «;. Finally, in this basis the Higgs
field is still given by

1 dz (dz
0=— Ai— — ——. 1.1
2 ; Y2 2 2 (1.10)
In particular, the eigenvalues of the residue of the Higgs field are
A = % (1.11)

The formulas (1.9) and (1.11) give the same relations between parabolic weights and eigenvalues
of the residue on both sides as in the case of regular singularities. This basically means that the
behavior described by Simpson in the case of regular singularities still occurs here in the background
of the behavior of the solutions in the presence of irregular singularities.

2. Deformations

We continue to consider connections in a disk, using the same notation as in § 1.

We want to construct a space o7 of admissible connections on F, with the same kind of singularity
as D at the puncture. In order to be able to do some analysis, we need to define Sobolev spaces.
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First define a weighted L? space (using the function r = |z|)

ng{f,ré—ieﬁ}.

The convention for the weight is chosen so that the function r® € L% if and only if z > 4.
Now we want to define Sobolev spaces for sections f of E or of associated bundles, mainly
End(E). Let us restrict to this case: we have to decompose End(F) under the action of the A;.

A simple case is the regular case in which the stabilizer of A,, is the same as the stabilizer of all
the matrices Ay, ..., A,. Then we decompose End(F) as

End(F)g = kerad(A,),
End(E) = End(E), & End(E)y, 4 "d(F)o = kerad(4n) | (2.1)
End(E), = (kerad(A,))—.
For example, if A,, is regular, then End(E)q consists of diagonal matrices.
In the non-regular case, we need a more subtle decomposition,
End(E) = ) " End(E);, (2.2)
0
defined by induction by
End(E)y = \kerad(4;), End(E); =End(E);", N (ﬂ ker ad(Aj)>. (2.3)

j>1
We will therefore decompose a section f of End(E) as f = fo + -+ + fn, where the indices mean
that the highest order pole term acting on f; is A4; dz/z".
Now we can define Sobolev spaces with k derivatives in L2,

L62:{f7m€L§f0r0<]<k7Oglgn ; (2'4)

in the whole paper, V = V7 " is the covariant derivative associated to the unitary connection DT,
In this problem it is natural to look at deformations of D such that the curvature remains
O(r=2%9), that is slightly better than L'. This motivates the following definition of the space .27 of
admissible deformations of D:
o ={D+a, ac L'} Q" ®@EndE)}, (2.5)
and of the gauge group,
9 ={gcU(E), Dgg~" € L'} ;}. (2.6)
The following lemma says that we have defined good objects for gauge theory.
LEMMA 2.1. The connections in &/ have their curvature in L%2+6' Moreover, ¢ is a Lie group, with
Lie algebra
Lie(#) = L*2 (u(E)), (2.7)
and it acts smoothly on <.

The proof of the lemma involves some nonlinear analysis, which we will develop in § 3.

Remark 2.2. In the case when A; has a nilpotent part, the analysis has to be refined as in [Biq97] in
logarithmic scales in order to allow the curvature to be O(r~2|Inr|~27%). The analysis which will be
developed here shall continue to be valid in this case, for components in End(E),, @ - - - ® End(E),,
and the tools in [Biq97] handle End(£); @ End(E)p, where the action of the irregular part is not
seen. This is the basic reason why the results in this paper continue to be true also in this case.

184

https://doi.org/10.1112/50010437X03000010 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X03000010

WILD NON-ABELIAN HODGE THEORY ON CURVES

3. Gauge theory

In this section, we give the tools to handle the nonlinearity in the gauge equations for connections
with irregular singularities. We first need to define weighted LP-spaces, for sections f of End E, by

f k, vfz
Lg_{f, s €L L=ty € L5

It is convenient to also introduce spaces with a weighted condition on fjy,
rhp k,p ij 0 P
L _{feLa ,WEL(S :

Again, the weight is chosen so that r* & Lg if and only if x > ¢. This is a nice convention for

products, since we get
P .74 T L1 1
By Ly, C Loisy 7= 540
We remark that the Sobolev space above for functions has a simple interpretation on the con-
formal half-cylinder with metric
|dz2 d’r
B

with ¢ = —Inr. Indeed, for a function f, the condition f € ﬁlg’p is equivalent to
2
€6tf c Lk:,p ‘dz‘ ’
|22
which is the standard weighted Sobolev space on the cylinder.
From this interpretation one easily deduces the following facts for a function f on the disk, see
e.g. [Biq91, § 1].
i) Sobolev embedding: for 1/2 > 1/p — 1/r (with strict inequality for r = c0), one has
1
LgP — Lj; (3.1)

+do? = dt? + dp?

in particular, for p > 2, one has Lé’p1 — CY.

ii) Control of the function by its radial derivative: if § < 0 and f vanishes on the boundary, or if
6 > 0 and f vanishes near the origin, then

E
0

in particular, the estimate (3.2) means that
LyP = LgP if § <0, (3.3)
iii) For p > 2 and 6 > 0, the condition df € L} , implies f € CY and then, by applying (3.2),
I = FOll g < clldfllzz

From (3.3), connection forms a € LE;_&(QI ® (End(F)o®End(E);)) actually belong to I:l_’g_H; C
L*, 45 for any p by (3.1). Now for a gauge transformation g, again restricting to the component
End(E)o & End(E), the condition Dgg~! € L" 2+5 C L”, s implies by (iii) that g is continuous,
with ¢(0) € End(E)o, and g — g(0) € C§ N LE.

Similarly, an infinitesimal gauge transformation u in L7 ’2 +s(End(E)o ® End(E);1) has a well-
defined value u(0) € End(E)o, and

> cl| oz (3.2)
L§ 4

u—u(0) € L* 2+5 (3.4)
185
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We have to generalize this picture from the regular singularity case to the irregular singularity
case. The new ingredient is that now for sections of End(E);, the weight 1/7* is no longer ‘equivalent’
to a derivative as in (3.2), and this implies that the behavior of the weights in the Sobolev embedding
LY? < LP is more involved than in (3.1), because we somehow have to separate what comes from
the bound on the derivative from what comes from the bound on the tensor itself.

