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We investigate the following nonlinear Neumann boundary-value problem with
associated p(z)-Laplace-type operator

—div(e(e, V) + [ufP) P = f(z,u) i 02,
(P)

o, V) 2 = g(au)  on 00,
on

where the function ¢(z,v) is of type |v|P(#)~2y with continuous function

p: 2 — (1,00) and both f: 2 x R — R and g: 92 x R — R satisfy a Carathéodory
condition. We first show the existence of infinitely many weak solutions for the
Neumann problems using the Fountain theorem with the Cerami condition but
without the Ambrosetti and Rabinowitz condition. Next, we give a result on the
existence of a sequence of weak solutions for problem (P) converging to 0 in
L°°-norm by employing De Giorgi’s iteration and the localization method under
suitable conditions.

Keywords: p(z)-Laplace type; Fountain theorem; De Giorgi’s iteration;
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1. Introduction

The interest in variational problems with p(z)-growth conditions is founded on
their prevalence throughout various areas of mathematical physics such as elastic
mechanics, electro-rheological fluid dynamics and image processing, etc.; we refer
the reader to [10,29,33] and references therein.
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In this paper we are concerned with the existence of infinitely many weak solu-
tions for the following nonlinear Neumann boundary-value problem with associated
p(z)-Laplace-type operator

—div(e(x, Vu)) + |u|p(x)_2u = f(z,u) in §2,

(P)
cp(;v,Vu)g—Z =g(z,u) on 02,

where the function ¢(z,v) is of type |v|P®)=2v with continuous function p: 2 —
(1,00), £2is a bounded domain in R for N > 3 with Lipschitz boundary 842, du/on
denotes the outer normal derivative of u with respect to 0(2, and both f: 2 xR —
R and g: 012 x R — R satisfy a Carathéodory condition. The p(x)-Laplace-type
operator div(¢(x, Vu)), which is the natural generalization of the p(z)-Laplace
operator div(|Vu|P®)=2Vu), has been widely studied by many researchers; see [6,
18,23-25,29,32] and references therein. Concerning elliptic equations with nonlinear
boundary conditions, we refer the reader to [6,8,28,38,40,41].

Superlinear problems have been studied extensively by many authors; see, for
instance, [6,15,23,28,38,40,41]. In particular, Yao [40] showed the existence of non-
trivial solutions for the inhomogeneous and nonlinear Neumann boundary-value
problem involving the p(z)-Laplacian; see [6] for the p(z)-Laplace type. A common
feature of these results is the following Ambrosetti and Rabinowitz (AR) condition,
which was introduced by Ambrosetti and Rabinowitz [1] for the case in which

p(z) = 2.
(AR) There exist positive constants M and 6 such that 8 > p; and
0<0F(z,t) < f(z,t)t forxze 2 and |t| > M,
where py = sup,cop(z) and F(z,t) = fot f(z,s)ds.

This condition guarantees the boundedness of the Palais-Smale (PS) sequence of
the Euler—Lagrange functional, which plays a crucial role in the applications of
critical-point theory. However, the AR condition is quite restrictive because there
are many superlinear functions that do not satisfy it. In this direction, Miyagaki
and Souto [30] have tried to drop the AR condition for the p(x) = 2 case in order to
get existence of a non-trivial solution for a superlinear eigenvalue Dirichlet problem
by assuming the following condition.

(f1) There exists top > 0 such that

f(z,1)

tp+—1

is increasing in ¢ > ¢y and decreasing in ¢ < —ty

for all = € 2, where (2 is a bounded domain in RY.

Recently, some authors [7,9,18,22,26] generalized the results in [30]. In the case
of variable exponents, Ji [22] generalized results in [30] to construct the existence of
a non-trivial solution for the p(x)-Laplacian Dirichlet problem under the following
condition.
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(f2) There is a constant C, > 0 such that
EF(2,8) — py F(2,1) < (2,5) — ps F(2,5) + C.
foranyz € 2,0<t<sors<t<O.

Condition (f2) was first considered by Miyagaki and Souto [30] in the p(z) =
2 case and it is a weaker condition than (f1). Also, under condition (f2), Ge
[18] established the existence of a non-trivial weak solution for the p(z)-Laplacian
problem involving a non-local term, and, for the case in which p(z) = p, Li and
Yang [26] proved the existence of a non-trivial weak solution for the p-Laplacian
problem. Following the basic ideas of [26], Chung and Toan [9] considered a class
of nonlinear and non-homogeneous problems in an Orlicz—Sobolev space setting.
Recently, using an abstract result contained in [5], the authors in [2,3] obtained the
existence of a non-trivial weak solution for a parametric Neumann problem driven
by the p(x)-Laplacian without the AR condition.

The aims of this paper are twofold. The first is to show the existence of infinitely
many weak solutions for problem (P) without the AR condition (see theorem 3.11).
Such a result for the elliptic boundary-value problem with nonlinear Neumann
boundary condition involving the p(x)-Laplacian is very rare even if p(x) is a
constant. To the best of our knowledge, most of the results about the existence
of weak solutions for Neumann problems are derived under the AR condition;
see [6, 8,28, 38,40, 41]. Inspired by the papers [3,18, 22, 26, 30], we demonstrate
our result in a more general setting.

