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The heat conductivity of a plasma is usually much higher along the magnetic field than
across it, and, as a result, the presence of a magnetic island can significantly affect the
temperature profile in its vicinity. Radiation energy losses, which depend sensitively on
temperature, are thus strongly affected by magnetic islands. This phenomenon is explored
in a simple mathematical setting, and it is shown that the presence of a magnetic island
greatly enhances a plasma’s capacity to radiate energy. In the limit of highly anisotropic
heat conductivity, the steady-state heat conduction equation can be reduced to an ordinary
differential equation. Although this equation operates in one dimension, the topology is
not that of the real line, but corresponds to a rod with a cooling fin. As parameters such as
the incoming heat flux or the radiation amplitude are varied, the radiation has a tendency to
linger around the island, in particular in the region of the separatrix, and the total radiated
energy is then significantly increased. The island acts as a ‘cooling fin’ to the plasma.
Furthermore, the solutions exhibit bifurcations, where the location of the radiation zone
suddenly changes.
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1. Introduction

In magnetically confined fusion plasmas, energy is transported across flux surfaces
towards the plasma edge and the surrounding vessel. It is a challenge to control and limit
the wall loads since the tolerable energy flux onto a plasma facing component is limited by
a number of technical constraints. In order to control and reduce the loads, tokamaks and
stellarators exploit divertor magnetic fields (König et al. 2002; Feng et al. 2011) to guide
the heat flux onto target plates, and try to maximise radiation from the edge plasma. When
the radiative losses are particularly high, the plasma sometimes ‘detaches’ from the walls
and the energy flux to the latter drops dramatically (Jakubowski et al. 2021).

The key feature of plasma energy transport that allows for the use of a divertor is the fact
that the transport is highly anisotropic. Insofar as the heat flux is diffusive, the conductivity
is many orders of magnitude higher in the direction along the magnetic field than across
it. As a result, if the magnetic field is shaped in such a way that different field lines have
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different topologies, the heat flux can vary greatly across any surface across which the
topology changes. The most familiar example is the separatrix at the tokamak edge, which
separates closed magnetic surfaces in the confinement region from the scrape-off layer
with field lines that intersect the first wall. The W7-X stellarator uses a different kind
of divertor, where a chain of four to six magnetic islands function as a scrape-off layer
directing the plasma to divertor target plates. Energy is removed from the plasma by two
mechanisms. One the one hand, the target plates constitute a heat sink on all intersected
field lines, and on the other hand radiative cooling from impurity ions such as carbon
remove thermal energy from the plasma. Transport computations in the specific geometry
of W7-X and other stellarators are routinely carried out with the EMC3-EIRENE code in
order to quantify these energy loss mechanisms (Feng et al. 2021).

In the present paper, we take a more academic approach and consider the anisotropic
heat conduction and radiation in the simplest possible mathematical setting in which the
field lines change topology, namely, in the geometry of a single chain of magnetic islands.
The aim is to shed light on the basic question of how a variation in field-line topology
affects the location and amount of plasma radiation. As we shall see, even when reduced
to this simple form, the problem is surprisingly complex and allows for highly non-trivial
behaviour. In particular, we find that the plasma has a propensity of radiating in the
vicinity of the magnetic island and its immediate vicinity, and that bifurcated solutions
are possible.

The mathematical equation we solve is a two-dimensional (2-D) heat conduction
equation with a loss term. In the literature, many other studies of such equations in
the context of tokamak edge transport exist. For instance, Krasheninnikov (1997) and
Krasheninnikov, Batishcheva & Simakov (1998) considered the same equation as we did
for the purpose of exploring effects of the magnetic-field geometry on radiation fronts and
their stability, while Paul, Hudson & Helander (2022) analysed the properties of a 2-D
heat conduction equation in an island geometry without a loss term.

The rest of the paper is structured as follows. The next section is devoted to the reduction
of the three-dimensional (3-D) heat conduction equation to a one-dimensional (1-D) form
in the limit of high anisotropy. In § 3, we compute the effective heat conduction coefficient
in the geometry of a magnetic field with a simple island, before solving the equation
including a radiation loss term in § 5. Section 6 summarises the results.

2. Anisotropic heat conduction

We proceed from an anisotropic heat conduction equation, with a temperature-dependent
sink that models radiation losses in and around a magnetic island. As we shall see, the full
3-D heat conduction equation can, in the limit of highly anisotropic heat conductivity, be
reduced to an ordinary differential equation. This reduction is achieved by flux-surface
averaging the heat conduction equation, and results in a 1-D description with an effective
heat conduction coefficient that carries information about the magnetic geometry.