LEMMA 3.1. For p > 2, one has the Sobolev injections

L§72(End(E)k) - L§+2k/p+(172/p) (End(E)y),

LEP(ERd(E)e) < Cyt gy End(E)y).
Proof. Take f in L§’2(End(E)k), then

2
120 = [ ( )WR

Because of Kato’s inequality |V f| > |d|f]|, we can restrict to the case where f is a function, and
replace V f by df. With respect to the metric |dz|?/|z|?*, the above norm transforms into

2 fP | [P ldeP
112, = / ( )k

rl+o + rl+o
which is equivalent to the L'?-norm

2

L

rl+o+k

vV
F1to

dz|?
[ o +1ag) 1%
2|
of g = r~ 170 f. The metric |dz|?/|z|?* is flat; actually

a2 2
Il =

—1
(k—1)zk=1"
The problem here is that z — u is a (k — 1)-covering A — {0} — C — A: this means that f must be

interpreted on C as a section of a rank (k — 1) flat unitary bundle. Nevertheless, still using Kato’s
inequality, we can apply the standard Sobolev embedding on C to deduce that

2 2 2 1/2 2 l/p
(/<|g| + ldg >|du|> >c(/|g|p|du|> ,

1Al ez = el TR
|dz|

which is exactly the first statement of the lemma. The proof for the second statement is similar. [

that is

Remark 3.2. Since on a compact manifold these Sobolev embeddings are compact, it is easy to
deduce that for & < § the Sobolev embeddings
Lé’Q(End(E)k) — L§/+2k/p+(1_2/p)(End(E)k)7
Ly? (End(B)) = Cf (i1 (End(E)y),
are compact.

Remark 3.3. The covering z~ (=1 = 4 can be used to extend to LP-spaces the L2-theory which will
be done in § 4.

COROLLARY 3.4. For k > 0 and 6 + k+ 1 > 0, one has the injection
L?Q(End(E)k) - Cz(S)UrkJrl
for any &' < 6.
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Proof. By the previous lemma, if f € L?Q(End(E)k), then

V€ Ly (End(E)) C Ly omn-2/p)-

Take p > 2 close enough to 2 so that §' = d—(k—1)(1-2/p), then we get Vf € L, , . T k+1+0" > 0,
this implies

F=fO)+f, feCin
Because f € Lg’Q(End(E)k), we see that f(0) = 0. O

We now have the tools to prove that the spaces defined in § 2 give us a nice gauge theory.

LEMMA 3.5. The spaces

L? 2+5(EndE) and L' A s(End E)  (for p > 2)
are algebras, and Ll_g +s(End E) is a module over both algebras.

Proof. We first prove that L“* _145(End E) is an algebra.

We use the fact that Fk = ®;<;End(E); is a filtration of End £ by algebras. Take u €
L' A s(End(E)g) and v € L' s (Fre 1)' we want to prove that w = uv € LIIIJH As Fk is an
algebra, it is sufficient to prove that w/r* € Lp _;and Dw € L s_1; the statement on w / r¥ is clear,
since v € CY and u/r* € L . Now Dw = (Du)v + uw(Dv), but u,v € CY and Du, Dv € L”.

implies Dw € L§_,

1+46

The other statements are proven in a similar way. O

Proof of Lemma 2.1. The curvature of a connection D + a € & is F = Da + a A a. From the
definition of <7, it is clear that Da € L? %945 On the other hand, a € L 2+5 c L* * 144 therefore
alac L? 2JF%CL 244 so Fel? Tols

We want to analyse the condition Dgg~" € L ’2 45
a decomp051t10n D = DJr + ¢, and the fact that g is unitary actually implies that both D*gg
and [¢,glg™" are in L' ’2+5 c L? " 1.5 for any p > 2. The condition on [¢, g] implies gr € inlw,
and therefore the condition on Dg implies dg € L” s finally, we get g € Lhr C14s(End E), and by
Lemma 3.1,

defining the gauge group. Recall that we have
-1

gk € Cg-f—k—l—Q(k:—l)/p(End( )k)-
By Lemma 3.5, we finally deduce that D¢ and [¢,g] are in L' ’2 n 5(91 ® End E), which implies
g€ L*; s(EndE).

It is now clear that ¢ is a Lie group with Lie algebra L’ ’2 +s(W(E)). From Lemma 3.5, it is easy
to prove the other statements in Lemma 2.1. O

4. Analysis on the disk

In this section, we give some tools to handle the analysis of our operators with strongly singular
coefficients. In order to remain as elementary as possible, we restrict to L2-spaces, which is sufficient
for our purposes. Moreover, we have to be careful about the dependence of the constants with respect
to homotheties of the disk, since this is crucial for the compactness result that we will need later.

LEMMA 4.1. For a p-form u with values in End E, with compact support in A — {0}, one has
[1Dup 410 = [ 1vul + (60 P
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Proof. Integrate by parts the formula [Biq97, Theorem 5.4]
D*D+DD* =V*'V + (¢R) ¢ ® . O

In particular, we apply this formula to get the following consequence.

1,2

COROLLARY 4.2. If we have a 1-form u € L7 5,

vanishing on 0A, then
1Dull 2, + 1Dl 2, > e(IVullye, |, + 6 @ullzz, ).

On the End(FE), part for k > 2, the estimate is valid for all weights 0. For k = 0 or 1, the estimate
holds only for § > 0 sufficiently small.

Finally, the same estimate holds with the same constant c if we replace D by h D, where h
is the homothety hy(x) = wx in A, for w < 1.

Proof. First consider the u section of End(E); for k& > 2. For a positive function p(r) to be fixed
later, one has, by Lemma 4.1,

(D + D) (p' w72 = V(o' P w)|[72 + ' ° ¢ @ ul72.
On the other hand,
1D+ D*, p=u| + [V, 9] < clolp~ul.
From these two estimates, we deduce
Ip' (D + D*)ull 2 = (D + D*)(p'°u)| g2 = [P+ D*, p'~ul| 2
> c(llp' " Vullz + [0 ¢ @ ull2) = o' p~ull 2.
Since k > 2, we have an (algebraic) estimate

|ul

where A is the smallest modulus of non-zero eigenvalues of Ax. Now choose p in the following way:
r  forr < %,
p(r) =43
—e forr>e,
4
0<p <1

Using the fact that p/r? > 1/2¢ for r < &, we get the estimate

_ _su |2 2 1_
oo~ ulls <22 o5, < Tlo o @l
hence
_ . 2¢ec! _ . _
030 + D Yulliz > (= 5 ) (12D + DYl + 150 5 ula)

Choosing ¢ small enough, finally we get
_ & _ _
lp' (D + D*)ul| > > Q(le "(D+ DYullg2 + [Ip" 00 @ ul]72).

As p coincides with 7 near zero, the norm ||p!=° - ||;2 is equivalent to the L2, L norm, and the
corollary is proven. If D is transformed into h D, then )\, becomes w!~*); which is bigger, so
the estimate still holds (¢ and ¢’ do not depend on D).