The second aim is to extend the recent results in [31, 34, 36], namely, we prove
the existence of non-trivial weak solutions for problem (P), the nonlinear Neu-
mann boundary-value problem with associated p(z)-Laplacian-type operator (see
theorem 4.7). Roughly speaking, we establish the existence of small solutions in
the sense that the sequence of solutions converging to 0 in the L°°-norm relies
only on local behaviour of the nonlinear equation, under assumptions on f(z,t),
only for sufficiently small ¢. Our method is based on employing the global varia-
tional formulation-type method and the modified functional method that were first
introduced by Wang in [36]. More specifically, the strategy of the modified func-
tional method is to modify and extend f(x,t) to an appropriate f(x,t); using the
associated modified functional I with this f(z,t), Wang showed the existence of a
sequence of solutions converging to 0 in L*°-norm (see [36] for Neumann problems).
Tan and Fang [34] showed this result for the p(z)-Laplacian Dirichlet problem using
a regularity result of Fan [13] without its proof. Recently, Ho and Sim [21] extended
the regularity-type lemma in Vergara and Zacher [35] or Winkert and Zacher [39]
and applied such a result to show the boundedness of solutions for the Dirichlet
problem with the variable exponents via De Giorgi’s technique. Borrowing this
idea, we give a direct proof of the L*-bound of weak solutions for problem (P),
modifying that of [20, theorem 4.2]. To put it briefly, the following two aspects are
worth mentioning. First, we show the existence of infinitely many weak solutions
for the Neumann problems (P) using the Fountain theorem with the Cerami condi-
tion under a more complicated nonlinear boundary condition in comparison to [20].
Second, we establish the existence of a sequence of weak solutions for problems
converging to 0 in L°°-norm based on the regularity lemma in [21], which is slightly
different from that of [39, theorem 1.1].

https://doi.org/10.1017/50308210517000117 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210517000117

4 E. B. Choi, J.-M. Kim and Y.-H. Kim

This paper is organized as follows. In §2 we recall some basic results for the
variable exponent Lebesgue—Sobolev spaces. In § 3, under certain conditions on ¢,
f and g, we establish the existence result of infinitely many weak solutions for
problem (P) (theorem 3.11) by employing as the main tool the variational princi-
ple. In §4 we prove the existence of infinitely many weak solutions (theorem 4.7)
for the boundary-value problem of nonlinear type based on the global variational
formulations-type method and the modified functional method.

2. Preliminaries

In this section we recall some definitions and basic properties of the variable expo-
nent Lebesgue spaces Lp(')(Q) and the variable exponent Lebesgue—Sobolev spaces
WP () that will be treated in the next sections. For a deeper treatment on
these spaces, we refer the reader to [10,11,16,23].

Set

0.(0) = {h € O(): minh(z) > 1}.
TE
For any h € C(£2), we define

hy =sup h(x) and h_ = inf h(x).
zeN res?

For any p € C(§2), we introduce the variable exponent Lebesgue space
LPO(02) = {u: u is a measurable real-valued function, / lu(z) [P dz < oo},
0
endowed with the Luxemburg norm

p(x)
umwxmiﬂ{A>o:/ dxél}
(9]

The dual space of LP()(£2) is L?' () (2), where 1/p(z) + 1/p/(z) = 1.
The variable exponent Sobolev space WP()(£2) is defined by

u(x)

x
A

WhPO(02) = {u e LPO(Q): |Vu| € LPY(2)},
where the norm is
HUHWLP(‘)(Q) = ||uHLP(')(Q) + ||VUHLP('>(Q)' (2.1)
Next, we recall elementary inequalities below.

LemMMA 2.1 (Fan and Zhao [16]). The space LPC)(82) is a separable, uniformly con-
vex Banach space and its conjugate space is LP ) (£2), where 1/p(x) +1/p/(z) = 1.
For any u € LPO)(2) and v € LP'O)(2), we have

’/ uvde
Q

1 1
< (50 + o ool < 2l el
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LEMMA 2.2 (Fan and Zhao [16]). Define

plu) = / [ulP@ dz  for all u € LPO(£2).
o)

Then

(1) p(u) > 1 (respectively, p(u) = 1, p(u) < 1) if and only if ||ullpec) (o) > 1
(respectively, ||ullLrcr oy = 1, Jull Lo () < 1);

(2) if HUHLP(‘)(Q) > 1, then ||U||I£;<-)(Q) < pu) < ||UHI£:<->(Q);
(3) f ull oty < 1, then [ull2h, o) < p(0) < [ulli50, 0.
Similarly, we deduce the following lemma.

LEMMA 2.3. If we define
p1(u) = / [uP@ + |Vu|P® de for allu € WHPO(0),
7

then
(1) p1(u) > 1 (respectively, pi(u) =1, p1(u) < 1) if and only if |[ullwroc) (o) > 1
(respectively, ullwr. i) = 1, [ullwrro i) < 1);
@) if lullwssore) > L then [, < p1(0) < Ul
(3) if llullwrse @) <1, then ||U||€;1,p<»>(9) < pi(u) < HUHZ{;[;LP(-)(Q)'

LEMMA 2.4 (Fan and Zhao [16]). Let £2 C RY be an open, bounded set with Lip-
schitz boundary and let p € C1(2) with 1 < p_ < py < 00. If ¢ € L™(2) with
q— > 1 satisfies

+00 if N < p(x)

for all x € £2, then we have
WPO)(02) — LIO)(2)
and the embedding is compact if infzec o (p*(x) — q(z)) > 0.

LEMMA 2.5 (Fan [14]). Let 2 C RN, N > 2, be a bounded domain with smooth
boundary. Suppose that p € C(§2) and r € C(012) satisfy the condition

(N = 1)p(z)

if N > ,
1< r(x) <p?(x):={ N —p(x) if p()
+00 if N < p(z)
for all z € dR2. Then the embedding W) (02) — L") (082) is compact and con-

tinuous.

Throughout this paper, we write X := Wl’p(')(Q) and X* is the dual space of
X. Furthermore, (-,-) denotes the pairing of X and its dual X*.
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3. Existence of infinitely many weak solutions

In this section we show the existence of infinitely many solutions for problem (P)
by applying the Fountain theorem under the Cerami condition.