We consider a heat conduction equation of the form

∇ · q + R(T) = 0, (2.1)

where q denotes the heat flux and R(T) the energy loss due to radiation, which depends on
the temperature T . For simplicity we ignore any dependence on density, and assume that
the plasma is optically thin to the radiation, so that the latter simply acts as an energy sink.
In the classical theory of collisional transport in magnetised plasmas (Braginskii 1965;
Helander & Sigmar 2005), the electron heat flux is equal to

q = −κ‖∇‖T − κ∧b × ∇T − κ⊥∇⊥T, (2.2)
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Heat conduction around a magnetic island 3

where T is the electron temperature, b = B/B a unit vector pointing in the direction of
the magnetic field, ∇‖ = bb · ∇, and ∇⊥T = ∇T − bb · ∇T . The three different heat
conductivities that appear in this relation are of very different magnitude in a strongly
magnetised plasma. Heat conduction is far more effective in the direction along the field
than in the two directions perpendicular to it, so we adopt the ordering

κ‖ � κ∧∼κ⊥. (2.3)

In Braginskii’s theory, the diamagnetic heat flux is much larger than the perpendicular
one, κ∧ � κ⊥, but in practice the latter is never as small as this theory predicts because
of additional turbulent transport. We therefore take the perpendicular and diamagnetic
transport to be comparable and expand the temperature T = T0 + T1 + · · · accordingly.
At zeroth order, we then find

∇ · (
κ‖∇‖T0

) = R(T0). (2.4)

We assume that the magnetic field traces out topologically toroidal flux surfaces. If
magnetic islands are present, these surfaces are not simply nested, but surfaces are still
formed by the field lines unless the latter are chaotic due to island overlap. We assume that
only a single chain of islands is present and that the field is thus integrable. (Even if it is
not, similar considerations may apply thanks to the presence of so-called ghost surfaces
(Hudson & Breslau 2008).) It is customary to define the flux-surface average 〈· · · 〉 of any
function as the volume average of this function over the region between two neighbouring
flux surfaces (Helander 2014). If ψ is some flux-surface label, i.e. a coordinate that is
constant on each flux surface and varies smoothly between them, then the flux-surface
average of the function f (r) is thus

〈f 〉 =
∫

dU
f (r) dr

/∫
dU

dr, (2.5)

where dU denotes the region between the flux surfaces labelled by ψ and ψ + dψ , where
dψ → 0. It follows from Gauss’ law that 〈∇ · F 〉 = 0 vanishes for any single-valued
vector field F (r) that is tangential to flux surfaces. The flux-surface average of (2.4) thus
gives 〈R(T0)〉 = 0, which indicates that R(T) should be relegated to higher order. The
zeroth-order equation then becomes

B · ∇
(∇‖T0

B

)
= 0, (2.6)

and it follows that T0 cannot vary over flux surfaces, i.e. T0 is some function of ψ alone
that is determined by the higher-order equations. We thus proceed to the next order, where
we find

∇ · (
κ‖∇‖T1 + κ∧b × ∇T0 + κ⊥∇⊥T0

) = R(T0). (2.7)

A flux-surface average of this equation conveniently annihilates the first two terms, and
thus produces an equation,

〈∇ · (κ⊥∇⊥T0)〉 = R(T0), (2.8)

which, together with the boundary conditions, determines the lowest-order temperature
T0(ψ). If the magnetic surfaces do not exist, as is the case for chaotic magnetic fields
(Hudson & Breslau 2008), we note that the flux-surface average can be replaced by an
appropriate average over ghost surfaces. As a result, the term representing parallel heat
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conduction is then not entirely annihilated. Since the loss function R is assumed only to
depend on the temperature T , its flux-surface average is independent of the flux surface on
which the radiation occurs, i.e. 〈R(T0)〉 = R(T0). Thanks to the large anisotropy of the heat
conduction, we have thus reduced the original 3-D partial differential equation (2.1) to an
ordinary 1-D differential equation. Indeed, if we supplement our flux-label coordinate ψ
with two 2π-periodic coordinates (θ, ϕ) that specify the location within each magnetic
surface, then (Hazeltine & Meiss 2003; Helander 2014; Helander, Hudson & Paul 2022;
Paul et al. 2022)

〈∇ · (κ⊥∇⊥T0)〉 = 1
V ′(ψ)

d
dψ

(
V ′(ψ)〈κ⊥|∇ψ |2〉dT0

dψ

)
, (2.9)

where

V ′(ψ) =
∫ 2π

0

∫ 2π

0

dθ dϕ
(∇ψ × ∇θ) · ∇ϕ (2.10)

is the derivative of the enclosed flux surface volume V(ψ). Specifically, if we choose V(ψ)
as our flux-surface label instead of ψ , our equation (2.8) becomes simply

d
dV

(
〈κ⊥|∇V|2〉dT

dV

)
= R(T), (2.11)

where we have dropped the subscript on T0. If κ⊥(T) is temperature-dependent, this
dependence be eliminated from 〈κ⊥|∇V|2〉 though the definition of a new temperature