In the cases k = 0 or 1, one can prove the estimate directly, but this is a bit more complicated.
Another way to prove the lemma is to observe that in this case, by a conformal change, the operator
D + D* is transformed into a constant coefficient operator on the cylinder with metric |dz|?/|2|?,
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and it is clear that it has no kernel. It then follows that if ¢ is not a critical weight (see Remark 4.5),
the existence of the estimate follows from general elliptic theory for operators on the cylinder. Also,
the homothety h, leaves invariant the operator for £ = 0 or 1, and this implies that the constant
does not change. O

COROLLARY 4.3. For k > 2, if we have a L3-solution u with values in End(E)y of the equation
(D + D*)u = 0, then |u| = O(r") for any real .

Proof. Let x¢(r) be a cut-off function, so that x.u = u for e < r < 1/2. We can choose . so that
|dx.| < ¢/r. Then

. c
(D + D)) < Zul.
By Corollary 4.2 this gives

Q

(D + D) (xew)ll 2

1

IV etz + lIxeullzs,,

Taking ¢ — 0, we get u € L§+k_1 and Vu € L§—1' Since k > 1, we can iterate the argument and
deduce that u and Vu (hence d|u|) belong to L?Y for any «. The corollary follows. O

LEMMA 4.4. On the disk, the Laplacian

D*D + DD*: L*} (' @ End E) — L2, (9’ ® End E),
with Dirichlet condition on the boundary, is an isomorphism for small weights § > 0.

If we restrict to the components End(FE),, @ - --®End(E),, then the same holds for any weight §.

Proof. Begin by considering the components in End(E); for £ > 2. We claim that a solution of
(DD* 4+ D*D)u = v is obtained by minimizing the functional

[ 3UDul? +107u) - (w0

among u € Llj(End(E)k) vanishing on the boundary; indeed, by Lemma 4.1, we have that, for

such u,
2
u
Jpu D) e [ 1 (4.1)

so the functional is coercive and a solution can be found; note that it is sufficient to have r*v € L2.
The solution satisfies an equation
U Vu
dd* + d*d)u = v + B (—)+P Yuy
( ) O\ 2k L\ 7k

where Py and P; are bounded algebraic operators, so by elliptic regularity u € L%’ifl. In conclusion
we get, for the Dirichlet boundary condition, an isomorphism

DD* 4+ D*D: L7 | — L%, . (4.2)
Now we want to prove that this L?-isomorphism actually extends to all weights: we proceed

by proving that the L2-inverse is continuous in the other weighted spaces. For any weight ~, it is
sufficient to prove an estimate

v * * Y
|5(DD" + D" Dyullyz, | > cllo"ull 2z

where p is some function which coincides with r near zero, as in the proof of Corollary 4.2. As in the
proof of this corollary, the estimate is deduced from a control on the commutator [DD*+ D*D, p7],
obtained after a careful choice of p. The details are left to the reader.
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Now let us look at the component End(FE);. In fact, the estimate (4.1) still holds, so therefore
the isomorphism (4.2) is true, and remains true for small perturbations —2 + 0 of the weight —2.

Finally, for the component End(E)g, we simply have the usual Laplacian dd* + d*d on the disk
to study in weighted Sobolev spaces, so it is a classical picture: the inverse is the usual solution of
the Dirichlet problem on the disk. The question is to check the regularity in the weighted Sobolev
spaces. It is useful to proceed in the following way, using general theory for elliptic operators on
cylinders. The operator

dd* +d*d: L, s — L%, (4.3)
translates on the cylinder into the operator
0? 0?
—@ — @ : eétLZ’Q — CétLQ. (44)

Note that the operator for k = 1 is just the same, with an additional term \?, where \; is the
eigenvalue of the action of A;.

Here the weight 6 = 0 is critical, because of the solutions a+bt in the kernel of (4.4). Nevertheless,
for small 0 # 0 the operator (4.4) becomes Fredholm, and, because the operator is self-adjoint, we
get by formula [LM85, Theorem 7.4] the index +1 for small negative 6 and —1 for small positive §.
Coming back on the disk, this means the operator (4.3) has index —1. As L2_§ 45 C L2_§ 4s has
codimension one by (3.4), this means that dd* + d*d : L2_g 5 L?,, s has index zero. Therefore it
is an isomorphism. O

Remark 4.5. On the End(E)o @ End(E); part, the theory of elliptic operators on cylinders also
gives information for all weights §. Namely, the problem is Fredholm if ¢ avoids a discrete set of
critical weights (corresponding to the existence of solutions (a+bt)e ). This easily follows from the
following fact: if one considers the problem (4.4) on the whole cylinder (or, equivalently, DD*+ D*D
on R? — {0}), then it is an isomorphism outside these critical weights.

Finally, we deduce the decay of the solutions of the self-duality equations.

LEMMA 4.6. If we have on the disk a solution a € LE%M(Ql ® End E) of an equation (D + D*)a =
a ® a, then in the decomposition a = ) a, we have the following decay for a:

1) if k > 2, then |ag| = O(r") for any ~;

2) if k=0 or 1, then |az| = O(r~119).

Proof. We have LE%M C L111+5 for any p. On the other hand, for ¢ > 2 close enough to 2, one

has the inclusion LE§+5(End(E)k) C L?,,,. Now take p big enough so that 1/p + 1/q = 1, so
we get a ® a, € L? s5- In particular, we deduce that (a ® a); € L%3+k+6 for all £ > 2. It is
now easy to adapt the proof of Corollary 4.3 to get ap € L2_3 yorss for all k > 2, and therefore

—3+k+
1,2 1,2
ar € L3 54y C L2145
Iterating this, we get that for k > 2 one has aj, € L}Y’Q for any v, and we deduce the bound on ay.

For the b = ag 4+ a1 part, we can write the problem as
(D + D*)b=b® b+ small perturbation,
and therefore b b € LP

with an initial bound b € L'? for any p > 2. This is now a problem

—246 —2+425
which translates into a constant coefficient elliptic problem on the conformal cylinder, so that elliptic
regularity gives at once b € LEIQJH cCY s O
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5. Moduli spaces

Consider now a compact Riemann surface X with finitely many marked points p;, and a complex
vector bundle E over X, with a hermitian metric h. Choose an initial connection Dy on E, such
that, in some unitary trivialization of F/ around each p;, the connection Dy coincides with the local
model (1.6). Of course on the interior of X — {p;}, the connection Dy is not flat in general.

Define r to be a positive function which coincides with |z| around each puncture. We can then
define global Sobolev spaces on X as in § 2, and therefore a space of connections &/ = Dy +
Ll_’gchs(Q1 ® End F), and a gauge group ¢ as in (2.6) acting on 7.

The Lemma 4.4 on the disk can now be extended globally.

LeEMMA 5.1. If A € o/, then the operator
2,2
DiDa: L7, 5(uw(E)) — L2, 5(u(E))
is Fredholm, of index zero.