DEFINITION 3.1. We say that u € X is a weak solution of problem (P) if

/ o(z, Vu) - Vodx +/ lulP@ =20 dz = / flz,u)vde +/ g(z,u)vdS
2 [0} 2 o1
for all v € X.

Suppose that ¢: 2 x RN — RY is the continuous derivative with respect to v of
the mapping @g: 2 x RN — R, &y = &y(x,v), namely, p(x,v) = (d/dv)Pg(z,v).
We assume that ¢ and @ satisfy the following assumptions.

(J1) The equality
@0(1‘, O) =0

holds for almost all x € 2.

(J2) There is a function a € L ()(£2) and a non-negative constant b such that
[p(z,)] < alz) + blofP)

for almost all z € £2 and for all v € RY.
(J3) ®g(x,-) is strictly convex in RY for all z € (2.
(J4) There exists a positive constant d such that

dlo|P™ < o(z,v)-v and djo]P™® < pydo(z,v)

for all z € 2 and v € RV,

(J5) There exists a positive constant p; such that
H(z, sv) < H(xz,v) + 1

for v € RY and s € [0, 1], where H(z,v) = py Po(x,v) — p(x,v) - v for almost
all z € 2.

Let us define the functional ®: X — R by

1
@(u)z/ Qo(x,Vu)dx—F/ —— |uP® dz.
17 o Pl

p(z)

Under assumptions (J1), (J2) and (J4), it follows from [23,29] that the functional
@ is well defined on X, ® € C*(X,R) and its Fréchet derivative is given by

(@’(u),v):/Qcp(x,Vu)~Vvd:r—|—/g|u\p(“;)_2uvdx. (3.1)

We give some examples that satisfy assumption (J5).
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ExAMPLE 3.2. Let us consider
1

z,t) = [tP@ 2 and By(z,t) =
ol t) = It 0(ot) =~

|t[P(®)

for t € R. Then H(z, st) < H(z,t) for all s € [0,1], and so assumption (J5) holds
for any positive constant p.

EXAMPLE 3.3. Let us consider

1
oz, t) =(1 +t2)(17(:5)—2)/2t and Pp(x,t) = ﬁ[(1 + t2)p(z)/2 1
p(z

for t € R, where p(z) > 2 for all x € 2. Then

H(w,t) = prBole, t) — pla, t)t = (14 2)P@/2 1] — (14 2)@@-2/22 > ¢

p(x)

for any t € R. For fixed ¢, the function H(z, st) is continuous for s € [0, 1]. Thus, we
can choose s € [0, 1] such that H(x, sot) = maxsep,1] H(x, st). It is obvious that
so > 0. If sg = 1, then H(z, st) < H(z,t) for all s € [0,1] and t e R. If 0 < s < 1,
we have

lim H(x, sot)

[t|=oo H(z,t)

Therefore, there exists ¢ large enough such that H(x, sot)/H(x,t) < 1 for all [t| > to
and so H(z, sot) < H(x,t) for all [t| > to. Put

= sg(m) < 1.

wy =1+ H(zx, st).

max
(t,s)€[—to,to]x[0,1]

It follows that H(zx, st) < H(x,t)+ p; for all t € R and s € [0, 1], that is, condition
(J5) holds.

EXAMPLE 3.4. Let us consider

|v[P(®)

z,0)= 14+ —M—————
oty = (14 s

) P2,
and

1
Bo(z0) = s (P + VT PP - 1)
p(x
for v € RN. Then
H(z,v) = prPo(x,v) — p(x,v) - v

p(x)
= pi(Mp(r) + V14 |u]PE) — 1) — (1 + |v> |v[P(®)

p(x) V14 |v]2r(@)

for any v € RV It is easy to show that
H(z,v) — H(z,sv) > —1.
Thus, condition (J5) holds for u; > 1.
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The following assertion can be found in [24].

LEMMA 3.5. Assume that (J1)-(J4) hold. Then the functional ®: X — R is convex
and weakly lower semi-continuous on X . Moreover, the operator ' is a mapping of
type (Sy), t.e. if up, — u in X and limsup,,_, (P (un) — D' (u), un, — u) < 0, then
Uy —> u in X asn — oo.

Next we need the following assumptions for f and g. Defining

t t
F(x,t) = / flxz,s)ds and G(x,t) = / g(x, s)ds,
0 0
we then assume that the following hold.

(F1) f: £2xR — R satisfies the Carathéodory condition in the sense that f(-,t) is
measurable for all ¢ € R and f(x,-) is continuous for almost all = € 2.

(F2) f: 2 xR — R is a continuous function and there exist two constants d; > 0
and dy > 0 such that

|f(,8)] < dy + dat|*) 1

for all x € 2 and for all t € R, where a € C(2) and p; < a(z) < p*(x) for
all z € 0.

(F3) limpy 4 o0 (F(,t)/[t[P+) = 400 uniformly for all x € (2.
(F4) There exists a positive constant s such that
F(z,t) < F(z,s) + pz
forany x € 2,0 <t < sor s<t<0, where F(z,t) =tf(z,t) — py F(x,t).
(F5) f(x,—t) = —f(z,t) holds for all (z,t) € 2 x R.

(G1) g: 02 x R — R satisfies the Carathéodory condition and there exist two
constants d3 > 0 and d4 > 0 such that

lg(z, )| < d3 + dy]t|* @

for all z € 92 and for all t € R, where 3 € C; (0£2) and py < B(z) < p?(z)
for all z € 012.

(G2) limyy 400 (G(2,t)/[t|P+) = +o0 uniformly for all 2 € 052.
(G3) There exists a positive constant pg such that
Gz, 1) < G(x,5) + s
for any © € 02,0 <t < s or s <t <0, where G(z,t) = tg(z,t) — p+G(x,1).