T̃ =
∫ T

0
κ⊥(T ′) dT ′, (2.12)

and a redefinition of R(T).
In the 1-D conduction equation (2.11), the function κ(V) = 〈|∇V|2〉 plays the role of an

effective heat conduction coefficient, which encapsulates the influence of magnetic flux
expansion on the perpendicular heat conduction. Our next step will be to calculate κ(V)
in a field with a single magnetic island chain. As we shall see, the fact that the topology of
the magnetic field lines changes across the island separatrix implies a non-trivial topology
of the set in which (2.11) is solved. Although this is an ordinary differential equation in
terms of the independent variable V (the enclosed flux-surface volume), the latter does not
have the usual topology of the real line.

3. Heat conduction equation near a magnetic island
3.1. Magnetic island geometry

Magnetic islands can arise in toroidal magnetic fields with nested flux surfaces in places
where the rotational transform is a rational number. A resonant perturbation to the
field-line Hamiltonian χ describing the field without the island in general produces such
an island. If the perturbation only consists of a single Fourier harmonic, the perturbed field
is described through a flux function similar to that of a pendulum Hamiltonian. From this
analytical description of the island, it is possible to derive an expression for κ(V) in terms
of complete elliptic integrals.

A toroidal magnetic field can be described by

B = ∇ψ × ∇θ + ∇ϕ × ∇χ0. (3.1)

If all flux surfaces are simply nested, then χ0 is a function of ψ alone. We can thus
write ∇χ0 = ι(ψ)∇ψ , where ι(ψ) = dχ0/dψ , and Clebsch coordinates can be defined by
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Heat conduction around a magnetic island 5

FIGURE 1. Contours of the magnetic flux χ for a magnetic field with an island and Ω = 1/4.

α = θ − ιϕ, so that B = ∇ψ × ∇α. The rotational transform ι(ψ) describes the number
of poloidal turns per toroidal turn along a magnetic field line. Its derivative ι′(ψ) is known
as the magnetic shear and describes how the rotational transform varies between flux
surfaces. As already mentioned, magnetic islands on rational surfaces arise in response
to a resonant perturbation δχ to the Hamiltonian system, and it is convenient for the
description of a magnetic island to define a new effective Hamiltonian χ = χ0 + δχ − ιψ .
The effective Hamiltonian facilitates the analysis by simplifying the system in a way
similar to the description in Cary & Hanson (1991) and Lichtenberg & Lieberman (2013).
Expanding the perturbation δχ in a Fourier series in the angular variables θ and ϕ, and
keeping only one term in the expansion gives

χ = 1
2
ι′x2 − F cosα, (3.2)

where w measures the island width, x the deviation in ψ from the rational surface and
F = w2ι′/4. For a detailed derivation see (Helander 2014) and (Hazeltine & Meiss 2003).
The contours of χ are shown in figure 1. Next, we introduce the normalised island flux
m = 1

2(χ/F + 1):

m = 1
4Ω2

x2 + sin2 ϑ. (3.3)

Here we have introduced the island half-width Ω = (F/ι′)1/2 = w/2 and the new angle
ϑ = α/2. The normalised flux has the important property of lying between 0 < m < 1
inside the island and 0 < 1/m < 1 outside the island. For simplicity, we assume that
unperturbed magnetic field is homogeneous and neglect any spatial variation of |∇x|, thus
effectively considering the geometry of a plasma slab with a magnetic island.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377824001727
Downloaded from https://www.cambridge.org/core. IP address: 3.12.162.56, on 23 Feb 2025 at 04:18:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377824001727
https://www.cambridge.org/core
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3.2. Effective heat conductivity
We proceed to determine the effective heat conduction coefficient in the magnetic island
topology. From the 1-D heat conduction equation (2.11), it is clear that an expression for

|∇V|2 =
(

dV
dm

)2

|∇m|2, (3.4)

needs to be determined from our normalised pendulum Hamiltonian (3.3). We use m as a
flux-surface label and find, with the definition of the V ′ given earlier,

dV
dm

=
⎧⎨⎩

4Ω√
m

K(m−1), m > 1

8ΩK(m), m < 1,
(3.5)

where K and E are complete elliptic integrals of the first and second kind, respectively.
The argument may take any value between zero and unity. At the island O-point and far
from the island m → 0, whereas m → 1 at the separatrix. To determine |∇m|2 we express
x2 in (3.3) as a function of ϑ and m itself, and thus find

|∇m|2 = 1
Ω2

(
m − sin2 ϑ

) + 1
4

sin2 2ϑ. (3.6)