Proof. First it is sufficient to prove that the Laplacian DjDg is Fredholm, because the 1-form

a € Lig " 6((21 ® End E) gives only a compact perturbation, see Remark 3.2. For D§Dy, we can glue

the inverse coming from Lemma 4.4 near the punctures with a parametrix in the interior. This gives
a parametrix which is an exact inverse near infinity, implying that the operator is Fredholm.

Let is be the index of the slightly different operator,
229
Ps=DgDo: L” +5(u(E)) - L%2+5(U(E))§

this means that we now do not allow non-zero values at the origin for the End(E)q part. We claim

that
i5 = _i—57 (51)
ig —i_s = —2dimu(E)p. (5.2)
From these two assertions, it follows immediately that is = — dimu(E), and therefore the index of

the initial operator is zero.

Now let us prove first (5.2). We have to calculate the difference between the indices of Py and P_s.
The operator does not change in the interior of X, so by the excision principle the difference comes
only from what happens at the punctures, and it is sufficient to calculate it for the model Dirichlet
problem: this has been done in Lemma 4.4 and its proof.

Now we prove (5.1). This comes from formal L?-self-adjointness of Ps: observe that the dual
of L%Q 5 is identified to Lgé, therefore the cokernel of Pj consists of solutions u € L? s of the
equation DgDou = 0. The behavior of such a u comes from Lemma 4.4: near the punctures,
the components uy for k& > 2 decay quicker than any 7. This fact combined with elliptic regularity
implies u € f)%’gfé(u(E)), that is u € ker P_g. Therefore, coker Py = ker P_s. O

We want to consider the quotient space o/ /9. If A € &/ is irreducible, then D4 has no kernel
and the cokernel of D 4 is simply the kernel of D%. From this and the lemma, it is classical to deduce
that the irreducible part /™" /% of the quotient is a manifold, with tangent space at a connection

A given by
Tia(/™/)9) = {a € L'} 5(Q' ® End E), Im(Dja) = 0}. (5.3)
The moduli space .#Z C o/ /4 we consider is defined by the equations
Fy=0, Gy=0. (5.4)
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These equations are not independent, since writing A = A" + ¢4 we have the decomposition of Fy
and G4 into self-adjoint and anti-self-adjoint parts given by

Fax=Di¢pa+ (Fa+ daoa),
AGA = —ADy+dpa+ 1D 0a.
Therefore, as is well-known, Equations (5.4) are equivalent to
Fa=0, Djyipa=0. (5.5)
The space & is a flat hyper-Kahler space, for the standard L?-metric, and with complex structures
I, J,and K = I.J acting on a € Q! @ End(E) by
I(a) =ia, J(a)=1i(a®")* —i(a"?)*. (5.6)

The complex structure I is the natural complex structure on connections, and J is the natural
complex structure on Higgs bundles.

Hitchin [Hit87] observed that Equations (5.5) are the zero set of the hyper-Kéahler moment map
of the action of 4 on 7. The linearization of Equations (5.5) is simply
Dja =0, Re(Dja)=0. (5.7)
If [A] € 4, there is an elliptic deformation complex governing the deformations of A:

DA DA+D2

L*}, s(w(E)) =5 L3, (' @ End E) L2,5,5((9% @ End E) @ iu(E))

As in the proof of Lemma 5.1, the Laplacians of the complex are Fredholm, with index zero,
and we get the following result.

LEMMA 5.2. The cohomology groups of the deformation complex are finite dimensional.

LEMMA 5.3. If A € ./, then there is a gauge in which, near a puncture, A = Do+ a, and a decays
as in the conclusion of Lemma 4.6.

Proof. We can write globally A = Dy + a. Let x. be a cut-off function, such that:
1) xe =1 in a disk of radius € near each puncture;

2) x. = 0 outside the disks of radius 2¢ near each puncture;

3) |dxe| < ¢/r for some constant c.

Consider the connections A, = Dg+ x.a. This is a continuous path of connections in &7, converging
to D().

CrAamm (Coulomb gauge). For e sufficiently small, there exists a gauge transformation g, € ¢, such
that
Im(DS(ge(Ae) - DO)) =0. (58)

Suppose the claim is proven, fix some € for which we have a Coulomb gauge; since A = A, in a
disk of radius € near the punctures, this means that, restricting to this disk,

ge(A) = Do+ a, ImDgja=0.

Using this condition, Equations (5.5), with linearization (5.7), can be written as (Do +Dj)a = a®a
and the result follows from Lemma 4.6.

It remains to prove the claim. We try to find g = e solving Equation (5.8), with u €
L%g +s(W(E)). The linearization of the problem is DgDou = Im Dg(x.a). But the operator DgDy

is Fredholm of index zero by Lemma 5.1. If it is invertible then, by the implicit function theorem,
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we get the solution g. we wanted. If not, we still get an isomorphism after restricting to the space
ker(Dg Do)t ; fortunately, the operator Im Df(e“(A) — Dy) takes its values in the same space, so we
can still apply the implicit function theorem after restricting to it. O

If A is irreducible, then the kernel of D4 on End(F) vanishes, and is equal to the kernel of D% on
0? ® End E. From Lemma 5.2, it now follows that Equations (5.4) are transverse, and we therefore
get the following result.

THEOREM 5.4. The moduli space .#™ is a smooth hyper-Kéahler manifold, with tangent space at
A given by

T = {a € L*(Q' @ End E), Daa =0, Dija =0} = L’H'(End E).
The metric is the natural L?-metric. It is a complete metric if the moduli space .# does not contain

reducible points.

Proof. First we prove that L?-cohomology calculates the H' of the elliptic complex. We have to
prove that a L?-harmonic 1-form actually belongs to the space Ll_g 4s- This is the infinitesimal
version of Lemma 4.6 and is even simpler to prove (and because the equations are conformally
invariant, one can do the local calculations on the disk with respect to the flat metric).

The difficult point is to prove that the metric is complete. Suppose we have a geodesic curve
([A4]) in A parameterized by arclength, of finite length ¢. We want to extend it a bit. We can lift
it to a horizontal curve (A; = Ag + a¢), hence a; satisfies

(Da, + D3, )ar = 0, (5.9)
/ |lag|? = 1. (5.10)
X

These two equalities do not depend on the metric on X. If we choose a metric g, then, decomposing
Va, =V + ¢, we get the Weitzenbock formula [Biq97, Theorem 5.4]:

lg
SC; ay = 0.

