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Abstract

Throughout recent years, various sequential Monte Carlo methods, i.e. particle filters,
have been widely applied to various applications involving the evaluation of the generally
intractable stochastic discrete-time filter. Although convergence results exist for finite-
time intervals, a stronger form of convergence, namely, uniform convergence, is required
for bounding the error on an infinite-time interval. In this paper we prove easily verifiable
conditions for the filter applications that are sufficient for the uniform convergence of
certain particle filters. Essentially, the conditions require the observations to be accurate
enough. No mixing or ergodicity conditions are imposed on the signal process.
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1. Introduction

In the stochastic discrete-time filtering problem, the goal is to recover an unknown realisation
of a discrete-time Markov chain X := (Xi)i≥0 at any given time i based on the partial
information obtained by observing the realisation of an associated discrete-time process Y :=
(Yi)i>0. The solution to this problem is the probability measure-valued discrete-time stochastic
process π := (πi)i≥0, where πi is the conditional distribution ofXi given the random variables
Y1, Y2, . . . , Yi . In the literature, the process π is often referred to as the optimal or Bayesian
filter. In more detail, the filtering framework under consideration is as follows. We assume an
underlying probability space (�,F ,P) and define the signal process X for all i > 0 as

Xi := fi(Xi−1)+Wi, (1.1)

whereX0 is an independent random variable with a distribution P0 on the Borel σ -field B(Rds)

in the Euclidean space R
ds , Wi is an independent random variable with a distribution PWi on

B(Rds), and fi : R
ds → R

ds is measurable. The observation process Y is defined for all i > 0
as

Yi := hi(Xi)+ Vi,

where hi : R
ds → R

dm is measurable and Vi is an independent random variable with a
distribution PVi on B(Rdm ). Then, by definition, the filter process π satisfies, for all bounded
and measurable functions ϕ : R

ds → R and all i ≥ 0,∫
ϕ dπi = E[ϕ(Xi) | Yi],
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where Y0 := {∅, �} and Yi := σ(Yj , 1 ≤ j ≤ i) is the σ -field generated by the observations
Y1, Y2, . . . , Yi . Roughly speaking, the filtering distribution πi can be considered as a represen-
tation of the knowledge of the unknown realisation of Xi given the information Yi . The filter
process can also be expressed as a recursion

πi = Qi(πi−1),

where π0 = P0 and the probability measure-valued (random) mapping Qi is specified later
in Section 2. In practice, the evaluation of the mapping Qi is intractable and, therefore, it is
approximated by a mapping Qθ

i , where θ ∈ (0,∞) is the parameter of the approximation.
That is, a greater value of θ implies a smaller approximation error, but also, in practice, a
higher computational cost. Throughout recent years, sequential Monte Carlo (SMC) methods,
or, particle filters have been widely applied to the approximation of this mapping in various
practical applications. In SMC methods, the parameter θ is the size of the Monte Carlo sample,
i.e. the number of particles. It has been shown for a certain class of SMC methods that, under
feasible conditions, the approximation converges to the exact filter as the number of particles
tends to ∞ (see, e.g. [2] and the references therein). These convergence results can be used for
bounding the approximation error for a fixed parameter value on a finite-time interval. In order
to bound the error on an infinite-time interval, a stronger form of convergence, namely, uniform
convergence is required. The approximation is said to be uniformly convergent (in mean) with
respect to a metric d if

lim
θ→∞ sup

i>0
E[d(Qi ◦ · · · ◦Q1(π0),Q

θ
i ◦ · · · ◦Qθ

1(π0))] = 0. (1.2)

One of the earliest contributions regarding the uniform convergence of SMC methods is
given in [4], where it has been shown that if the filter itself is stable, the so-called Monte Carlo
particle filter is uniformly convergent. The Monte Carlo particle filter is an SMC method
that does not have a branching mechanism. For the required filter stability, it suffices to have
mixing or ergodic signal kernels [1], [5]. In [14], the uniform convergence of the Monte Carlo
filter has been extended to the estimation of parameters whose kernels are not mixing. It
has also been shown in [5] that the mixing property or the ergodicity of the signal kernel are
sufficient conditions for the uniform convergence of the interacting particle system, which in
contrast to the Monte Carlo particle filter has interacting particles because of the incorporated
branching mechanism. A somewhat different approach can be found in [10], where the uniform
convergence of a rejection-sampling-based particle filter has been considered in the case of a
mixing signal. In [12], it has been shown that the mixing condition can be relaxed by imposing
the mixing condition on the kernels of the unnormalised filter process. This is a slightly weaker
condition than the mixing property of the signal. Except for [10], the uniform convergence in
the references above is considered in the sense of (1.2).

The main results of this paper, Theorem 3.1 and Theorem 4.1, provide easily verifiable
sufficient conditions for the uniform convergence of two different filter approximations. The
first approximation is called the truncated filter and the motivation for the analysis of this
approximation is purely theoretical. In practice, the truncated filter is intractable. Neverthe-
less, it plays an important role in the proof of the uniform convergence of the second filter
approximation which represents a certain class of feasible particle filters. The principle of
the proof is to show that the given particle filter approximates uniformly the truncated filter
which, in turn, is a uniform approximation of the exact filter and, hence, the particle filter
approximates the exact filter uniformly. The idea of using the truncated filter in the analysis
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was originally introduced in [11] and [13], and here we generalise the results reported in [13].
Other types of truncation appear frequently in the literature. For example, in [9] and [15], the
underlying Markov process is truncated instead of the filtering equations. Moreover, in [13],
the uniform convergence is proved for a rejection-sampling-based particle filter, while the
approximation in this work employs importance sampling. There is a fundamental difference
between these two approaches if the motivation for the analysis of the uniform convergence
is to study the computational cost that ensures a certain level of accuracy. In the importance
sampling approach, the computational cost is determined by the number of particles, while
in the rejection sampling approach we must take into account the total number of samples,
including the random number of rejected samples.

It is obvious from the references above that there is a close connection between the stability
of the filter and the uniform convergence of its (particle) approximations. In many cases
(see, e.g. [4], [5], [10], and [13]), the stability of the filter has been shown to be a sufficient
condition for the uniform convergence of certain particle approximations. In this work we do
not specifically discuss the filter stability, but it should be noted that the conditions that we
impose on the filter applications are similar to those used in [3] to prove the stability of the
filter. The following assumptions are made about the filter framework.

(A1) There exist α, δ > 0 such that, for all x, y ∈ R
ds and i > 0,

‖fi(x)− fi(y)‖ ≤ α‖x − y‖ + δ.

(A2) For all i > 0, hi = h̃i + h̄i , where h̃i is a bijection, and there exist β0 > 0, β > 0, and
γ ≥ 0 such that h̃i and h̃−1

i are Lipschitz with coefficients β0 and β, respectively, and h̄i
satisfies, for all x ∈ R

ds , ‖h̄i (x)‖ ≤ γ .

(A3) There exist m1,M1, a1, A1, b1, B1 > 0 such that, for all i > 0,

m1 exp(−a1‖x‖b1) ≤ ρWi (x) ≤ M1 exp(−A1‖x‖B1),

where ρWi is the density of PWi with respect to the Lebesgue measure λds on B(Rds).