Combining the expressions for |∇m|2 and dV/dm using sin2 2ϑ = 4(sin2 ϑ − sin4 ϑ),
an expression for |∇V|2 inside the island and outside the island can be found. The integrals
in the flux surface averaging can again be reduced to combinations of K and E. For
details on elliptic integrals see Byrd & Friedman (2012) and Gradshteyn & Ryzhik (2014).
Proceeding in this fashion for m < 1 and m > 1, respectively, analytical expressions for
the heat conduction coefficient κ can be found as a function of m. The result,

κ(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16Ω2K(m−1)

3[
2 (1 − m)K(m−1)+

(
2m − 1 + 3

Ω2

)
E(m−1)

] m > 1,

82Ω2K(m)
3[

(m − 1)
(

3
Ω2

− 1
)

K(m)+
(

2m + 3
Ω2

− 1
)

E(m)
] m < 1,

(3.7)

can be combined into a single expression that is valid for all values of m:

κ(m) = 1
6

[(
3
Ω2

+ 2m − 1
)

dV2

dm
+ 4

(
m − m2) (

dV
dm

)2
]
. (3.8)

As we shall see below, inside the island κ(m) is well approximated by the first term in the
square brackets, whereas both terms are required for an accurate description far outside
the island. As is evident from the numerical plot given in figure 2, when the separatrix is
approached from either side, κ goes to infinity because of the dependence on K(m).
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Heat conduction around a magnetic island 7

FIGURE 2. The equivalent 1-D heat conduction coefficient over the range of 0 < m < 3.
Outside the separatrix, κ quickly approaches the limiting value for m � 1. Here κ is normalised
to κ∞.

An analytical expression can also be given for V(m),

V =
{

8Ω
√

mE(m−1), m > 1,

16Ω [E(m)+ (m − 1)K(m)] , m < 1,
(3.9)

which is plotted in figure 3. The enclosed flux surface volume for the pendulum
Hamiltonian is related to the action integral J = V/2π, which is well known in
Hamiltonian mechanics (Rechester & Stix 1979; Lichtenberg & Lieberman 2013).

At this point, it may be helpful to recapitulate the various coordinate transformations
that have been performed. The unperturbed magnetic field (3.1) was originally written in
general toroidal coordinates (ψ, θ, ϕ), and a magnetic island was added in a standard way
through the introduction of the helical flux χ in (3.2). On the perturbed flux surfaces,
which contain a periodic chain of magnetic islands, it proved useful to introduce the
surface label m through (3.3) and the enclosed volume V(m)= (3.9), in terms of which
the effective heat conductivity (3.8) can be expressed.

For most choices of the radiation function R(T), the differential equation (2.11) can
only be solved numerically. To simplify the problem, we shall take R(T) to be piecewise
constant, in which case analytical progress is possible.

Regardless of the choice of R(T), however, this equation has the interesting feature
of operating in a domain of non-trivial topology. Although it is an ordinary differential
equation, T(V) is not to be understood as a function along a line but on the set with the
topology shown in figure 5. The topology is similar to a rod with a cooling fin, where the
latter corresponds to the interior of the island and the heat conductivity depends on the
position along the rod and the cooling fin.
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8 G. Pechstein, P. Helander and B. Shanahan

FIGURE 3. The enclosed flux-surface volume in and around the island and V ′ = dV/dm with
Ω = 1/4. The discontinuity in V at the separatrix (m = 1) is due to the fact that there are two
regions ‘above’ and ‘below’ the island for m > 1, each enclosing half of the total enclosed flux
surface volume around the island. To understand the impact of competing V and V ′ terms, VV ′
is also shown.

3.3. Limiting cases
There are certain regions in which the heat conduction equation becomes particularly
simple, namely, in the vicinity of the island O-point, at the separatrix and far away from
the island. As one would intuitively expect, far from the island the equation reduces to an
equation describing perpendicular heat conduction across flux surfaces without an island.
Close to the O-point, the heat conduction equation is equivalent to that in an ellipse, and,
as we shall see, the effective heat conduction coefficient κ reaches a maximum at the
separatrix.