We cannot integrate this equation against a; for a smooth g, because the integral is divergent.
Nevertheless, we use the freedom of the metric to choose g which coincides near each puncture
with the flat metric |dz|2/|z[**=%) for some local coordinate z and some positive &' < §. Because
a; € LY2, . now one can integrate by parts and get

Zoys
19
/ (IV?dtIQ + | rae|* + SC; |dt|2> vol? = 0.
X

Here all norms are taken with respect to g. Because the scalar curvature of g is bounded, and using
Kato’s inequality, we deduce that

/ |d|ay||2 vol? < c/ la? < . (5.11)
X X

Since the L?-norm of 1-forms in conformally invariant, we can write on each disk near a puncture
this equality with respect to the flat metric |dz|*:

/ il Pzl = / P < e (5.12)
r< r<

CLAIM. One has the estimate

st <ol [ lapap s [ )
r<l r<l iar<l
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Using the claim, we deduce from (5.10) and (5.12), for some positive ¢ < ¢’, the estimate
[ o P asP < c
r<l1

In particular, the L?-estimate is now slightly better than (5.10). Furthermore, the Sobolev embed-
ding (3.1) implies ||a||;» o SC This estimate holds on every disk near the singularities, but also
—-1+4 "

in the interior of X, applying the Sobolev embedding to (5.11); hence it is now a global estimate
on X. Since a; = fg ay dt, we get also the estimate on X: [|a| o, Se Now rewrite Equation
—14 "

(5.9) in the form (Da, + D7 )ar = a; © a;. Choose ¢” so close to ¢ that 20” > 0. Then, from the

multiplication Lfl e L‘il g C LQ_2 yosn C LQ_2 140 WE deduce that a; remains bounded in L2

—2467
which means that a; has a limit a, in Lig 45 when t goes to £. The limiting A + a¢ is again a
solution of Hitchin’s equations, so represents a point of .#. Since there is no reducible solution, it

is a smooth point and the geodesic can be extended.

There remains to prove the claim. It is a simple application of (3.2):
JlarPiae = [1aPiasp > e [t ppiasp

if f vanishes at the boundary. If not, then use a cut-off function x so that y = 1 for r < %, and
apply the above inequality to x f:

Juarplast+ [ ApPas > [Pl > [P,
§<T‘<

The claim follows. O

6. Complex moduli spaces and harmonic metrics

There are two complex moduli spaces that we would like to consider. We still have some reference
connection Dy € o, and recall that we can decompose Dy = D(J{ + ¢p.

We have defined the unitary gauge group ¢ by the condition Dygg~"' € Lh?

—2+46°
implies that both D gg~" and gog~" are in L2, .

For complex transformations, this is no longer true, and we have to define directly the complex-
ified gauge group %c as the space of transformations g € GL(E) such that D(')F g9~ " and goog~"

belong to L%2 . As in Lemma 2.1, this definition makes % into a Lie group with Lie algebra

246"
Lie(%c) = L2_§ +s(End E). We now complexify the action of ¢ on & for both the complex struc-
tures I and J.

This condition

For the first complex structure, the action is simply given by
D—goDog ' =D—Dgg!
and the associated moduli space is the moduli space of flat connections on F, defined by
MpRan ={A €, Fy=0}/%. (6.1)

The DR subscript means ‘De Rham’ moduli space, as in Simpson’s terminology, and the ‘an’ is for
‘analytic’, by contrast with the moduli space of flat connections .#pr a1 With some fixed behavior
at the punctures that one can define algebraically.

For the second complex structure, we get a different action, namely the action of ¢ on &/ seen
as a space of Higgs bundles: a connection A = Dy +a € &/ can be identified by (1.4) with the Higgs
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bundle (94,604), writing

0,1 ( al,O)*
2

and the action of the complexified gauge group is simply

al,O + (ao,l)*

5A=50+a , 04 =100+ 5 ;

(04,04) — (go0aog " g0ag™").
The associated moduli space is
v///Dol,an = {A cd, Gy= 0}/%@. (6.2)

Again the subscript ‘Dol’ stands for Dolbeault moduli space, and the ‘an’ is used to distinguish
the algebraic moduli space .#po1 a1 of Higgs bundles with Higgs field of fixed polar part at each
puncture.

In the two cases there is a notion of (analytic) stability which leads to spaces 4y .., C “#DR,an
and A5 ., C #Dol,an- In both cases, stability means that for some class of subbundles the slope of
the subbundle (the analytic degree defined by the metric, divided by the rank) must be smaller than
the slope of the bundle. Here we will only recall the definition and refer the reader to [Sim90, § 6]
for details.

In the Dolbeault case, the class of subbundles to consider is the class of holomorphic
L'2-subbundles, that is holomorphic subbundles .# (outside the punctures), stable under the Higgs
field, and defined by an orthogonal projection 7 such that dam € L?. The corresponding analytic
degree is obtained by integrating the curvature of the connection induced on the subbundle by the
metric,

deg™ F = i /tr(wFA) — |Dx?

i _
S /m«(m@ﬁ)  \Bar].

In the De Rham case, there is a similar picture: one has to consider flat subbundles defined
by an orthogonal projection 7 such that D47 € L?. On a compact manifold, the degree of a flat
subbundle is always zero, and stability reduces to semi-simplicity, that is there is no flat subbundle;
in the non-compact case, the parabolic structure at the punctures may have a non-zero contribution
to the degree of a flat subbundle.

THEOREM 6.1. Suppose deg®™ E = 0. Then the natural restriction maps
%Bol,an A %irr - ‘%BR,an

are isomorphisms.

We will prove the theorem in § 9.

7. The Dolbeault moduli space

In this section, we prove that elements of the analytic Dolbeault moduli space .#pe)an actually
correspond to true meromorphic Higgs bundles, with fixed parabolic structure and fixed polar part
of the Higgs field, on the Riemann surface X. This gives a correspondence between ./Z and
A

In X —{p;}, a L1’2—5—0perator has holomorphic sections which define a structure of holomorphic

loc
bundle. The remaining question is local near the punctures. Fix the local model Dy around a

ol,an

ol,alg"
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puncture as in § 1, with underlying Higgs bundle given by (1.7):
- = 1 dz 1 dz p[dz
0o =0~ 5Re(A1)—, 6= 52Aif --=
Now consider a Higgs bundle (0o + a,0p + V) € o. The following lemma enables one to take the
0-operator to a standard form.

LEMMA 7.1. There is a complex gauge transformation g, defined in a neighborhood of the origin,
such that:

i—1+8"

1) g is continuous, and in the decomposition g = go + - - - + g, one has g;/r continuous for

some §' < 0;
2) g(go + a) = 50.
To prove the lemma, we first need the following statement.
LEMMA 7.2. Take § € R — Z and p > 2. Then the problem
of _
oz 7
in the unit disk has a solution f = Tyg such that

Iflles, ., <clglle,... (7.2)
The same is true, if § — Re A € 7Z, for the problem

of A _
oz "2z ¢

Proof. First one can restrict to the case 0 < § < 1. Indeed, if § = [0] + Jp, then the problem (7.1)
is equivalent to
(21l
(= : f) _ -l
0z
and the wanted estimate (7.2) becomes equivalent to the estimate

_1s -1
HZ [ ]f”CO_1+60 S CHZ | ]g”inQJF‘SO'

Hence we may suppose 0 < § < 1.
Now, for this range of d, we claim that the Cauchy kernel
g(u
1@ = [ L
zZ—u

gives the inverse we need. Indeed, by the Holder inequality, we get

|dul? (r=1)/p
IF G < llgllze, (/ 237/ =], u\p/(p—n)

and the result follows from the estimate

|du|? - c
|u|2=9p/(P=1) |z — q|p/(P—1) = | 2| (1+0)p/(P—1)
which is left to the reader.