(A4) There exist m2,M2, a2, A2, b2, B2 > 0 such that, for all i > 0,

m2 exp(−a2‖x‖b2) ≤ ρVi (x) ≤ M2 exp(−A2‖x‖B2)

and
ρX0/β(x) ≤ M2 exp(−A2‖xB2‖),

where ρVi is the density of PVi with respect to the Lebesgue measure λdm on B(Rdm )

and ρX0/β is the probability density function of the random variable X0/β with respect
to the Lebesgue measure λds on B(Rds).

The assumption on the upper bound for the density ρX0/β can be omitted. In this case,
however, no rates for the uniform convergence results are available and, therefore, we include
it in this work (see [7] for the corresponding results without this assumption). Also, note
that the function h̃i is a (topological) homeomorphism between the signal space R

ds and the
observation space R

dm . In particular, this implies that the two spaces must have the same
dimension, i.e. ds = dm. We will assume that this is the case from now on. However, we will
still keep the notation R

ds for the signal space and R
dm for the observation space to distinguish

between them.
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This paper is organised as follows. In Section 2 we introduce some general purpose notation
and specify the truncated filter approximation. Also, some important intermediate results are
given. In Section 3, the uniform convergence of the truncated filter is proved. In Section 4
we describe a general class of particle filters and provide the proof of uniform convergence.
In Section 5 we describe a feasible Monte Carlo-based particle filter approximation which
exemplifies the uniform convergence result. Finally, in Section 6, the uniform convergence
results are illustrated by some numerical experiments.

2. Exact and truncated filter

In this section we describe in detail the discrete-time filter π and its truncated filter approx-
imation π�. Let us start by introducing some general notation and terminology.

For an arbitrary measurable space (S,S), let P (S) denote the set of all probability measures
on the σ -field S. The set of bounded and measurable mappings ϕ : S → R is denoted by
Bb(S). For all ϕ ∈ Bb(S) and µ ∈ P (S), we let µ(ϕ) denote the Lebesgue integral of ϕ with
respect to the measure µ. If, in particular, ϕ = 1A, where 1A denotes the indicator function of
a set A ∈ S, then we use the shorthand notation µ(A) := µ(1A).

Let (S1,S1) and (S2,S2) be arbitrary measurable spaces. A mapping K : S1 × S2 → [0, 1]
is called a transition probability if it satisfies

(a) for all x ∈ S1, K(x, ·) ∈ P (S2);

(b) for all A ∈ S2, K(·, A) is measurable.

A transition probabilityK : S × S → [0, 1] can be used for defining a mapping ϕ ∈ Bb(S) 	→
K(ϕ) ∈ Bb(S) such that

K(ϕ)(x) :=
∫
ϕ(y)K(x, dy)

and a mapping µ ∈ P (S) 	→ µK ∈ P (S) such that

µK(ϕ) :=
∫ (∫

ϕ(y)K(x, dy)

)
µ(dx) (2.1)

for allϕ ∈ Bb(S). The Dobrushin ergodic coefficient [6] (see also [5]) of a transition probability
K : S × S → [0, 1] is defined as

αS(K) := 1 − sup
x,y∈S
A∈S

|K(x,A)−K(y,A)|.

For all finite measures µ on S and all µ-integrable functions ψ : S → R+ such that µψ > 0,
we define a mapping µ 	→ ψ · µ ∈ P (S) such that

(ψ · µ)(ϕ) = µ(ψϕ)

µ(ψ)
for all ϕ ∈ Bb(S).

Let Ki : R
ds × B(Rds) → [0, 1] denote the transition probabilities of the signal X, i.e. for

all A ∈ B(Rds),
Ki(Xi−1, A) = P(Xi ∈ A | Xi−1).

For all xi−1, xi ∈ R
ds , we define

ki(xi−1, xi) := ρWi (xi − fi(xi−1)),
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which, according to (1.1), is the density ofKi(xi−1, ·) ∈ P (B(Rds)) with respect to λds for all
xi−1 ∈ R

ds . Let us also define

gi,y(x) := ρVi (y − hi(x)) and gi(x) := gi,Yi (x).

The function gi is often referred to as the likelihood function in the literature. In this case, it
can be shown that the filter process π is given by the recursion

πi := gi · πi−1Ki,

where π0 = P0. For all i > 0, we let Qi denote the mapping πi−1 	→ πi .
The truncated approximation π� := (π�i )i≥0 of the exact filter π is defined by the recursion

π�i := g�i · π�i−1Ki,

where π�0 = π0, g�i (x) := gi(x) 1Di(�)(x, Yi), and

Di(�) := {(x, y) ∈ R
ds × R

dm | ‖y − h̃i (x)‖ ≤ �}.
For all i > 0, we let Q�

i denote the mapping π�i−1 	→ π�i . Moreover, we define, for all
i ≥ j > 0,

Q�
j,i := Q�

i ◦ · · · ◦Q�
j

and, if i < j , the mapping Q�
j,i is defined to be the identity. Then we can define, for all

i ≥ j ≥ 0,
π�i,j := Q�

j+1,i (πj ). (2.2)

Accordingly, π�i,0 = π�i and π�i,i = πi .
According to the definitions above, the filtering distribution πi can be represented as a

composition of nonlinear operations Q1,Q2, . . . ,Qi applied to the initial distribution π0. It
has been pointed out in [5] and [13] that πi admits another representation which is especially
useful in the analysis of the filter stability and the uniform convergence of filter approximations.
In this alternative representation, given in Lemma 2.2(i), below, πi is obtained by applying only
one nonlinear operation and a composition of linear operations of the form (2.1) to the initial
distribution. The usefulness of this representation is due to the fact that these linear mappings
are contractions in the metric induced by the total variation norm, which we denote by ‖ · ‖TV.
The contraction coefficient is determined by the Dobrushin ergodic coefficient αS(K) and,
because of the contractivity, the errors cannot increase over these linear operations. In order
to specify this alternative representation of πi , we define, for all � > 0 and i ≥ j > 0, the
mapping S�j,i : R

ds × B(Rds) → [0, 1] as

S�j,i(x, A) := Kj(g
�
j Kj+1(g

�
j+1 · · ·Ki(g�i )) 1A)(x)

Kj (g
�
j Kj+1(g

�
j+1 · · ·Ki(g�i )))(x)

and the mapping ψ�j,i : R
ds → R as

ψ�j,i(x) :=
{
Kj(g

�
j Kj+1(g

�
j+1 · · ·Ki(g�i )))(x), i ≥ j,

1, i < j.
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Because of the truncation, it suffices to consider the Dobrushin ergodic coefficients of the
kernels S�j,i that are restricted to the truncated sets, i.e. αCj−1(�)(S

�
j,i), where

Ci(�) :=
{

{x ∈ R
ds | ‖Yi − h̃i (x)‖ ≤ �}, i > 0,

{x ∈ R
ds | ‖x‖ ≤ β�+ βγ }, i = 0,

(2.3)

for all i,� > 0. Under assumptions (A1)–(A4), the generally intractable coefficient αCj−1(S
�
j,i )

admits an explicit lower bound, given in Lemma 2.1, below. For this purpose, we define, for
i,� > 0, εi(�) := ε(�, ξi), where ε : R+ × R+ → R+ is defined as

ε(x, y) := m1

M1
exp(−a1((αβ + β)(x + γ )+ δ + y)b1)

and

ξi :=
{
β‖Vi‖ + ‖Wi‖ + αβ‖Vi−1‖, i > 1,

β‖Vi‖ + ‖Wi‖ + α‖X0‖, i = 1.
(2.4)

Lemma 2.1. For all i ≥ j > 0 and � > 0, we have αCj−1(�)(S
�
j,i) ≥ εj (�).