For the case far away from the island, we note that m � 1 and thus κ → κ∞ = 4π2

becomes independent of V , as expected in a straight magnetic field. Equation (2.11) then
reduces to

d2T
dV2

= R(T), (3.10)

where we have absorbed 4π2 into R(T).
In order to treat the region close to the O-point, we expand κ and V for small m, κ(V) =

2πΩV(1 + 1/Ω2)+ Om2, and note that (2.11) reduces to a heat conduction equation in
elliptical geometry,

2πΩ

(
1 + 1

Ω2

)
d

dV

(
V

dT
dV

)
= R(T). (3.11)

The equation of the corresponding ellipse can be obtained by expanding equation (3.3)
in ϑ , resulting in 4m = (x/Ω)2 + (2ϑ)2 + Oϑ3. Thus, the ellipticity is given by the
half-width of the island Ω , the radius of the ellipse is given through r = 2

√
m and the

enclosed volume near the O-point the enclosed flux surface volume dominates the heat
conductivity.
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Heat conduction around a magnetic island 9

FIGURE 4. The deviation of the 1-D heat conduction coefficient from its asymptotic form in
various limits. The expansion around the O-point and the separatrix (given as κO and κsep), have
very large errors farther away from their expansion point. While κapp does not deviate more than
0.04 from κ(m) in the relevant region in and around the island.

In the vicinity of the separatrix, κ can be expanded in x  1 with m = 1 − x inside the
island and m = 1/(1 − x) outside the island. In both cases, we find that the effective heat
conduction coefficient is given by

κ = 1
6

(
3
Ω2

+ 1
)

VV ′ + Ox, (3.12)

where V ′ = dV/dm.
These approximations of the effective heat conductivity are asymptotically exact in the

respective limits and less accurate elsewhere. The relative error
∣∣κapp − κ

∣∣/κ is shown in
figure 4. If the full expressions are used for the quantities V and V ′ in (3.12),

κapp = 1
6

(
3
Ω2

+ 1
)

VV ′, (3.13)

the resulting expression yields a remarkably good approximation everywhere in the
domain, with an error less than a few per cent in figure 4. From this approximation,
we conclude that the product VV ′ is the main contributing factor to the variation of the
effective heat conductivity over the domain.

4. Variational principle

The effective heat conductivity across the magnetic field κ(m) approaches infinity at the
separatrix, which contradicts the ordering used to derive the 1-D heat conduction equation
(2.11) in § 2. Accordingly, there is a boundary layer around the separatrix in which the
temperature varies along the magnetic field and is not properly described by the ordinary
differential equation (2.11). Instead, a 2-D treatment is necessary in this region, and one
may ask whether this boundary layer may somehow affect the global properties of the
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10 G. Pechstein, P. Helander and B. Shanahan

solution. This seems unlikely since the boundary layer is narrow in the limit

ε = κ⊥
κ‖

→ 0, (4.1)

but it is perhaps nevertheless of interest to demonstrate that the solution to (2.11) indeed
converges to that of the original 2-D equation (2.1) in this limit.

An argument based on a variational principle can be constructed if the diamagnetic heat
flux is neglected, κ∧ = 0. Then the trial function T that minimises the functional

D[T] =
∫ [

(∇‖T)2 + ε(∇⊥T)2 + εr(T)
]

dr, (4.2)

with r′(T) = 2R(T)/(εκ‖), solves our original partial differential equation (2.1) if the
temperature or its normal derivative is prescribed on the boundary. With these boundary
conditions, (2.1) is satisfied if, and only if, δD[T] = 0. In particular, the function T(r) that
minimises the functional D[T] satisfies this equation.

Equation (2.11) also corresponds to a variational principle, namely δQ[T0] = 0, with

Q[T0] =
∫ [

〈|∇V|2〉
(

dT0

dV

)2

+ k(T0)

]
dV, (4.3)

where k′(T0) = 2R(T0)/κ⊥. This functional is closely related to D: for functions T(r) such
that ∇‖T0 = 0 they are proportional to each other, D[T] = εQ[T]. In other words, whereas
(2.1) is satisfied by the function T that minimises D[T] under the constraint that the
boundary conditions are satisfied, the reduced equation (2.11) is satisfied by the function
T0 that minimises D[T0] under the additional constraint that ∇‖T0 = 0. It follows that
D[T] ≤ D[T0].

Having established this variational principle, we now proceed to argue that the function
T(r) that solves (2.1) in the limit of large anisotropy in the heat conductivity is constant
along magnetic-field lines, i.e.

lim
ε→0+

∇‖T = 0. (4.4)

If this were not the case, it would be possible to find two points, rP and rQ, on the same
field line and a number τ > 0 such that T(rP)− T(rQ) > τ for all sufficiently small values
of ε > 0. By continuity, the same would be true for points in a neighbourhood of rP
connected by field lines to a neighbourhood of rQ. Consider a ‘flux tube’ F connecting
these neighbourhoods; then

D[T] ≥
∫

F
(∇‖T)2 dr, (4.5)

where the right-hand side can be bounded from below (Helander et al. 2022). The bound
is proportional to τ and depends on the geometry of the flux tube but is independent of ε,
and it follows that D[T] is similarly bounded from below in the limit ε → 0+.1 But this
leads to a contradiction since then D[T] > D[T0] for the function T0 satisfying (2.11). We
thus conclude that T(r) cannot vary along flux tubes of non-vanishing volume in the limit
ε → 0+, and that T(r) → T0(r).