For the second problem, observe that
0 A 0
A A

— +—=r""0o—or"

0z 2% 0z
If § — Re\ € Z, we can take the inverse f = r~*Tyrg. O
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Proof of Lemma 7.1. Define spaces of u € End E and a € Q' ® End E by
Us = {u,ui € C,S,H(;, ug € Cg},
As ={a,a € LV, 5, a0 € LY s}
Observe that, since a € LESH, we have aj € L§+k_2_6 by Lemma 3.1, and therefore a € Ag for
some weight &' < 4.
The problem g(dy + a) = dy can be written (with g = 1 + u)
dou — ua = a. (7.3)

The operator 9y is of the type studied in Lemma 7.2; hence we get a continuous right inverse
T : Ass — Us. We find a solution u € Uy of (7.3) by a fixed point problem, looking at a solution
u € Uy of u =T (ua + a). For this, we need v — T'(ua + a) to be contractible; but

1T (ua +a) = T(va+a)llv < cllu—vllulal]a,

so this is true if |jal| 4 is small enough.

Let hp be a homothety taking the disk of radius 1 to the disk of radius w; then it is easy to see
that ||h all4 < @’|ala.

On the other hand, the operator Jy is unchanged by the homothety h, so for w small enough
the operator u — T'(ua + a) becomes contractible, and we can solve the problem. O

From the lemma, we deduce a basis of holomorphic sections for d4, as in (1.8),
o; = g_llz‘ReNi_[ReNi]ei.
This basis defines a holomorphic extension of the bundle (F,d4) over the puncture, which is char-
acterized by the fact the sheaf of holomorphic sections of this bundle is the sheaf of bounded

holomorphic sections outside the puncture. Moreover, the growth of the holomorphic sections is the
same as the model (1.9), that is

|oi| ~ |2]* (7.4)
with o; = Re p; — [Re ], and these different orders of growth define on the extension a parabolic
structure, whose weights are asq, ..., .

Finally, in the holomorphic basis (o), the Higgs field becomes
929(904-19)9_1 :00"’_’19/7 ﬁ/:g[eo’g_l]—kg’ﬁg_l’

and we now have simply 9 = 0. From the bounds on ¢ in the lemma, we deduce that actually 1’
is holomorphic, therefore the polar part of the Higgs field is exactly, as in (1.10),

1
0o = —ZAid—iz _Bdz
1

The above construction means that we have constructed a map
%Dol,an - %Dol,alg (75)

by defining a canonical extension. Actually, writing (7.5) is not completely correct, and it would
be better to say that we have a functor between the two corresponding categories (indeed one
can prove that morphisms in the space L%g s extend to holomorphic morphisms of the extensions).
This functor is actually an equivalence of categories, because the arrow (7.5) can be inverted through
the following lemma.

LEMMA 7.3. Let (&,0) be a meromorphic Higgs bundle on X, with parabolic structure at the
punctures having weights aq, .. .,a,, and polar part of the Higgs field given at each puncture by
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S0 Bi(dz/z"), with the B; diagonal matrices. Then there exists a hermitian metric on & such that
the induced connection A = 9% +0° +0+60* belongs to a space o/ of connections with data (1.9) and
(1.10) at the punctures. The bundle (&, 0) can be recovered from (04, 604) as its canonical extension.

Proof. The problem consists in constructing an initial metric h on &. In order to simplify the ideas,
we will restrict to the case where B,, is regular semisimple, but the general case is similar. Take a
basis (0;) of eigenvectors of &, at the puncture p, and extend it holomorphically in a neighborhood.
The action of a holomorphic gauge transformation g = e¢“ of & on the Higgs field is by

0 — gfg~!' = exp(adu)f.

From this it is easy to see that, by a careful choice of u, one can kill the off-diagonal coefficients of
0 to any finite order. Therefore, we can suppose that in the basis (o;) we have

H_ZB—Jrﬂ

where 1 is holomorphic, and the off-diagonal coefficients of ¥ vanish up to any fixed order. Now we
choose the flat metric
e
h pu—
Jef2er

It is clear that, in the orthonormal basis e; = s;/|z|“, we get exactly the flat model (1.7), that is

A=0°+0° 40+ 0" =d+Re(A)id + = L Z <A dz Ajcfz> _g@ +a,
2 T 2 v T
with notation as in § 1. In the perturbation a, the diagonal terms are C°°, and the off-diagonal terms
can be taken to vanish to any fixed high order. In particular, we get an element of o7. Actually we
have obtained much more, because F4 vanishes up to any fixed high order (the diagonal terms do
not contribute to the curvature). O

Remark 7.4. The extension property for the holomorphic bundle alone (no Higgs field) follows from
earlier work: the connection A™ has curvature in some L? for p > 1 and this implies that a canonical
extension as above exists [Biq92]. Actually we also need to make precise the singularity of the Higgs
field in the extension: this requires the calculations above.

Finally, we prove that stability on both sides of (7.5) coincide, transforming the equivalence
of categories (7.5) into an isomorphism of the moduli spaces, % an = Do, alg . First we have
to introduce an algebraic notion of stability. A meromorphic nggs bundle (&, 9) as above has a
parabolic degree

p-deg¥® & = ¢, (&)[X] + Z ai;

if there are several marked points, one must add the contribution of the weights of each marked
point. Subbundles of & also inherit a parabolic degree, and this enables one to define stability.

LEMMA 7.5. Let (0a,04) € o be a Higgs bundle and (&,0) its canonical extension on X.
Then (04, 04) is analytically stable if and only if (&,6) is algebraically stable.

Proof. The point is to prove that a holomorphic L'?-subbundle (stable under the Higgs field)
extends into an algebraic subbundle of &, and that the algebraic and analytic degrees coincide.
Because of Remark 7.4, this is a consequence of the same statements in [Sim90]. O
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8. The De Rham moduli space

We will not give any detail here, since this is completely parallel to the results of § 7. We only
prove the following technical lemma, which is necessary for solving the d-problem on components
of End(E)) with k > 2.