Proof. According to (2.3) and (A2), for all i > 0 and xi ∈ Ci(�),
‖xi −Xi‖ ≤ β‖h̃i (xi)− Yi + h̄i (Xi)+ Vi‖ ≤ β�+ βγ + β‖Vi‖.

If i = 0 then, for all x0 ∈ C0(�),

‖x0 −X0‖ ≤ ‖x0‖ + ‖X0‖ ≤ β�+ βγ + ‖X0‖.
Therefore, according to (A1) and (2.4), for all i > 0,

‖xi − fi(xi−1)‖ ≤ ‖xi −Xi‖ + ‖fi(Xi−1)+Wi − fi(xi−1)‖
≤ ‖xi −Xi‖ + α‖xi−1 −Xi−1‖ + δ + ‖Wi‖
≤ (αβ + β)(�+ γ )+ δ + ξi .

The claim then follows by substituting the last form into

αCj−1(�)(S
�
j,i) ≥ ‖ki‖−1∞ inf

xi∈Ci(�)
xi−1∈Ci−1(�)

ki(xi−1, xi)

≥ m1

M1
inf

xi∈Ci(�)
xi−1∈Ci−1(�)

exp(−a1‖xi − fi(xi−1)‖b1),

where the first inequality can be shown to hold (see, e.g. [3] and [13]).

The following lemma summarises some properties that are used throughout the remainder of
this work. Excluding minor differences, the proofs can be found in [5] and [13] (see also [3]).

Lemma 2.2. For all i ≥ j > 0, � > 0, � > 0, and π0 ∈ P (B(Rds)),

(i) Q�
j,i(π0) = (ψ�j,i · π0)S

�
j,iS

�
j+1,i · · · S�i,i;

(ii)

‖πj − π�j ‖TV ≤
j∑

m=1

j∏
n=m+2

(1 − εn(�))min

(
1,

‖πm,m − πm,m−1‖TV

εm+1(�)

)
;
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(iii) there exists r > 0 such that

E

[ i∏
n=1

(1 − ε�+n(�))
∣∣∣∣ F�

]
≤ (1 − ε̃(�))i−1,

where F� := σ(X0,W1, . . . ,W�, V1, . . . , V�) and ε̃(�) := ε(�, r)/2.

3. Uniformly convergent approximation by truncation

In this section we prove sufficient conditions for the uniform convergence of the truncated
filter π� to the exact filter π , i.e.

lim
�→∞

sup
i>0

E[‖πi − π�i ‖TV] = 0.

We start by establishing bounds for the tails of the distribution of the random variable ξi . At
this point, the analysis differs from the approach used in [3] (see also [7]), where the stochastic
process (ξi)i>0 was bounded by showing that, for all ε > 0, there exist positive random variables
c1 and c2 such that, for all i > 0, we have, P-almost surely (P-a.s.),

ξi ≤ (c1 + (a1 − ε)−1 ln i)1/B1 + (αβ + β)(c2 + (a2 − ε)−1 ln i)1/B2 .

This almost-sure upper bound for the stochastic process (ξi)i>0 is obviously increasing in i
and, therefore, it does not enable uniform bounds for the random variables εi(�). Here, instead
of bounding the random variables (ξi)i>0 directly, we use assumptions (A1)–(A4) to derive a
uniform, i.e. independent of i, upper bound for the densities of the random variables (ξi)i>0.
This further enables the derivation of uniform bounds for integrals that are involved with the
random variables εi(�).

Proposition 3.1. For all ε > 0, there exists c3(ε) > 0 such that, for all x > 0 and i > 0,

ρξi (x) ≤ c3(ε) exp((−A3 + ε)xB1),

where

A3 :=
{
A1A2(A

1/B1
1 (αβ + β)+ A

1/B1
2 )−B1 if B1 = B2,

A1 if B1 < B2.

Proof. The proof follows from Lemma A.1 in Appendix A.

By defining a constant A∗
2 = A∗

2(α, a1, A1, A2, β, b1, B1) as

A∗
2 :=

(
2 +

(
1 + a

1/b1
1

A
1/b1
3

)b1
)
a1(αβ + β)b1 ,

we have the following result, which is a refinement of Proposition 3.4 of [13].

Theorem 3.1. If one of the following two conditions holds:

(i) B2 > b1 = B1;

(ii) B2 = b1 = B1 and A2 > A∗
2;
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986 K. HEINE AND D. CRISAN

then there exist c4, c5 > 0 such that

sup
i>0

E[‖πi − π�i ‖TV] ≤ c4 exp(−c5�
B1). (3.1)

Proof. Let

Ji(�) := min

(
1,

‖π�i,i − π�i,i−1‖TV

εi+1(�)

)
.

Then, according to (ii) and (iii) of Lemma 2.2 and the fact that Jj (�) is Fj+1-measurable,

E[‖πi − π�i ‖TV] ≤
i∑

j=1

E

[
E

[ i∏
n=j+2

(1 − εn(�))

∣∣∣∣ Fj+1

]
Jj (�)

]

=
i∑

j=1

E

[
E

[i−j−1∏
n=1

(1 − εn+j+1(�))

∣∣∣∣ Fj+1

]
Jj (�)

]

≤
i∑

j=1

(1 − ε̃(�))(i−j−2)+ E[Jj (�)], (3.2)

where ( · )+ := max(0, · ). In the following we derive an upper bound for E[Jj (�)] which
is independent of j and, therefore, can be brought outside the summation. For the remaining
sum, it follows by the convergence of the geometric series that

i∑
j=1

(1 − ε̃(�))(i−j−2)+ ≤ 2 + 1

ε̃(�)
. (3.3)

It can be shown that, for all ε > 0, there exists c6(ε) > 0 such that, for all � ≥ �0 > γ and
i > 0,

τ(�) := c6(ε) exp((−A2 + ε)(�− γ )B2) ≥
∫

‖y‖>�−γ
ρVi (y)λdm (dy).