(G4) g(x,—t) = —g(z,t) holds for all (z,t) € 82 x R.
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Define the functionals ¥, J: X — R by

W(u):/QF(x,u)dx and J(u) = aQG(x,u)dS.

Then it is easy to check that ¥, J € C'(X,R) and their Fréchet derivatives are

W (), v) = /Q Fouypdz and  (J'(u),v) = /8 gaads (32)

for any u,v € X. Define the functional I: X — R by

Then it follows that the functional I € C*(X,R) and its Fréchet derivative is

(I'(u),v) :/ w(x,Vu)~Vvdm+/ |u|p(r)_2uvdx—/ f(z,u)vde
Q Q o

- / g(z,u)vdS
on

for any u,v € X.

LEMMA 3.6. Assume that (F1), (F2) and (G1) hold. Then ¥ and J are weakly—-
strongly continuous on X and their derivative operators are compact.

Proof. Proceeding with an argument analogous to that of [6, proposition 3], it
follows that functionals ¥ and J are weakly—strongly continuous on X; see also [40].
O

For ¢ € R, we say that the energy functional I satisfies the Cerami condi-
tion ((C).-condition for short) if any sequence {u,} C X such that I(u,) — ¢
and ||’ (up)||x+(1+ ||unllx) — 0 as n — oo has a convergent subsequence; such a
sequence is then called a Cerami sequence, or a (C).-sequence for short. We next
show that the energy functional I satisfies the (C).-condition, which plays a key
role in obtaining our main result in this section.

REMARK 3.7. One of the key assumptions for proving that the functional I satisfies
the (C).-condition (or the (PS)-condition) for ¢ € R is that

f(z,t) =o(jt|P+~1) as |t| — 0 uniformly for x € £2 (3.3)
and
g(z,t) = o([t|P+~ 1) as |t| — 0 uniformly for x € 92; (3.4)

see, for instance, [4, 8,22, 27,30, 38, 40]. However, we prove the following result
without assumptions (3.3) and (3.4).

LEMMA 3.8. Assume that (J1)-(J5), (F1)-(F4) and (G1)-(G3) hold. Then the
energy functional I satisfies the (C).-condition.
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Proof. Given ¢ € R, let {u,} C X be a (C).-sequence of the functional I, that is,

I(up) = ¢ and |1 (up)||x+(1+ [Jun]lx) = 0 asn — oo,
which shows that
c=1I(u,) +o(1) and (I'(u,),u,) =o(1), (3.5)

where o(1) — 0 as n — oo. Note that ¥’ and J’' are mappings of type (Sy) by
lemma 3.6. Since I’ is a mapping of type (S;) and X is reflexive by lemmas 3.5 and
2.1, respectively, it suffices to show the boundedness of the sequence {u,} in X. If
{uy} is unbounded in X, then we can assume that ||u,||x > 1 and |Ju,||x — oo as
n — oo. Define a sequence {w,} in X with w,, = u,/||us||x. Then ||w,|x =1 for
all n € N. Therefore, by passing to a subsequence, still denoted by {w,}, we have
that {w,} converges weakly to w € X and

w,(z) = w(z) ae in and w, »w in L*V(2) asn—oo, (3.6)
wy(z) = w(z) ae ind? and w, - w in LP(802) asn— oo, (3.7)
where ‘a.e.” indicates ‘almost everywhere’, using lemmas 2.4 and 2.5. Let {2y =
{z € £2: w(x) # 0}. From (3.6), |un(z)| = |wn(@)||un||x — 400 as n — oo for

x € 29 N §2. Similarly, due to (3.7), we know that |u,(x)] = +00 as n — oo for
x € 20N 0N2. Tt follows from (3.5), (J4) and lemma 2.3 that

1
c:I(un)+0(1):/ éo(x,Vun)dx—l—/ —|un|p(r)dx—/ F(z,uy,)dx
Q Q o

p(z)
- G(z,un)dS + o(1)
00N
> Cylunl2 —/ Fla,u)de— [ G(w,un)dS + o(1)
2 00N

for some constant C, and thus

/ F(z,uy)dz+ G(z,un)dS = Chllun | —c+o(1) = 400 asn — oco. (3.8)
Q an

Also, by assumption (J2) and lemmas 2.1 and 2.3, we get

I(un):/Q@O(%Vun)dx—i—/oz%m&p(w) dx—/QF(x,un)dx

— G(z,up)dS
a0
b () 1 ()
< | a(@)|Vuy|de + — [ |Vu, [P de+ — [ |u, P dz
Q p-Ja b—Ja
—/ F(x,up)dx — G(z,up)dS
Q a0

<mwwwm+Mme@—AFm%m%—me%ma
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and we deduce from (3.5) that

2llall gy +0+1 S 1
Jo Pz un)de + [, Gla,un)dS +c—o(1) 7 Jun |

(3.9)

for n large enough. In addition, condition (F3) implies that there exists to > 1
such that F(x,t) > [¢|P+ for all z € 2 and |t| > to. Since F(z,t) is continuous on
2% [~to, to] by (F2), there exists a positive constant Co such that |F(x,t)| < Cy for
all (z,t) € 2 x [~tg,to]. Therefore, we can choose C3 € R such that F(z,t) > C3
for all (z,t) € 2 x R, and thus

Fz, un(x)) = C3

[

>0 (3.10)

for all x € £2 and for all n € N. Similarly, using assumption (G2), we see that there
exists C4 € R such that
G(z,un(z)) — Cy