LEMMA 8.1. Takep > 2, k> 1 and 6 € R — Z. Then the problem

of A,
g‘i'gf—g

has a solution f = Tg such that

Ifllce < cllgllze, .-

The constant ¢ does not depend on A.

Proof. The function

© = exp ((k = i\)zkz—l (k- i\)zk_1>

is a solution of 0f /0z+(\/Z")f = 0, such that |¢| = 1. Let T be the inverse defined by Lemma 7.2;
then T'g = ¢Ty(p~'g) satisfies the requirements of the lemma. O

An element of the moduli space .#pRr an is represented by a flat connection A € 27. The holo-
morphic bundle underlying A has the J-operator DB"I. As in the previous section, relying on
Lemmas 7.2 and 8.1, near a puncture it is possible to produce a complex gauge transformation
g such that

0,1 01 = I~ ,dz B+ilmAdz

Zt 2 z

Therefore, we have Dg{l—holomorphic sections (7;) given by

L ‘ ’,@i-l-iImui -1 i A;k o A .
T g P 2ii — )71 23— 1)zi—1 )P
2

and this basis of holomorphic sections defines a canonical holomorphic extension .%# over the
puncture.

With respect to this extension, A becomes an integrable connection with irregular singularities,
and the polar part of A remains equal to that of the model,

dz dz

2
so that we get an element of the moduli space .#pRr a1 of such integrable connections.

Also the extension has a parabolic structure with weights 3;, and this enables us to define a
parabolic degree p-deg?®.Z and therefore the algebraic stability of (.7, A).

We finally have all the ingredients of the isomorphism Z3g ., — AR alg”

Remark 8.2. The weights ; of the local system are the order of growth of parallel sections on rays
going to the singularity. From the above formula, they are equal to

Yi = fi —Repi = —2Re Ai.
By [Biq97, Proposition 11.1], the parabolic degree of .Z is
pdeg® 7 = Y,
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where the sum has to be understood for all punctures. In particular, if all weights +; are taken to
be zero, then the same is true for subbundles, so the degree for subbundles is always zero, so that
stability reduces to irreducibility of the connection.

8.1 Sufficient stability conditions

We will describe some simple conditions on the parameters such that all points of .Zpg are stable.
Suppose A is a meromorphic connection on a holomorphic vector bundle & — X as constructed
from the extension procedure above. Thus in some local trivialization near the ith singularity the
polar part of A takes the form of the model
S odz o odz;
d+"An, = +"‘+ZA12—.Z,

Z; i

where z; is a local coordinate and iAj are diagonal matrices. We wish to assume now that all of
the leading coefficients A,,, are regular (have distinct eigenvalues). Note that the eigenvalues of the
residues ‘A; are uniquely determined by A up to order (independent of the coordinate choice). Now,
if % is a subbundle of & preserved by A, we may choose a trivialization of .% by putting the induced
connection on .# in model form (with residues ‘B say), and then extend this to a trivialization of
& as above. In particular, it follows that the eigenvalues of ‘B; are a subset of the eigenvalues of ‘A;.
However (by considering the induced connection on det(&’)), we know that the (usual) degree of &
is minus the sum of traces of the residues:

deg(#) = = 3 tr("A)

and similarly for .%. Thus we can ensure that A has no proper non-trivial subconnections by choosing
the models for A such that none of the (finite number of) ‘subsums’

> (A (8.1)

i JES;
of the residues is an integer, where S; C {1,...,rank(&)} are finite subsets of size k and k
ranges from 1 to rank(&) — 1. Thus under such (generic) conditions any such connection A is

stable.

8.2 An example

Let .# be a moduli space of integrable connections with two poles on the projective line P! of order
two at zero and order one at infinity. Consider the subspace .#* C .# of connections such that
the underlying holomorphic bundle is trivial. Therefore, points of .Z* are (globally) represented by
connections of the form

i , gl
z z
We will assume that Aj is diagonal with distinct eigenvalues and that none of the eigenvalues of B
differ by integers but allow arbitrary parabolic weights. It then follows that the model connections
at zero and infinity are

d+ A (8.2)

d+A0d—§+A%, d—l—Bo% (83)

z z z
respectively, where A is the diagonal part of B and By is a diagonalization of B. Once these models
are fixed we see that B is restricted to the adjoint orbit &' containing By and has diagonal part fixed
to equal A. Since A is fixed and regular, the remaining gauge freedom in (8.2) is just conjugation
by TC. Now if we use the trace to identify ¢ with a coadjoint orbit and so give it a complex
symplectic structure, then the map § : & — {¢ taking B to its diagonal part is a moment map
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for this torus action, and so we have an isomorphism .#* = ¢ /TC of the moduli space with the
complex symplectic quotient at the value A of the moment map.

On the other hand, the same symplectic quotient underlies a complete hyper-Kéahler metric
obtained by taking the hyper-Kéhler quotient of Kronheimer’s hyper-Kéhler metric [Kro90] on
O by the maximal compact torus. Nevertheless, in general this quotient metric on .Z* does not
coincide with the metric of Theorem 5.4, because that is a complete metric on .#, which is larger,
as we will show below. Therefore, varying Ag in the regular part of the Cartan subalgebra leads to
a family of hyper-Kihler metrics on @ /TC which become complete in a larger space. We remark
that in this example the full space .#Z may be analytically identified (cf. [BoaOla, Boa]) with the
complex symplectic quotient . /T of a symplectic leaf Z C G* of the simply connected Poisson
Lie group G* dual to GL,(C).

LEMMA 8.3. There are stable connections on non-trivial bundles with models of the type considered
in the above example.

Proof. We will do this in the rank-three case (this is the simplest case since then dim¢ .# = 2; one
may easily generalize to higher rank). Suppose we have g € GL3(C) and diagonal matrices Ay, By,
such that Ay, e2™ 5o have distinct eigenvalues and:

1) the matrix entry (¢! Agg)s; is zero; and
2) the pair of diagonal matrices —Bj, A := §(gB}g~!) have no integral subsums (in the sense of
(8.1)).
Then consider the meromorphic connection on the bundle (1) © ¢ @ ¢(—1) — P! defined by the
clutching map h = diag(z,1,27!) and equal to
dz

_ dz
d+g 1A0g? + B{)?

on C C P!. Assumption (1) implies this is equivalent to the models (8.3) at 0 and oo, with By =
B{, + diag(1,0, —1). Then assumption (2) implies it is stable. Finally one may easily construct such
matrices by observing that companion matrices have zero (31) entry. For example,

1 p 11 1
Ag = A 2 , Bo= q ;o 9=1(2 4 8
4 T 3 12 48

have the desired properties if A is non-zero and p, ¢, r are sufficiently generic (e.g. if {1,p,q,r} are
linearly independent over the rational numbers). O

9. Proof of Theorem 6.1

We will prove only the most difficult way, that is the isomorphism with the Dolbeault moduli
space. We start with a stable Higgs bundle (04,,¢4,) € & satisfying the integrability condition
(DZ‘O)Q =0, that is 94,04, = 0, and we try to find a complex gauge transformation g € % taking
it to a solution A = g(Ay) of the self-duality equations, that is satisfying the additional equation
F4 = 0. This problem is equivalent to finding the Hermitian—Einstein metric h = g*g on the Higgs

bundle.
The idea, as in [Biq97, § 8] is to minimize the Donaldson functional M (h) for h = ¢g*g under the
constraint
h
”AF(6A07¢A0)”L2—2+6 < B. (9.1

We need the two following technical lemmas.
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LEMMA 9.1. If f € L2_’§+5 and g € L?,_; are positive functions such that Af < g and ||gHL2_2+5 < B,
then

[fllco < co(B) + 1 (B)|[fll 1
and || f]|co goes to zero when ||f||;1 goes to zero.