For all u, v ≥ 0, we have

min(1, uv) ≤ min(1, u)+ min(1, v). (3.4)

By applying this inequality to E[Jj (�)] we have, for all q ∈ R,

E[Jj (�)] ≤ E

[
min

(
1,

‖π�i,i − π�i,i−1‖TV

τ(�)q

)]
+ E

[
min

(
1,

τ (�)q

εi+1(�)

)]
. (3.5)

Because ‖π�i,i − π�i,i−1‖TV = πi(Ci(�)), for the first expectation in (3.5), we have

E

[
min

(
1,

‖π�i,i − π�i,i−1‖TV

τ(�)q

)]
≤ E

[‖π�i,i − π�i,i−1‖TV

τ(�)q

]
= E[πi(Ci(�))]

τ(�)q
. (3.6)
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Moreover,

E[πi(Ci(�))] = E

[
E

[∫
Ci(�)

gi dπi−1Ki∫
gi dπi−1Ki

∣∣∣∣ Fi−1

]]

= E

[∫ (∫
Ci(�)

gi,y(xi)πi−1Ki(dxi)∫
gi,y(xi)πi−1Ki(dxi)

∫
gi,y(xi)πi−1Ki(dxi)

)
λdm (dy)

]

= E

[∫ (∫
gi,y(xi) 1Di(�)(xi, y)λdm (dy)

)
πi−1Ki(dxi)

]

= E

[∫ (∫
‖y‖≥�−γ

ρVi (y)λdm (dy)

)
πi−1Ki(dxi)

]
≤ τ(�).

Substitution into (3.6) yields

E

[
min

(
1,

‖π�i,i − π�i,i−1‖TV

τ(�)q

)]
≤ c6(ε)

1−q exp((1 − q)(−A2 + ε)(�− γ )B2). (3.7)

Let us then consider the second integral in (3.5). Because, for all � > 0 and q > 0,
τ(�)q/ε(�, ξ) is a strictly increasing function of ξ , we have, according to Proposition 3.1, for
all θ > 0,

E

[
min

(
1,

τ (�)q

εi+1(�)

)]
≤ c3(ε)

∫ θ�

0

τ(�)q

ε(�, ξ)
exp((−A3 + ε)ξB1) dξ

+ c3(ε)

∫ ∞

θ�

exp((−A3 + ε)ξB1) dξ

≤ c7(ε)τ (�)
q

ε(�, θ�)
+ c8(ε, θ) exp((−A3 + 2ε)(θ�)B1). (3.8)

By combining (3.2), (3.3), (3.5), (3.7), and (3.8), we have

E[‖πi − π�i ‖TV] ≤
(

2 + 1

ε̃(�)

)(
c6(ε)

1−q exp((1 − q)(−A2 + ε)(�− γ )B2)

+ c7(ε)τ (�)
q

ε(�, θ�)
+ c8(ε, θ) exp((−A3 + 2ε)(θ�)B1)

)
.

By using the definitions of ε̃, ε, and τ , it follows that (3.1) holds if (i) is satisfied. In case (ii),
(3.1) holds if (q, θ) is a solution of

(1 − q)A2 > a1(αβ + β)b1 ,

qA2 > a1(αβ + β + θ)b1 + a1(αβ + β)b1 ,

A3θ
B1 > a1(αβ + β)b1 .

We can check that a solution to this system of inequalities exists if A2 > A∗
2.

4. Uniform convergence of a particle filter approximation

Let us define Y := ⋃
i≥0 Yi and H := (Hi )i≥0, such that H is a nondecreasing sequence

of sub-σ -fields Hi ⊂ F satisfying H0 = Y. Also, for all � > 0 and i > 0, we let K�
i

denote the restriction of Ki to the set Ci(�), that is, for all x ∈ R
ds and A ∈ B(Rds), we have
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Figure 1: The exact filter, its truncated approximation, and the particle approximation.

K�
i (x,A) = Ki(x, Ci(�) ∩ A). The class of particle filters under consideration is then defined

as the set of all P (B(Rds))-valued H -adapted stochastic processes π̃� = (π̃�i )i≥0 such that
π̃�0 = π0 and, for all i > 0,

π̃�i = g�i · ν�i , (4.1)

where ν�i is a Hi-measurable random probability measure taking values in P (B(Rds)) such
that

(A5) 0 < ν�i (g
�
i ) < ∞, P-a.s.;

(A6) there exist a4, M4 > 0 such that, for all � ≥ �0,

sup
i>0

sup
‖ϕ‖∞≤1

E[|π̃�i−1K
�
i (ϕ)− ν�i (ϕ)| | Hi−1] ≤ M4 exp(−a4�

b2).

Analogously to the definition of π�i,j in (2.2), we define π̃�i,j := Q�
i,j+1(π̃

�
j ). Accordingly,

π̃�i,i = π̃�i . See Figure 1 for an illustration. In the proof of the uniform convergence theorem,
we need the following lemma.

Lemma 4.1. Suppose that µ and ν are random probability measures taking values in P (S)
and that the random mappings ψ, θ : S → R+ satisfy µψ, νθ > 0, P-a.s. Then

(i)
1
2 sup

‖ϕ‖∞≤1
E[|µK(ϕ)− νK(ϕ)|] ≤ (1 − αS(K)) sup

‖ϕ‖∞≤1
E[|µϕ − νϕ|];

(ii)
1
2 sup

‖ϕ‖∞≤1
E[|(ψ · µ)(ϕ)− (θ · ν)(ϕ)|] ≤ sup

‖ϕ‖∞≤1
E

[ |µ(ψϕ)− ν(θϕ)|
µψ

]
.
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Proof. To prove (i), it is observed that, for all x ∈ S,

sup
‖ϕ‖∞≤1

E[|µK(ϕ)− νK(ϕ)|] = sup
‖ϕ‖∞≤1

E[|µ(Kϕ −Kϕ(x))− ν(Kϕ −Kϕ(x))|]

≤ sup
‖ϕ‖∞≤1

‖Kϕ −Kϕ(x)‖∞ sup
‖ψ‖∞≤1

E[|µψ − νψ |]. (4.2)

Moreover,

sup
‖ϕ‖∞≤1

‖Kϕ −Kϕ(x)‖∞ = sup
‖ϕ‖∞≤1
z∈S

|Kϕ(z)−Kϕ(x)|

≤ sup
‖ϕ‖∞≤1
x,z∈S

|Kϕ(z)−Kϕ(x)|

= 2 sup
A∈S
x,z∈S

|K(z,A)−K(x,A)|

= 2(1 − αS(K)). (4.3)

By combining (4.2) and (4.3), we have (i). To prove (ii), it is observed that

|(ψ · µ)(ϕ)− (θ · ν)(ϕ)| ≤ |µ(ψϕ)− ν(θϕ)|
µψ

+ ‖ϕ‖∞
|µψ − νθ |

µψ
. (4.4)

Because

E

[ |µψ − νθ |
µψ

]
≤ sup

‖ϕ‖∞≤1
E

[ |µ(ψϕ)− ν(θϕ)|
µψ

]
,

the claim follows by taking expectations in (4.4) and using the fact that ‖ϕ‖∞ ≤ 1.

By defining a constant a∗
4 = a∗

4(α, a1, A1, a2, A2, β, b1, B1) as

a∗
4 := 2

(
1 +

(
1 + a

1/b1
1

A
1/b1
3

)b1
)
a1(αβ + β)b1 + a2,

we have the following result.