[

>0 (3.11)

for all z € 912 and for all n € N. Observe that assumptions (F3) and (G2) imply

that
Fx, un . Flz,up
lim (z,u p(jg)) =1 (z, un () |wp (2)|P+ = 400, z € 2N {2, (3.12)
n— 00 Hu’ﬂ”X n— 00 ‘Un(l')|p+
and
G n G y n
lim G p(x)) ~ i GE @) e = oo,z e 00N 0. (313)
n—00 HUTLHX+ n— 00 ‘u (x)‘PJr
Now, we claim that |£2y| = 0, where |{2| denotes the Lebesque measure of (2. If

[£20] # 0, then by (3.8)—(3.13) and Fatou’s lemma we have
2llall o) +0+1
Cllall Lo @) + 0+ D ([, F@,ua (@) dz + [, Gl@, un(x)) dS)

= lim inf

n—00 Jo F(z,up ) dz + [, Gz, un(x)) dS 4+ ¢ — o(1)
F n ) n
> lim inf/ M dz + lim mf/ G(LM ds
o Jo o |u n|| oo Joo o |ually
F(
= lim inf (@, un (2 — lim sup/ BT
oo |Un|| n—oo Jo [[unlly
+ lim inf/ M dS — lim sup/ C4p+ ds
n=oo Jon HunH n—oo JoN ||unHX
F(z,un(z)) - C Gz, un, -C
= lim inf (@, p+ % d + liminf (2, u (xz)))+ 148
n—00 |un|| oo Jon [KT25%
F n — L . . y Un -
> lim inf (@, (m})}l Cs dx + lim inf Glz,u (;vz)))+ C ds
n=o0 Jonn, 12 5% oo Janns, llun |y
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F mn - s Un -
> / liminf L@ @) = Ca g / limint F& @) = 4
2N, " llunlly 90NN, " lun|ly

F
= / lim inf M\wn(xﬂm dx — / lim sup Cs
2n92 Q

n=oo |up (z)[P+ Ny nvoo |lunlly’

G(@, un
+ / lim inf an(gg)\er ds — lim sup T
o0no, " |un(x)[P+ 00n2, n—oo |Unllx

= +OO,

which is a contradiction. Therefore, [£29] = 0, and we have w(x) = 0 almost every-
where in £2.

Since I(tu,) is continuous for ¢ € [0, 1], for each n € N there exists ¢, € [0,1]
such that

I(thuy,) = tren[gnﬁ] I(tuy,). (3.14)

Let {0k} be a sequence of real numbers such that gy > 1 for any k and limg_, o0 0k =
+o00. Then ||oxwn||x = ok > 1 for all k and n. For fixed k, since w,, — 0 strongly in
the spaces L) (£2) and L?)(002) as n — oo, it follows from the continuity of the
Nemytskii operator that F(z, oyw,,) — 0 in L'(§2) as n — oo, and G(z, opwy,) — 0
in L1(0£2) as n — oo; see [17, theorem 1.1]. We derive that

lim [ F(z,opw,)dz =0 (3.15)
and
lim G(z, ppwy) dS = 0. (3.16)

Since ||un||x — 0o as n — 0o, we obtain that ||u,||x > or and s0 0 < o /||un|lx <1
for n large enough. It follows from (J4), (3.15), (3.16) and lemma 2.3 that

Ok
I(touy) > I( un)
llunllx

= I(kan)

1
=/ dso(x,Vkan)der/ —— | 0w, [P dx—/ F(z, opwy,) dz
Q o p(x) n

- | Gz, 0pwn)dS
o0

d 1
> —/ |ngwn|p(x) dx+—/ \kan|p(x) dx—/ F(z, opwy) dz
P+ Jo P+ Jo n

- G(z, opwy,) dS
a0

> Csllopwn /s —/ F(z, opwy,) dz — G(z, opwy,)dS
(93

on
C
> G (3.17)
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for some positive constant C5 and for any n large enough. Letting n,k — oo in
relation (3.17) implies that

lim I(t,u,) = +oo. (3.18)

n—oo

For any n large enough, it is obvious that I(t,u,) > 0 = I(0) = I(0u,,), and thus
t, > 0.If t, <1, then (d/dt)I(tuy,)|t=¢, = 0, which implies that (I’ (t,un), tnty) =
0. If ¢, = 1, then (I'(up), un) = o(1). Hence, we always know that

(I'(tyun), thus) = o(1) (3.19)

for sufficiently large n. On the other hand, for all n large enough, we deduce from
assumptions (J5), (F4), (G3), (3.5) and (3.19) that

I(tpuy) = I(thu,) — p%([’(tnun),tnuw +0o(1)

1
:/ Qo(x,thun)dx—F/ —|tnun\p(m)dx—/ F(z,thuy,)dx
Q o p(T) Q

1
— G(z,tyuy)dS — —/ o(x, t, Vuy,) - (6, Vuy,) de
a0 P+ Jao

1 1
- / |tnun‘p(x) dz + 7/ f(l', tnun)tnun dz
P+ Je P+ Jo

1
+ — g(z, thun ) tnu, dS + o(1)
P+ Jog

1 1 1
=— [ H(z,t,Vu,)dz +/ —\tnun|p(“") dz — 7/ |tnun|p(r) dz
Q P+ Jao

P+ Jo p(x)
1 1
+— | Flz,tpuy)de + — G(x, thuyn)dS + o(1)
b+ Ja P+ Jog
1 1 1
< —/ (H(z, Vuy,) + p1) de +/ ——|up [P dz — —/ |t [P dz
P+ Jo o (@) b+ Jo
1 1
+— | (F(z,up) + p2)de + — / (G(z,un) + pu3)dS + o(1)
b+ Ja b+ Jon

1
</ @0(96,Vun)da?+/ —\un|p(m)dx—/ F(z,u,)dx
2 o (@) Q

1
- G(z,up)dS — — (/ p(x, Vuy,) - Vu, dz —|—/ |un|p(m) dx
Q Q

a0 P+
—/ f(x,un)undx—/ g(x,un)undS)
Q an

+0(1) + Cs
= I(uy,) — p—t_(['(un),uw +o(1) + Cs

—c+Cg asn—

for some positive constant Cg. Due to (3.18), we have a contradiction, and thus the
sequence {u,} is bounded in X. Therefore, the functional I satisfies the (C).-con-
dition for any ¢ € R. O
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It is well known that since X is a reflexive and separable Banach space, there are
{ex} € X and {f}} C X* such that

X =span{e,: n=1,2,...}, X" =span{f;:n=1,2,...},

and

.1 iti=g
<fi’e]>_{0 if i 5.