1We assume that the cross-section of the flux tube does not shrink to zero in the limit of small ε, which would imply
that the temperature difference τ is only maintained over an infinitesimally small volume.
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Heat conduction around a magnetic island 11

5. Heat transport in the equivalent 1-D geometry

We now proceed to solve the heat conduction equation (2.11) in a region containing
the magnetic island and part of the surrounding plasma. We begin by appropriately
normalising our variables and introducing a specific radiation function R(T). This function
is defined as follows:

R(T) =
{

R0, T0 < T < T1,

0, otherwise,
(5.1)

and ensures that radiation occurs only within a well-defined zone, bounded by the
temperatures T0 (cold side) and T1 (hot side). The choice of this radiation function is
driven by simplicity and aligns with the behaviour of line radiation from impurities in a
typical plasma edge. The constant R0 controls the radiation amplitude and is proportional
to the impurity fraction and the square of the plasma density n2

e .
There are several possibilities for the radiation front’s position, as depicted in figure 5.

The radiation zone can be situated on one side of the island, around the separatrix, below
the island and between the separatrix and the O-point, as well as directly at the O-point.
The region outside the island is taken to be bounded in one direction by a ‘wall’ with zero
temperature and to extend some distance in the other direction, which in a tokamak or a
stellarator would correspond to the far interior of the core plasma.2 As already described,
the topology of the 1-D set on which differential equation is to be solved is that of a rod
with a cooling fin, see figure 5. Boundary conditions need to be prescribed at the wall, at
infinity and at the O-point of the island. At the latter position, the heat flux must vanish,
while the temperature is unconstrained. At the wall we impose the boundary condition
T = 0, as the wall temperature is significantly lower than that of the plasma. At the other
(hot) end of the domain, the incoming heat flux is prescribed.

It is convenient to normalise the variables in our 1-D heat conduction equation by
writing

T̂ = T
T1
, x̂ = V

w
, κ̂(x) = κ(V)

κ(dw)
, q̂in = qin

w
κ(dw)T1, R̂0 = R0w2

κ(dw)T1
, (5.2a–e)

where qin denotes the incoming heat flux, i.e. the heat flux at xd, and we have chosen w = 4
in the example shown above. Through the definition of x̂, the enclosed flux-surface volume
V is normalised to the island width w defined earlier, while in the definition of κ̂ the heat
conduction coefficient κ(V) is normalised to its value at the hot end of the computational
domain, which is situated at x̂ = d. Additionally, we introduce xw as the position of the
wall at the cold end of the domain.

When written in terms of these normalised variables, our heat conduction equation
(2.11) and boundary conditions become

d
dx

(
κ(x)

dT
dx

)
= R0 [Θ(T − τ)−Θ(T − 1)] , (5.3)

T(xw) = 0, (5.4)

T ′(d) = qin, (5.5)

2In the Wendelstein 7-X stellarator, the islands at the plasma boundary are normally positioned in such a way that
they intersect the wall (divertor plates). Our expansion procedure is suited to deal with this situation, which involves
substantial temperature variation along intersected field lines. We thus limit our discussion to a non-intersected island
chain.
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12 G. Pechstein, P. Helander and B. Shanahan

O-point

FIGURE 5. Equivalent 1-D topology of the heat conduction in a magnetic field with an island
and the different positions of the radiation front. The topology is similar to a rod with a cooling
fin. Here the interior of the island corresponds to the cooling fin and the heat conductivity
depends on the position along the rod and inside the cooling fin. The radiation zone can be
situated on one side of the island, around the separatrix, below the island and between the
separatrix and the O-point, as well as directly at the O-point.

where Θ denotes the Heaviside step function, we have introduced the parameter τ =
T0/T1, and we have dropped carets over all quantities. By integrating this equation once,
we find the relations

τ

qout
=

∫ x0

xw

1
κ(x)

dx, 1 = τ +
∫ x1

x0

R0(x − x0)+ qout

κ(x)
dx, Tup = 1 + qin

∫ d

x1

1
κ(x)

dx.

(5.6a–c)
It is evident from the dimensionless form of the equation that there are five free
parameters, for instance qin, τ , d, R0 and xw. We proceed by computing a number of
illustrative solutions where four of these are held fixed while the remaining one is
varied. We are particularly interested in seeing how the position and topology of the
radiation zone then varies, which can be monitored by plotting x0 and x1, which are
defined as the values of x at the cold and hot ends of the radiation belt, respectively,
i.e. T(x0) = τ and T(x1) = 1. The total radiated power is qin − qout = R0(x1 − x0) where
qout represents the heat flux to the wall, and x1 − x0 is proportional to the radiating
volume.