Theorem 4.1. If one of the following conditions holds:

(i) b1 = B1 < B2 ≤ b2 and a2 < a4;

(ii) b1 = B1 = B2 < b2, a2 < a4, and A∗
2 < A2;

(iii) b1 = B1 = B2 = b2, a∗
4 < a4, and A∗

2 < A2;

then there exist c9, c10 > 0 such that

sup
i>0

E
[

sup
‖ϕ‖∞≤1

E[|πiϕ − π̃�i ϕ| | Yi]
]

≤ c9 exp(−c10�
B1).
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Proof. By the triangle inequality (see Figure 1),

E
[

sup
‖ϕ‖∞≤1

E[|πiϕ − π̃�i ϕ| | Yi]
]

≤ E
[

sup
‖ϕ‖∞≤1

E[|πiϕ − π�i ϕ| | Yi]
]

+
i∑

j=1

E
[

sup
‖ϕ‖∞≤1

E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Yi]
]

≤ E
[

sup
‖ϕ‖∞≤1

|πiϕ − π�i ϕ|
]

+
i∑

j=1

E
[

sup
‖ϕ‖∞≤1

E[E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Hj−1] | Yi]
]

≤ 2 E[‖πi − π�i ‖TV] +
i∑

j=1

E
[

sup
‖ϕ‖∞≤1

E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Hj−1]
]
. (4.5)

Because E[‖πi −π�i ‖TV], according to Theorem 3.1, is uniformly convergent to 0 as� → ∞,
we only have to consider the sum in (4.5). It is first observed that, according to Lemma 2.2(i),

π̃�i,j−1 = Q�
j+1,i (π̃

�
j,j−1) = (ψ�j+1,i · π̃�j,j−1)S

�
j+1,i · · · S�i,i ,

π̃�i,j = Q�
j+1,i (π̃

�
j,j ) = (ψ�j+1,i · π̃�j,j )S�j+1,i · · · S�i,i ,

and, therefore, by Lemma 4.1(i) we have

sup
‖ϕ‖∞≤1

E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Hj−1] ≤ 4(1 − αCj (�)(S
�
j+1,i · · · S�i,i))Jj,i(�), (4.6)

where

Jj,i(�) := 1
2 sup

‖ϕ‖∞≤1
E[|(ψ�j+1,i · π̃�j,j )(ϕ)− (ψ�j+1,i · π̃�j,j−1)(ϕ)| | Hj−1].

It is then observed that

ψ�j+1,i · π̃�j,j = ψ�j+1,i · (g�j · ν�j ) = g�j ψ
�
j+1,i · ν�j ,

ψ�j+1,i · π̃�j,j−1 = ψ�j+1,i · (g�j · π̃�j−1Kj) = g�j ψ
�
j+1,i · π̃�j−1Kj .

Thus, by Lemma 4.1(ii) and the fact that π̃�j−1Kj(g
�
j ψ

�
j+1,i ) is Hj−1-measurable, we have

Jj,i(�) = 1
2 sup

‖ϕ‖∞≤1
E[|(g�j ψ�j+1,i · ν�j )(ϕ)− (g�j ψ

�
j+1,i · π̃�j−1Kj)(ϕ)| | Hj−1]

≤ sup‖ϕ‖∞≤1 E[|ν�j (g�j ψ�j+1,iϕ)− π̃�j−1Kj(g
�
j ψ

�
j+1,iϕ)| | Hj−1]

π̃�j−1Kj(g
�
j ψ

�
j+1,i )

≤ ‖g�j ψ�j+1,i‖∞
π̃�j−1Kj(g

�
j ψ

�
j+1,i )

M4 exp(−a4�
b2), (4.7)

where the last inequality follows from assumption (A6). Moreover,

‖g�j ψ�j+1,i‖∞
π̃�j−1Kj(g

�
j ψ

�
j+1,i )

= ‖g�j ψ�j+1,i‖∞
π̃�j−1Kj(g

�
j )

π̃�j−1Kj(g
�
j )

π̃�j−1Kj(g
�
j ψ

�
j+1,i )

≤ ‖g�j ‖∞
π̃�j−1Kj(g

�
j )

‖ψ�j+1,i‖∞
π̃�j,j−1(ψ

�
j+1,i )

.

(4.8)
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It is observed that, for all j > 0,

ψ�j+1,i (x)

π̃�j,j−1(ψ
�
j+1,i )

= Kj+1(g
�
j+1ψ

�
j+2,i )(x)

π̃�j,j−1(1Cj (�) Kj+1(g
�
j+1ψ

�
j+2,i ))

≤ ‖kj+1‖∞
infx∈Cj (�), y∈Cj+1(�) kj+1(x, y)

λds(g
�
j+1ψ

�
j+2,i )

π̃�j,j−1(λds(g
�
j+1ψ

�
j+2,i ))

≤ 1

εj+1(�)
, (4.9)

where the last inequality follows from Lemma 2.1. In order to bound the first product term in
(4.8), we write

π̃�j−1Kj(g
�
j ) ≥

∫
Cj−1(�)

(∫
Cj (�)

gj (xj )kj (xj−1, xj )λds(dxj )

)
π̃�j−1(dxj−1)

≥ λds(Cj (�))π̃
�
j−1(Cj−1(�)) inf

x∈Cj (�)
gj (x) inf

y∈Cj (�)
x∈Cj−1(�)

kj (x, y). (4.10)

Let Bds(x, r) denote a ball with radius r > 0 centred at x ∈ R
ds . Then, for all x ∈

Bds(h̃
−1
j (Yj ),�0/β0), we have

‖Yj − h̃j (x)‖ = ‖h̃j (h̃−1
j (Yj ))− h̃j (x)‖ ≤ β0‖h̃−1

j (Yj )− x‖ ≤ �0.

Therefore, for all � > �0, Bds(h̃
−1
j (Yj ),�0/β0) ⊂ Cj (�0) ⊂ Cj (�), which implies that

λds(Cj (�)) ≥ λds(Cj (�0)) ≥ λds

(
Bds

(
h̃−1
j (Yj ),

�0

β0

))
. (4.11)

Moreover, according to assumptions (A2) and (A4),

inf
x∈Cj (�)

gj (x) ≥ inf
x∈Cj (�)

m2 exp(−a2‖Yj − hj (x)‖b2)

≥ inf
x∈Cj (�)

m2 exp(−a2(‖Yj − h̃j (x)‖ + ‖h̄j (x)‖)b2)

≥ m2 exp(−a2(�+ γ )b2). (4.12)

Also, because, for all j > 0, π̃�j (Cj (�)) = 1, we have π̃�j−1(Cj−1(�)) ≥ π0(C0(�0)).
Therefore, by observing that Jj,i(�) ≤ 1, and by combining (4.7), (4.8), (4.9), (4.10), (4.11),
and (4.12), we have

Jj (�) := min

(
1,

�(�)

εj (�)εj+1(�)

)
≥ Jj,i(�), (4.13)

where
�(�) := c11 exp(a2(�+ γ )b2 − a4�

b2)

and c11 := M2M4/(λds(Bds(h̃
−1
j (Yj ),�0/β0))m1m2π0(C0(�0))). By induction, it can be

shown that

(1 − αCj (�)(S
�
j+1,i · · · S�i,i)) ≤

i∏
n=j+1

(1 − αCn−1(�)(S
�
n,i)) ≤

i∏
n=j+2

(1 − εn(�)),
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and, therefore, because Jj (�) is Fj+1-measurable, it follows, from (4.6) and (4.13), that