Let us define X;, = span{ey}, Y3 = @k X, and Z, = @,°_, Xy, for k € N.

m=1
In order to establish the existence and multiplicity results, we use the following
Fountain theorem.
LEMMA 3.9 (see Willem [37]). Let X be a real reflexive Banach space and let I €
CY(X,R) satisfy the (C).-condition for any c > 0 and I even. If for each sufficiently
large k € N there exist px, > 6, > 0 such that

(1) b :=inf{I(u): u € Zg, |lullx =} — 00 as k — o,

(2) ax = max{I(u): u € Vi, [lulx = pi} <O.

hold, then the functional I has an unbounded sequence of critical values, i.e. there
exists a sequence {u,} C X such that I'(u,) =0 and I(u,) = +00 as n — 0.

The following result is useful to prove our main theorem.

LEMMA 3.10 (Fan [12]). Define

O = sup [ullpacr(y and i = sup [ull Lo a2)»
lullx=1,u€Zx lull x=1, wEZ)

where a(x) and f(x) were given in (F2) and (G1), respectively. Then limy_,o0 0 =0
and limy_, o i, = 0.

THEOREM 3.11. Assume that (J1)-(J5), (F1)-(F5) and (G1)-(G4) hold. Then if
Do(z, —v) = Po(,v) holds for all (z,v) € 2 x RN, then the energy functional T

has a sequence of critical points {+u,} in X such that I\(£u,) = 0o as n — oco.

Proof. Obviously, I is an even functional and satisfies the (C).-condition for any
¢ > 0. It is enough to show that there exist px > dx > 0 such that

(1) by :=inf{I(u): u € Zx, ||ul|x =0k} = 00 as k — oo,
(2) ar :=max{I(u): u €Yy, |lul|lx =pr} <O

for k large enough.
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First of all, we prove condition (1). Assume that ||ul|x > 1. It follows from (J4),
(F2), (G1) and lemmas 2.2 and 2.3 that

I(u):/Qéo(x,Vu)dm—&—/Qﬁ\uwmdx—/QF(az,u)dx— G(z,u)dS

on

1
i/ \Vu|p(“’)dx+—/ fufP@ dx—/ <d1|u|+ lu |a<x>>
P+ Jo P+ Jn n ()
dy
— du+u’6(z)>d5
[ (aalul+ 5751

mln{d 1} _ d -
N lully — max{ds, da}ullx — = max{|julfoc, g, lull 70 (o))
d4 )
= S max{llul 7o oy 101550 00
min{d, 1 _
> %HUHI)} —max{dy, ds}||ul|x
+

_ B B
- C? maX{HUHLa( ()’ ||u||za('>(9)7 ||u||L-E(')(8[2)7 ||uHLl3(‘)(8Q)}

for some positive constant C;. Put

B_
||UHLa( )(2) T max{HuHLa() Q) ||UHLa( )(2) HU”LB( )(802) ||U||La<~>(ag)}-

Then we have

min{d, 1 o a
I(u) > { mindd L}y e sy, da)lulx — G0 ]l

Choose 0;, = (a+C70, " /min{d, 1})1/(P-=2+) Tt is clear that &, — oo as k — oo
because p_ < a4 and € — 0 as k — oo by lemma 3.10. Therefore, if u € Z;, and
lu|lx = ok, we have

min{d, 1}

I(u) > —

1
<1 >6p‘ —max{dy,ds}d — o0 ask — oo.
b+ a4

Like the previous argument, I(u) — oo as k — oo in the other three cases since
p- <a_ <ag, p- < pP- <Py and O, — 0 as k — oo by lemma 3.10.

Next we prove condition (2). Let v € Y, and |lul|x > 1. By assumptions (F3) and
(G2), we see that for any M > 0 there exist two positive constants, both denoted
by C(M), which depend on M and satisfy

F(z,t) > M|t|P+ = C(M) for all (z,t) € 2 xR (3.20)
and

G(z,t) = M|t|P+ = C(M) for all (z,t) € 02 x R. (3.21)
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For k > 1, it follows from (J2), (3.20), (3.21) and lemmas 2.1 and 2.3 that

u) = x,Vu)dz ulP®) dz — r,u)dr — T,
I(w) /{Z¢O<,v>d+/np()\| d /QF(,)d [ Gw.was

1
< Vu dx—f—/ —qup(x)dx+/ — |ulP® g
et Ok oo
- [y —conyae— [ o~ conyas
QHQHLP()(Q)HquLI’()(Q)+(b+1 (|5 M/\u|p+ dz

-M |ulP+ dS + C(M)(|£2] + |012])
a9

< @fall oy + b+ D) ulli — M( [ aas [ e dS) et

for some positive constant Cg. Since dim Yy < oo, all norms are equivalent in Yj.
So
I(u) < @llall ooy (@) + 0+ Dl = MCollulli" + Cs

for some positive constant Cy. If M is large enough such that (2|[al[m ) (o) + b+
1) < MCy, then we obtain I(u) — —oo as |lul]|x — oo, and thus we can choose
pr > 0 > 0. O

4. Existence of infinitely many weak solutions converging to zero

In this section we prove the existence of infinitely many weak solutions for the non-
linear Neumann boundary-value problem (P) using the argument in [34,36] (the-
orem 4.7 below). For this, we employ the regularity lemma (lemma 4.3) and the
cut-off method (lemma 4.6). First of all, we need the following additional assump-
tions on ¢, @q, f and g.