Proof. This follows easily (see [Sim88, Proposition 2.1]) from the fact that if v € L?, ;, then
the problem Awu = v on the unit disk, with Dirichlet boundary condition, can be solved with
u € L%gﬂg c CY. O
LEMMA 9.2. If we have a sequence of metrics hj = hou; with

1) h; has a CO-limit ho,

2) uj € L%gw and h; satisfies the constraint (9.1),

3) [[D’},ujllz2 is bounded,

then the limit is actually a L%’§+5—limit: hoo = hoUoo and us € L%gw

Proof. This is a local statement. Outside the puncture, the statement is proven for example in
[Sim88, Lemma 6.4]; the point here is to prove that CY-convergence implies the convergence in our
weighted Sobolev spaces.

Note that D = Da,, D" = D’; , etc. We use the freedom, from the proof of Lemma 7.3, to
choose an initial metric h with AF" bounded. Observe that, because of the formula
(D//)*D// o (D/)*D/ _ iAFh,
the hypothesis on || D"l 12 also implies that ||D'u;|z2 is bounded.
We have the formula

(D')*D'uj = iuj(AF" — AF") +iA(D"uj)u; " (D'uy).
Let x be a cut-off function, with compact support in the disk, such that x|a,,, = 1. Then we
1/2
obtain
(D')*D'xu; = ixuj(AF" — AF") + iA(D”uj)uj_l(Dlxuj) + dx ® Du; + $(Ax)u;. (9.2)
In particular, we get

(D) D'xujllre,,, < e+ 1D ujllpa 1D xusllzs, ) (9:3)

146

Notice that, by Corollary 4.2, because (D')? = 0, we have
1D D'xujllzz, = el Dxujll a2 el Dxujllps,

and therefore from (9.3)
1D"xujllprz (1= ellD ujllps ) < e (9-4)

The important point here is that all constants are invariant by homothety. Indeed the L?-norm
of 1-forms is conformally invariant, so |[(D” & D’)ul|;2 remains bounded; the same is true for the
L* ;-norm of 1-forms. In Corollary 4.2, the constants do not depend on an homothety; finally, in the
Sobolev embedding \\d(xf)\\Lz_2+5 > c|]foL4_1+5, the norms on both sides are rescaled by the same
factor under an homothety.

Now suppose that there exists some disk A, of radius p such that for all j one has |[D"u;||p+ (A,
< 1/2c. Then, because this norm is invariant under homothety, we can rescale the disk A, by the
homothety h, to the unit disk A, and applying (9.4) we get that Xhyuj is bounded in L%g 450 SO we
get the lemma.
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Now suppose on the contrary that there exist radii p; — 0 such that [[D"u;|zs (a, ) = 1/2¢; by
- J
taking some smaller p;, one can arrange it so that actually

1

" / I
1D ujllps, (a,,) T 1Dl L1 () = % (9.5)

We will see that this hypothesis leads to a contradiction. First we prove that the ‘energy’ in
(9.5) cannot concentrate near the origin. Again, using the homothety h,,, we deduce from (9.4) that
D' (Xhzj u;) is bounded in Lig 45+ Of course one must be a bit careful here, because these L'2-norms
do depend on j, so we actually mean (write D; = h:‘,jD)

. + *
105 0ck uidllzz, , + (V™ @ 65)D;(chy w2, < C (9.6)

in particular, |d|D}(xhy, u;)|| 12 bes is bounded, and because of the compact inclusion Ll_g s C L4,

(see Remark 3.2), we deduce that the functions [D’(xhj u;)| converge strongly in L%, to a limit
(and the same is true for | D7 (xhj u;)]).

Actually, we can deduce a bit more from (9.6): indeed, the operators D; = hp, D become very
close to the model h;j Do when j goes to infinity, so it is enough to suppose that D = Dj near the
puncture. Now for components u(k) for & > 2, we have by (9.6)

)\k * *
P | D5 (xhi,us (W) 2 < 165 @ DOy ui(B)llz, < C;

g Zots
j
and therefore the limit in L% of |D}(xhyy, u;(k))| must be zero.

Therefore, we are left with only the limit of the components with & = 0 or & = 1: observe
now that on these components the operator Dy is homothety invariant, so it makes sense to look
at the limit of the operators D;. Recall that u; has a CO-limit, and pj — 0, so that h;juj has a
constant limit. We deduce that actually, for components of u; with k = 0 or 1, the limit in L4, of
(D} @ Dj)(hy, xu;) must be zero, which implies

”D//ujHLfl(Alpv) + HD/UJ‘”Lgl(Alp) — 0.
2P 2P
Therefore, we have proven, as announced, that the ‘energy’ (9.5) cannot concentrate near the
origin. We deduce that there exist points z; € A, — A1 P such that
2

1
D// . > . )
H uJ||Lil(A%pj(xj)) 1006 (9 7)

Now we rescale the disk A1 o (zj) centered at x; into the unit disk A by a homothety h; a similar
4
argument gives, from (9.2), the estimate

Ix(hy) ujll 22 < e(1+ IV (R)) us]174) < C.

Hence we can extract a strongly L% convergent subsequence (h})*uj, but the limit must again be

flat, and this contradicts the fact that by (9.7) the L*-norm of (D'@® D")((h;)*u;) on A is bounded
2

below. 0

Using these two lemmas, the proof is now a standard adaptation of that in [Biq97]. Indeed,
from Lemma 9.1 one deduces by Simpson’s method that if the bundle is stable, then Donaldson’s
functional is bounded below, and a minimizing sequence h; = hu; must converge in C? to some
limit; moreover, ||D"u;| ;2 remains bounded. Lemma 9.2 gives the stronger convergence in Sobolev
spaces L*? . and one can then deduce that the limit actually solves the equation. U

—2+46°
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