E
[

sup
‖ϕ‖∞≤1

E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Hj−1]
]

≤ 4 E

[
E

[ i∏
n=j+2

(1 − εn(�))

∣∣∣∣ Fj+1

]
Jj (�)

]

≤ 4(1 − ε̃(�))(i−j−2)+ E[Jj (�)]. (4.14)

Following a similar principle as in the proof of Theorem 3.1, we derive an upper bound for
E[Jj (�)] which is independent of j and, therefore, can be brought outside the summation. For
the remaining sum, (3.3) holds. According to (3.4),

E[Jj (�)] ≤ E

[
min

(
1,

√
�(�)

εj (�)

)]
+ E

[
min

(
1,

√
�(�)

εj+1(�)

)]
. (4.15)

Because of Proposition 3.1, it suffices to consider only one of the expectations on the right-hand
side. Similarly as in (3.8), we have, for all θ, ε > 0,

E

[
min

(
1,

√
�(�)

εj (�)

)]
≤ c12(ε)

√
�(�)

ε(�, θ�)
+ c8(ε, θ) exp((−A3 + 2ε)(θ�)B1). (4.16)

By combining (3.3), (4.14), (4.15), and (4.16), we can check, by using the definitions of � and
ε, that if (i) or (ii) is satisfied then, for all θ > 0, there exist c13, c14 > 0 such that

i∑
j=1

E
[

sup
‖ϕ‖∞≤1

E[|π̃�i,j ϕ − π̃�i,j−1ϕ| | Hj−1]
]

≤ c13 exp(−c14�
B1).

In case (iii), θ must satisfy

a4

2
>
a2

2
+ a1(αβ + β + θ)b1 + a1(αβ + β)b1 ,

A3θ
B1 > a1(αβ + β)b1 .

A solution to this system of inequalities exists if a4 > a∗
4 . The claim then follows by applying

Theorem 3.1 to the first term on the right-hand side of (4.5).

For estimation purposes, we are often interested in the mean of the posterior distribution.
The following corollary of Theorem 4.1 establishes the uniform convergence of the approximate
posterior mean to the exact posterior mean in the sense of Euclidean distance. The expected
Euclidean distance of posterior means will also be used as a measure of error in the simulations
described in Section 6. For this purpose, we let x̂i and x̂�i denote the means of πi and π̃�i ,
respectively.

Corollary 4.1. For all ε > 0 there exist c15, c16 > 0 such that

sup
i>0

E[‖x̂i − x̂�i ‖] ≤ c15 exp(−c16�
B1).

Proof. Let I : R
ds → R

ds denote the identity mapping, let Ij : R
ds → R denote the

projection to the j th axis, let x̃ := h̃−1
i (Yi), and let x̃j := Ij (x̃). In this case,

E[‖x̂i − x̂�i ‖] ≤
ds∑
j=1

E[|πi(Ij )− π̃�i (Ij )|],
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where

E[|πi(Ij )− π̃�i (Ij )|] ≤ E[E[|πi(1Ci(�)(Ij − x̃j ))− π̃�i (1Ci(�)(Ij − x̃j ))| | Yi]]
+ E[|πi(1Ci(�)(Ij − x̃j ))|],

where we have also used the fact that π̃�i (1Ci(�)(Ij − x̃j )) = 0. For all x ∈ Ci(�),
β� ≥ β‖Yi − h̃i (x)‖ ≥ ‖h̃−1

i (Yi)− x‖ ≥ |x̃j − Ij (x)|,
and, thus, 1Ci(�)(x)(Ij (x)− x̃j ) < β� for all x ∈ R

ds . Consequently,

E[|πi(Ij )− π̃�i (Ij )|] ≤ β�E
[

sup
‖ϕ‖∞≤1

E[|πiϕ − π̃�i ϕ| | Yi]
]

+ E[|πi(1Ci(�)(Ij − x̃j ))|].
(4.17)

For the second term, we observe similarly as in the proof of Theorem 3.1 that

E[|πi(1Ci(�)(Ij − x̃j ))|] ≤ E[πi(1Ci(�) ‖I − x̃‖)]
= E

[∫∫
Di(�)

gi,y(x)‖x − h̃−1
i (y)‖λdm (dy)πi−1Ki(dx)

]
,

and, for the inner integral, we have, by a change of variables,∫
Di(�)

gi,y(x)‖x − h̃−1
i (y)‖λdm (dy) ≤

∫
‖z‖>�−γ

β(‖z‖ + γ )ρVi (z)λdm (dz)

≤ c17(ε) exp((−A2 + ε)(�− γ )B2). (4.18)

The claim then follows by applying Theorem 4.1 to the first term on the right-hand side of (4.17)
and (4.18) to the second term on the right-hand side of (4.17).

5. An example of a uniformly convergent particle filter

In this section we describe a feasible filter approximation π̃� which is based on the Monte
Carlo method and can be parameterised to satisfy assumptions (A5) and (A6) of the previous
section. We define π̃� to be a random probability measure-valued process satisfying the
following definitions.

(i) Initialisation. Define {X̄j0}Nj=1 to be a set of independent random variables with common
distribution π0.

(ii) Importance sampling. For all i > 0 and 0 < j ≤ N , define Xji to be an independent
random variable with distribution K̃i(X̄

j
i−1, · ) such that the Radon–Nikodým derivative

w�i (x, y) := dK�
i (x, ·)

dK̃i(x, · ) (y)

exists, is positive for all x ∈ Ci−1(�), and satisfies supi>0 ‖w�i ‖∞ < ∞.

(iii) Weight update. For all i > 0,

π̃�i :=
N∑
j=1

W
j
i δ{Xji },
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where δ{x} denotes the unit point mass located at x ∈ R
ds and

W
j
i := g�i (X

j
i )w

�
i (X̄

j
i−1, X

j
i )∑N

n=1 g
�
i (X

n
i )w

�
i (X̄

n
i−1, X

n
i )
.

(iv) Resampling. For all i > 0 and 0 < j ≤ N , define random variables {X̄ji }Nj=1 to be a set
of random variables such that

E[ζi | Hi] = NWi,

and there exists c18 > 0 such that, for all z = (z1, z2, . . . , zN)

, where |zi | ≤ 1, i =

1, . . . , N , we have

z
 E[(ζi −NWi)(ζi −NWi)

 | Hi]z ≤ c18N,

where Wi := (W 1
i ,W

2
i , . . . ,W

N
i )


, ζi := (ζ 1
i , ζ

2
i , . . . , ζ

N
i )


, and

ζ
j
i :=

N∑
�=1

1{Xji }(X̄
�
i ).

In order to verify that π̃� satisfies assumptions (A5) and (A6), we first observe that π̃� is of
the form (4.1), where

ν�i := 1

N

N∑
j=1

w�i (X̄
j
i−1, X

j
i )δ{Xji }.