(J6) @(x,v) v —p_Py(x,v) >0 for all x € 2 and for all v € RV,

(F6) There exists a constant sq > 0 such that p_ F(z,t) — f(x,t)t > 0 for all z € 2
and for 0 < [t| < so.

(F7) limpyo(f (2, t)/|t|P~~2t) = 400 uniformly for all z € £2.

(G5) There exists a constant s; > 0 such that p_G(z,t)—g(z,t)t > 0 for all z € 912
and for 0 < |t] < s7.

(G6) limyy g (g(,t)/[t|P~~2t) = +oo uniformly for all z € 912.

Let us introduce the following lemma, which will be useful in the proof of a result
about regularity for a weak solution of problem (P). Define u; = max{u,0} and
u_ = —min{u, 0}.

REMARK 4.1. If u € X and k > 0, then (v — k)4, (u+k)_ € X.

To apply De Giorgi’s technique, we need the following crucial lemma. The proof
is given in [21, lemma 4.3], which is an extension of [35, lemma 2.2].
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LEMMA 4.2. Let {Z,}52 ., be a sequence of positive numbers satisfying the recursion
inequality
Zpi1 <KVY(ZIO 4z n=0,1,2,...,

for someb>1, k>0 and 63 = 01 > 0. If Zy < min{l1, (2/@)(*1)/5117(’1)/5%} or
Zo < min{ (2k) "D/ p(1/6F () (Z1)/02p=1/(5152)=(82=81)/53 )
then Z, <1 for some n € NU{0}. Moreover,
Z, < min{1, (2k)1/51p(D/5Tp(=m) /61y

for anymn = ng, where ng is the smallest n € NU{0} satisfying Z,, < 1. In particular,
Zn — 0 asn — oco.

Next, from an analogous argument to that in [20, theorem 4.2], we prove propo-
sition 4.3, which is a regularity-type lemma, via De Giorgi’s technique and the
localization method. We point out that proposition 4.3 is reproved in the present
circumstances because the lemma 4.2 above is slightly different from [39, lemma 2.1],
even though their method was applied to the Neumann problem with a nonlinear
boundary condition.

PROPOSITION 4.3. Assume that (J1), (J2), (J4), (F1), (F2) and (G1) hold. Then
there exist positive constants n, p such that if u is a weak solution of problem (P),
then

—n[1 + < /Q (—u)2™ da + /6 Q(—u)i@ dsﬂ

<ess infu
9}

< ess  sup u
2

p
<n{1+</ui(m)dx+/ u’i(m)d5>},
Q 80

Proof. Let A = {z € 2: u(zx) > k}, Ay = {x € 2: —u(z) > k}, k € N. Taking
v=(u—k)y € X as a test function in (P) and integrating over {2, we have

that is, u € L>(12).

/gp(m,Vu)-Vvdx—F/ [uP@ =20 da = f(m,u)vdx—F/ g(x,u)vdS.
2 7

(e} a9

Equivalently,

/ o(x, Vu) - Vudz + / [ulP@ =2y (u — k) dz
2NAg 02NAg

= / flz,u)(u—k) dx+/ g(x,u)(u—k)dsS.
2NAx

0NNAL
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Hence, since u 2 u—k >0 and u > k > 1 on A, by (F2) and (G1),

/ o(z, Vu) - Vudz
02NAg
< —/ |u[P®) =2y (u — k) dz + / (dy + da|u|*® =) (u — k) da
0QNAg NNAg

+/ (ds + da|u|P @1 (uw — k) dS
ON2NAg

<[ @@ Nudek [ e dafu O uds
2NAg ONNAL

< (dy + do) / u@ dz + (ds + dy) / uw?®) ds. (4.1)
NQNA ONNAg
Similarly, taking v = —(u + k)— = —(—u — k)4 € X as a test function in (P) we

obtain

/ oz, Vu)-Vudr < (di+ds) / (—u)*®) dz+(ds+dy) / (—u)P® ds.
NNAL

0NAy ANNA,
(4.2)
Put k, :=k.(2-1/2"), n=0,1,2,..., with k. > 1 specified later, and
Zy = / (u— k)@ da 4 / (u — k,)?® dS.
QﬂAkn SQﬂAkn
Note that k. < k,, < knt1 < 2k, for all n € N. Recalling the definition of k,,, we
have
k a(z)
/ (u— kn)a(z) dz > / u®(®) <1 - ) dz
2nAy, QnAr, kni1
a(z)
U
> ———dx
/-(ZmAk"+1 2(1(1)(n+2)
and
a(z) B(x)
U U
Ty = / ———dzr + / —dS
onA,, 9a(z)(n+2) 00Ny, 28(z)(n+2)
1 / 1
> — u @ dp 4 / uP@ ds
Qa4 (n+2) onag, 926+ (n+2) 00N As,
e,
> uw®) dg + / uP®) dS) .
omax{a,B4}(n+2) ( 0N, 00N Ay,
Thus,

QnAkn-{-l GQﬁAkn+1
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where e; = 2m@{at:8+} 5 1 Tt follows from (J4), (4.1) and (4.3) that

/ AV (1 — kpi1) [P da
QﬁAkn+1

< / o(x, V(u —kny1)) - V(u — kpy1) de
fZﬁAkn+1

< (dy + d) / ™) dz + (ds + dy) / u?@ ds
QﬂAkn+1 BQOA;%H
< (d1 +ds +d3s + d4)67f+22n. (4.4)

For the Lebesgue measure of Ay, we estimate

n+1?