We do not endeavour to survey all possible solutions, but limit our attention to two
different parameter scans in which τ and d are kept constant. In the first case, qin is varied
while R0 = 1 is kept fixed, whereas in the second case we keep the incoming heat flux
fixed and vary R0. In addition, in the second case, solutions for different choices of xw are
shown as well. To highlight the influence of the island, we also present a solution using the
normalised coordinates for a case without an island in the same normalised coordinates
outside the island, with a constant heat conduction κ(x) = 1.
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(a)

(b)

FIGURE 6. As the incoming heat flux qin at x = d is varied, the radiation zone moves around.
Multiple positions are possible, both inside and outside the island, and the radiation zone
may also straddle the separatrix. The curves show the location of the possible radiation zones
(a) outside and (b) inside the island, and figures depict the geometry of the radiation zones in red.
The wall is positioned at xw = −4 the separatrix at xs = 0.5, R0 = 1 and τ = 0.8. (a) Locations
x0 and x1 defining the boundaries of the radiation band outside the island as functions of the
incoming heat flux qin. Also shown as dotted curves are corresponding results for the case
without an island. (b) Locations x0i and x1i defining the boundaries of the radiation band inside
the island as functions of the incoming heat flux qin.

Results from the first parameter scan are shown in figure 6, where x0 and x1 are given
as functions of the incoming heat flux qin. Figure 6(a) shows the position of the radiation
zone outside the island, i.e. in the equivalent 1-D geometry between the wall and the
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14 G. Pechstein, P. Helander and B. Shanahan

hot end, while in figure 6(b) the radiation zone inside the island is shown. It is useful
to note that qin is not only the heat flux across the upper end of the domain but also
represents the temperature gradient between the upper end and the radiation zone at x1,
where the incoming heat flux starts falling due to the radiated power and the temperature
gradient therefore decreases. Thus, if qin is large and the radiation zone is situated at the
wall, the temperature gradient must be large. The temperature thus changes rapidly with
x and reaches the value τ close to the wall, which is located at xw = −4 in this example.
In the limit qw → ∞ we thus expect x0 → xw and x1 → xw, making the radiation band
narrow and the radiated power fraction small. In other words, only a small amount of the
incoming heat flux is radiated away, qrad/qin → 0, and most of the incoming heat flux is
deposited on the wall, qout � qin. If qin is reduced, the radiation zone recedes from the wall
and approaches the island. Below a certain threshold, a multitude of possibilities arise:
there is not one, but several solutions to the heat conduction equation, and radiation is
possible both inside and outside the island.3 Possibilities of radiation outside the island are
illustrated in figure 6(a), which shows three pairs of curves. One observes a sudden jump
in the sustainable heat influx qin (see figure 6a) when radiation inside the island becomes
possible. As the width of the radiation zone outside the island remains nearly constant
in the vicinity of the island, all the changes in the heat flux are a result from changes
inside the island. Only in this close vicinity of the island does the dependence of x1 and
x0 differ substantially from the case without an island. When the radiation zone is close to
the O-point, the radiation inside the island remains almost constant. Once the radiation in
the island leaves the vicinity of the O-point, the radiation area increases (figure 6b) until
the upper end of the radiation zone in the island x1i reaches the separatrix. At this point,
the greatest radiation intensity is achieved. Incidentally, in this position, the radiation zone
also encloses the area with the greatest change in the enclosed volume, the separatrix.
From this point onward, the radiation zone inside the island decreases with decreasing
heat flux qin. When the radiation zone is situated above the island but in close proximity
to it, an increase in the radiated heat flux compared with the case without the island is
observed. Here, bifurcated solutions are observed, as multiple solutions are possible for a
single qin.

It is evident from (3.8) that the rapid change V ′(m) in the enclosed volume makes κ
particularly large close to the separatrix, implying a relatively small temperature gradient
in this region and creating a greater capacity to sustain radiation. As mentioned earlier, the
island opens up the possibility for multiple positions of the radiation front for the same qin.
Figure 6(a) shows five different possibilities. Some of these may be thermally unstable,
but we do not explore this question further.

We now proceed to the second parameter scan, where we keep qin fixed but vary the
radiation amplitude R0, which mimics the effect of varying the impurity concentration
in a fusion device at constant heating power (Stroth et al. 2022). The radiated power
fraction frad = qrad/qin of course increases with increasing R0 but does so in a non-trivial
and interesting way. In figure 7, the radiation fraction frad = qrad/qin is shown as a function
of R0. To compare frad for different positions of the wall xw, R0 is normalised to the R0
value at frad = 0.4.