According to (ii), w�i > 0, P-a.s. and, hence, assumption (A5) is satisfied. In order to verify
assumption (A6), we define σ -fields Hi and H̄i as

Hi := σ(Ym,X
j
n, X̄

j
n−1, 1 ≤ n ≤ i, 1 ≤ j ≤ N, 0 < m),

H̄i := σ(Ym,X
j
n, X̄

j
� , 1 ≤ n ≤ i, 1 ≤ j ≤ N, 0 ≤ � ≤ i, 0 < m),

and a random probability measure π̄�i as

π̄�i := 1

N

N∑
j=1

ζ
j
i δ{Xji }.

In this case, because Hi−1 ⊂ H̄i−1, we can write

E[|π̃�i−1K
�
i ϕ − ν�i ϕ| | Hi−1] ≤ E[E[|π̄�i−1K

�
i ϕ − ν�i ϕ| | H̄i−1] | Hi−1] (5.1)

+ E[|π̃�i−1K
�
i ϕ − π̄�i−1K

�
i ϕ| | Hi−1]. (5.2)

Because E[ν�i ϕ | H̄i−1] = π̄�i K
�
i ϕ and the random variables {Xji }Nj=1 are independent con-

ditioned on H̄i−1, it can be shown that

E[|π̄�i−1K
�
i ϕ − ν�i ϕ| | H̄i−1] ≤ ‖w�i ϕ‖∞√

N(�)
. (5.3)
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Also, it can be shown that if (iv) holds then there exists c19 > 0 such that

E[|π̃�i ϕ − π̄�i ϕ| | Hi] ≤ c19‖ϕ‖∞√
N(�)

. (5.4)

The proof of this inequality can be found, for example, in [2]. Because

sup
i>0

sup
‖ϕ‖∞≤1

‖Kiϕ‖∞ = 1

and, according to (ii), supi>0 ‖w�i ‖∞ < ∞, the substitution of (5.3) and (5.4) into (5.1) shows
that there exists c20(�) > 0 such that

sup
i>0

sup
‖ϕ‖∞≤1

E[|π̃�i K�
i ϕ − ν�i ϕ| | Hi−1] ≤ c20(�)√

N(�)
,

from which assumption (A6) follows if

N(�) ≥
(
c20(�)

M4

)2

exp(2a4�
b2). (5.5)

The approximation specified by (i)–(iv) above has resemblance to the well-known sam-
pling/importance resampling (SIR) algorithm. Essentially, the only difference to the SIR filter
is the requirement imposed by assumption (A5), that the importance distribution specified by
the transition probabilities K̃i must assign zero probability to the set Ci(�). As a general rule
for specifying such importance distribution, we can set, for all x ∈ R

ds ,

K̃i(x, · ) = P
h̃−1
i (Z)

( · ), (5.6)

where P
h̃−1
i (Z)

denotes the distribution of the random variable h̃−1
i (Z) and Z is a random

variable with uniform distribution on the ballBdm (Yi,�). This choice of K̃i obviously satisfies
assumption (A5). Moreover, by assuming that, for all x ∈ R

ds , we have | det(h̃′
i (x))| > 0,

where h̃′
i (x) denotes the Jacobian matrix of h̃i at x ∈ R

ds , the density ρ
X
j
i

of the random
variable Xji with respect to the Lebesgue measure on B(Rds) satisfies

ρ
X
j
i

(x) = 1Ci(�)(x)| det h̃′
i (x)|

Vds(�)
,

where Vds(�) denotes the volume of a ds-dimensional ball of radius�. From assumption (A2),
it follows that

sup
i>0

‖w�i ‖∞ = sup
x,y∈R

ds

i>0

Vds(�) 1Ci(�)(y)ki(x, y)

| det h̃′
i (x)|

≤ c21�
ds

for some c21 > 0. The substitution of this approximation into (5.5) yields a lower bound for the
sample size N(�), which, according to the discussion above, implies assumption (A6). This
particular choice of importance distribution was made because the generation of such a random
variate is feasible in higher dimensions without resorting to the rejection method. Indeed, it may
be possible to generate random variables from a more efficient importance distribution using
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the rejection method, but then, as pointed out in Section 1, we must also take the randomness
of the computational cost into account.

It is also observed that the branching or resampling scheme in (iv) is left unspecified as well.
From the practical point of view, we content ourselves with pointing out that the well-known
multinomial resampling scheme as well as the tree-based branching scheme both satisfy (iv).
For the proof, see, e.g. [2] and the references therein.

6. Numerical experiments

In this section we illustrate Theorem 4.1 and Corollary 4.1 by some numerical experiments.
The experiments are carried out using the approximate filter π̃� described in the previous
sections and it employs the multinomial resampling scheme and an importance distribution of
the form given in (5.6).

6.1. Linear model

In the first experiment we consider the model

Xi+1 = Xi +Wi+1, Yi+1 = 4Xi+1 + Vi+1,

where X0 ∼ N (0, 1), Wi ∼ N (0, 2), and Vi ∼ N (0, 1) independently. Here N (x, y)

denotes the normal distribution with mean equal to x and covariance equal to y, but it should
be noted that this normality assumption is not crucial for the validity of Theorem 3.1 or
Theorem 4.1. Indeed, the distributions of X0, Wi , and Vi could also be, for example, double
exponential, Gaussian mixtures, convolutions of Gaussian, or double exponential distributions
with distributions having a bounded support. Also, it should be noted that, for this linear and
Gaussian model, the filtering distribution πi is known to be equal to a normal distribution
whose mean and covariance can be computed by the Kalman filter. Therefore, its numerical
approximations are not of any interest in practice, and it has been included in the experiments
only because it enables exact computations of the approximation errors.

The simulations consisted of 1000 time steps and the filtering distributions were approxi-
mated with eight different values of � (� = 0.625, 1.250, 1.875, 2.500, 3.125, 3.750, 4.375,
5.000). This range of � was found to give a reasonable illustration of the behaviour of the
approximations as a function of �. For each �, four different sample sizes (N = 102, 103,
104, 105) were used.

The error under consideration is the expected distance between the exact and approximate
conditional means, i.e. E[|x̂i − x̂�i |]. Because the exact evaluation of the expectation is
intractable, it was approximated by the Monte Carlo method with 50 simulations. Let this
approximation be denoted by ei(�). Figure 2a depicts ei(�) for four different pairs (�,N).

For a fixed value of �, Figure 2a suggests that ei(�) is approximately a constant with
respect to i, which is in accordance with Corollary 4.1. Therefore, the time average of ei(�),
denoted by e(�), is expected to be a relatively good approximation of the uniform bound of
error. Figure 2b shows the time averages for all experimented values of� and N . To study the
behaviour of the algorithm on a longer time scale, the experiment was repeated for a simulation
consisting of 105 time steps for two different values of �, each with N = 105. Figure 3
depicts the error ei(�) based on 50 simulations and seems to confirm that the error is uniformly
bounded.
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Figure 2: (a) The error ei(�) for four different pairs (�,N). (b) Time averages of ei(�) for different
values of N and �.
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Figure 3: The error ei(�) for two different values of � and N = 105.