The cases without the island show a steady increase in the radiation fraction frad with
R0, connected to movement of the radiation zone. The cases with an island are very
different. Most strikingly, frad is almost constant over a wide range of R0. This range
corresponds to situations in which radiation occurs from within the island and close

3Which one of the several solutions is actually realised depends on the prehistory of the system, which in other words
exhibits hysteresis.
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FIGURE 7. The radiation fraction frad as a function of R0. Analytical solutions for a case without
an island are also shown as dotted lines for comparison. The influence of position of the wall xw
and of the island on the radiation fraction is seen in the different position and gradients of the
curves. The plot is normalised to R0( frad = 0.4).

to the separatrix. It is thus evident that the presence of an island greatly affects the
radiated power. The latter is much larger than in the case without an island, and the
radiation has a tendency to linger in the vicinity of the separatrix. For small values
of R0, radiation mostly occurs close to the O-point and the radiation zone depends
sensitively on R0. If xw is decreased, so that the island is brought closer to the wall, the
heat flux domain deposited on the wall increases and the range in R0 over which frad is
constant decreases, as is evident from a comparison of the cases xw = 1.9 and xw = 2.1
in figure 7.

Finally, we explore the difference in effects resulting from the non-trivial topology
induced by the island and the fact that the 1-D heat conductivity κ(x) varies with x. To
this end, we compare the temperature at the hot boundary of the region in two scenarios:
firstly, a case featuring an island, as depicted in figure 6; secondly, a hypothetical scenario
with identical topology but with constant heat conductivity κ = 1 throughout the domain
(figure 8). This comparison shows that the ability to sustain high radiated heat fluxes
in the vicinity of the island can mainly be attributed to the underlying topology: the
additional volume made available through the island enhances the dissipation of thermal
power. However, it is also evident that the broader range of potential radiation zone
positions within the island does not emerge when κ is constant, indicating that part of
the multiplicity is solely attributable to the spatial variation of κ(x). The broader range of
solutions stems from this variation within the island. For radiation between the separatrix
and the O-point, the higher κ(x) near the separatrix enables regions closer to it to radiate
more power, as illustrated in figure 8. Similarly, the significantly lower heat conductivity
near the O-point, combined with a radiation zone around it, is responsible for the third
branch of solutions. This explains the additional branches in Tup(κ(x)) shown in figure 8,
as compared with the hypothetical scenario with identical topology but constant heat
conductivity.
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16 G. Pechstein, P. Helander and B. Shanahan

FIGURE 8. The temperature at the hot boundary of the region as a function of qin. Shown are the
curves for a case featuring an island in black and a hypothetical scenario with identical topology
but with constant heat conductivity κ = 1 as a dotted lines for comparison.

6. Conclusion

In a plasma with very anisotropic heat conductivity, κ‖ � κ∧ ∼ κ⊥, heat conduction
is much faster along the field than across it. As a result, the temperature tends to be
constant along the field, and the steady-state heat conduction equation can be reduced to an
ordinary differential equation describing conduction across magnetic flux surfaces, at least
as long as the latter do not intersect the boundary. The effective cross-field heat conduction
coefficient κ appearing in this equation encapsulates the net effect of the magnetic-field
geometry and will thus depend on the position even if κ⊥ and κ‖ are constant. If a chain
of magnetic islands is present, there is a change in topology across the separatrix, at
which κ → ∞. Moreover, although the reduced heat-conduction equation operates in one
dimension, the topology becomes different from that of the real line, and corresponds to a
rod with a cooling fin.

In practice, energy is not only conducted along the field but also lost through radiation.
The radiation loss function varies with temperature, and the solutions of the resulting
nonlinear equation exhibit bifurcations. These occur even in the absence of magnetic
islands but become particularly interesting when they are present. If the simple model
(5.1) is employed, so that radiation is emitted from a well-defined region, the latter can
be located on either side of the island, inside the island or in multiple positions. As the
incoming heat flux is varied, sudden transitions between these states are possible.

It is particularly important to note that, on the whole, a magnetic island enhances the
plasma’s overall capacity to radiate: the island indeed acts as a cooling fin. The total
radiated fraction is higher when a magnetic island is present, and the radiation tends to
linger in the island region as parameters such as the radiation amplitude or the incoming
heat flux are varied. The plasma thus exhibits a tendency to radiate preferentially in
the vicinity of the island, particularly around the separatrix. These features correlate
qualitatively with observations in the island divertor of the W7-AS and W7-X stellarators
(Feng et al. 2011, 2021), where, however, the magnetic geometry is more complicated
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than in the simple case analysed here, and the islands are normally intersected by divertor
plates.
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