6.2. Nonlinear model

In the second experiment we consider the model

Xi+1 = Xi

2
+ 25

Xi

1 +X2
i

+ 8 cos(1.2i)+Wi+1,

Yi+1 = 4Xi+1 + 4 sin(2Xi+1)+ Vi+1,

whereX0 ∼ N (0, 1),Wi ∼ N (0, 2), andVi ∼ N (0, 0.006). This example is adapted from the
well-known example in [8] and it does not allow the exact computation of the posterior mean x̂i .
The simulation consisted of 1000 time steps with eight different truncation radii (� = 3.25,
3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00) and four different sample sizes. The sample sizes are
the same as in the linear case, but because of the bounded component h̄i (x) = 4 sin(2x) in the
observation model, the values of � were chosen differently to give a reasonable illustration of
the behaviour of the approximation as a function of �.
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Figure 4: (a) The error ei(�) for four different pairs (�,N). (b) Time averages of ei(�) for different
values of N and �.

Because the posterior mean cannot be evaluated exactly for the nonlinear model, a con-
ventional SIR filter with 106 particles was used as a reference mean. Figure 4a depicts the
approximation ei(�) of the expected distance between the approximate posterior mean and the
reference mean. Again, ei(�) is the Monte Carlo approximation with 50 samples.

Similarly as for the first example, the errors appear to be nearly constant with respect to the
time. Figure 4b depicts the time averages of the errors.

6.3. Discussion

The simulations described above were implemented in MATLAB® (the resampling was
implemented in C) and executed on a 1 GHz PowerPC G4 with 768 MB of memory. For
the linear model, the computation time of processing ten data sets of length 100 with N =
105 was approximately 172 seconds. For the nonlinear model, this time was approximately
214 seconds. The computation time of the uniformly convergent filter was approximately 1.1
times that of the conventional SIR filter. Although the computation time is highly dependent
on implementational details, and there might be room for more efficient implementations, it
should be noted that the uniformly convergent filter and SIR filter are roughly equal in terms
of computational cost.

Figure 2b and Figure 4b also illustrate the twofold construction of the approximation error.
For the smallest values of�, the error reaches a level which apparently cannot be exceeded by
increasing the sample size. The remaining error is expected to be explained by the error due to
the truncation and, therefore, it cannot be affected by the sample size. For both examples, such
behaviour does not appear for the largest values of�. Also, Figure 2b and Figure 4b show that
the error has a tendency to increase for large enough�. This is the reason why the sample size
must be defined as an increasing function of � in order to ensure that the error converges to 0
as � → ∞.
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In principle, we could approximate the constants in (5.5) that determine the rate at which
the sample size should be increased. Moreover, bounds for the errors could also be evaluated
according to the analysis given earlier. However, these bounds are expected to be relatively
loose and, therefore, only of limited interest in practice.

Appendix A. Proof of Proposition 3.1

The following lemma establishes the tails for the convolution of two densities of positive
random variables with exponential tails.

Lemma A.1. Let aX, aY , bX, bY > 0, and let ρX, ρY : R → R+ be probability density
functions with respect to the Lebesgue measure λ1 on B(R) such that, for all x ≤ 0, ρX(x) =
ρY (x) = 0 and, for all ε ∈ (0,min(aX, aY )), there exist MX = MX(ε) > 0 and MY =
MY (ε) > 0 such that

ρX(x) ≤ MX exp((−aX + ε)xbX),

ρY (x) ≤ MY exp((−aY + ε)xbY ),

for all x > 0. Then, for all ε > 0, there exists c22 = c22(ε, aX, aY , bX, bY ) > 0 such that, for
all x > 0,

(ρX ∗ ρY )(x) ≤ c22 exp((−a + ε)xb),

where b = min(bX, bY ) and

a =

⎧⎪⎨
⎪⎩
aXaY (a

1/b
X + a

1/b
Y )−b, bX = bY ,

aX, bX < bY ,

aY , bX > bY .

Proof. If ε > max(aX, aY ) ≥ a, the claim follows trivially. Therefore, we assume that
ε1 ∈ (0, aX) and ε2 ∈ (0, aY ). For all t ∈ (0, 1) and y ≥ 0,

(ρX ∗ ρY )(y) ≤ MX(ε1)MY (ε2)(J1(ε1, ε2, y)+ J2(ε1, ε2, y)), (A.1)

where

J1(ε1, ε2, y) =
∫ ty

0
exp((−aX + ε1)(y − x)bX + (−aY + ε2)x

bY ) dx,

J2(ε1, ε2, y) =
∫ y

ty

exp((−aX + ε1)(y − x)bX + (−aY + ε2)x
bY ) dx.

By defining

c23(ε) :=
∫ ∞

0
exp((−aY + ε)xbY ) dx,

we observe that

J1(ε1, ε2, y) ≤ c23(ε2) exp((−aX + ε1)(1 − t)bXybX). (A.2)

Because, for all δ0 > 0, there exists c24(ε2, δ0) > 0 such that if ty > δ0 then

J2(ε1, ε2, y) ≤
∫ ∞

ty

exp((−aY + ε2)x
bY ) dx ≤ c24(ε2, δ0) exp((−aY + 2ε2)t

bY ybY ),
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it can be shown that by defining

c25(ε1, ε2) = max(c24(ε2, δ0), c21(ε2) exp((aY − 2ε2)δ
bY
0 ))

we have, for all y > 0,

J2(ε1, ε2, y) ≤ c25(ε1, ε2) exp((−aY + 2ε2)t
bY ybY ). (A.3)

By combining (A.1), (A.2), and (A.3), we find that, for all ε > 0, there exist c26(ε) > 0 and
c27(ε) > 0 such that

(ρX ∗ ρY )(y) ≤ c26(ε) exp((−aX + ε)(1 − t)bXybX)+ c27(ε) exp((−aY + ε)tbY ybY ). (A.4)

Let us then consider the case in which bX < bY . Since convolution commutes, bX and bY
are interchangeable, and the same reasoning applies to the case in which bY < bX as well. If
we define

t (z) =

⎧⎪⎨
⎪⎩

1

2
− 1

2

(
aX − 2z

aX − z

)1/bX
if 0 < z ≤ aX/2,

1
2 if aX/2 < z,

it follows that aX − 2z < (aX − z)(1 − t (z))bX , and, therefore, by (A.4),

(ρX ∗ ρY )(y) ≤ c28(ε) exp((−aX + 2ε)ybX),

where

c28(ε) = sup
y>0
(c26(ε) exp((−aX + ε)(1 − t (ε))bXybX + (aX − 2ε)ybX)

+ c27(ε) exp((−aY + 2ε)tbY ybY + (aX − 2ε)ybX)),

and we have the claim for bX �= bY . In the case in which bX = bY = b we define t (z) for all
z ∈ (0,min(aX, aY )) as

t (z) = (aX − z)1/b

(aY − z)1/b + (aX − z)1/b
,

and observe that

lim
z→0

(−aX + z)(1 − t (z))b = lim
z→0

(−aY + z)t (z)b = −a.

Therefore, for all ε > 0, there exists z ∈ (0,min(aX, aY )) such that (−aX + z)(1 − t (z))b ≤
−a + ε and (−aY + z)t (z)b ≤ −a + ε. The substitution of these inequalities into (A.4) yields
the claim for bX = bY .
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