—k, kY@
|Ak7n+1| < / ( “ ) dx+/ (U ) ds
.QmAkn_H knJrl - kn BQmAan kn+1 - kn
2n+1 O‘(I)
< / < > (u — k)™ da:
QﬂAkn+1 k*

2n+1 ﬁ(m)
+/ ( ) (u — ky)P@ dsS
002N Ay, ko

(n+1)ay 9(n+1)B+
e T o e (1~ k) ) ds
ke QN A, ko 92N Ay

n+1

9(n+1) max{o,64}

<
Ky
X (/ (u — kp)*@ da + / (u— k)@ dS).
QﬂAkn+l BQﬂAkn+1
So
6n+1
A a| € 52 (4.5)

The compactness of {2 implies that for any R > 0, there exists a finite open cover
{B;(R)}™, of balls B; := B;(R) with radius R such that £2 C |J;~, B;. Define

pi =maxp(z), o =maxa(z), B = maxf(z),
B;N$2 B;N$2 B;N$2
p;, = min p(z), o; = min a(z), F; = min §(z),
B,N2 B,N2 B,N2
n N — 1)p.
. # if N >p;, 8 % it N >p,;,
(pi) =49 N —p; (pz) = N —p;
400 if N <p;, 400 it N <p; .

Since p(z) < afz) < p*(x) for all z € 2, p(z) < B(z) < p?(x) for all x € 902, and
p € C(2), aeCy(2), e Cy(d2), we may take a sufficiently small R > 0 such
that for all ¢ € {1,...,m} we have

pi <af <(p;)* and pf < B < (p;)?. (4.6)
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Case 1 (pf < of < (p;)*). In this case, p; < o

E = is clear and if p(x) > N for all
x € 2, then o < (p; )* is obvious. For the case in which p(x) < N, we can modify
the proof in [20] to get o < (p; )*. For the convenience of the reader, we prove it.

Assume that there exists z € {2 such that p(z) < N. Then we have

;g%(p*(w) —afz) =0>0

for some &§; > 0. Since p(z) is uniformly continuous on 2, for a sufficiently small
R > 0 we have

lp(z) —p(y)| <ei forall 2,y € B;N 12,

where

. { N2a+ 61N2 }
€1 = min s .
(N + o )(N +2a4) " 2(N + ay ) (N 4 204)

Fix i € {1,...,m}. Defining z; € B; N {2 such that p(z;) = p;, we consider the
following three cases. The first, the p(z;) > N case, is obvious. For the second, that
in which Noy /(N + ay) < p(z;) < N, we have

_ Np(x;) N? N? n

p; ) = =N+ —F—>-N+ =a;>a
®:) N — p(z;) N —p(x;) N —Nai/(N+ay) +

i

For the final case, in which p(x;) < Nay /(N + ay), for all y € B; N 2 we have

Nay Nay (N +2ay) N2ay
) <Pled) TS G TS (R0 (N 200) T (N T an)(N § 2a7)
_ 2Nay
" N+2a
<N.

Writing o = a(y;) for some y; € B; N 2, we have

Ip* (yi) — p* (@) = N—Nip(yz) -N- N—Nip(:vz) + N
2 Ip(y:) —p(ﬂfz‘)|

(N = p(yi))(N — p(xi))
€1

(N —=2Na; (N +2a4))(N — Nat /(N + ay))
(N + 20, )(N + ay)
N4

< N?

= 81N2
<0

~X 2 M

Therefore, we get

* * (S * —\ ¥
of =aly) <p*(y:) — 01 <p (:vi)+51—51 <p*(z:) = (p; )"
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CasE 2 (p < B < (p;)?). In this case, pj < B is clear and if p(x) > N for all
x € 012, then B < (p;)? is obvious. Assume that there exists € 9f2 such that
p(z) < N. Then we have
inf 6} _ _

nf (0°(2) = B(z)) =62 >0
for some do > 0. Since p(z) is uniformly continuous on 92, for a sufficiently small
R > 0 we have o

Ip(x) —p(y)| < ez for all 2,y € B; N L2,

where

I { NG+ (N —2) 53N }
’ (N =1+ B80)(N+26,) 2(N—1+80)(N+281)
Fix i € {1,...,m}. Defining x; € B; N 82 such that p(z;) = p; , we consider the

following three cases. The first, the p(z;) > N case, is obvious. For the second, that
in which N3, /(N —1+ ) < p(zs) < N, we have (N8 +p(2:))/(B: + N) < p(;)

and
o (N p() o Np()
N? — p(xi)
-N
T NS NB  plw) [y + V)
=B+
> B
For the final case, in which p(x;) < NB. /(N —1+ 84), for all y € B; N9 we have
N4
p(y) < p(xz) + e < m + &9
NB (N +264) NBy (N —2)
SN =148 (N +284) (N =14 84) (N +254)
_ 2Npy
- N +264
< N.

Denoting ;" = B(y;) for some y; € B; N 942, we have

20y 2w = |V PW:)  N? —p(as)
Ip® (yi) — p° ()] N =) N —p)
(N? = p(x:)N? = p(yi)N + p(y:)p(xi))
—(N? = p(y;)N? — p(zi)N + p(x:)p(y:))
(N = p(yi))(N = p(x:))

_ | (V2 = N)(o(yi) — p(xi)) ‘
(N = p(y:))(N = p(x:))

< N(N-1) £2

(N =2NB4 /(N +284))(N = NBy /(N =1+ 54))
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_ . (N +284)(N -1+ 84)
— e N

<5.

Therefore, we get

B = Bl < 27— 2 < () + 2 — by < () = (7).

By way of cases 1 and 2, we show inequality (4.6). Next, to obtain the relation
between Z,, and Z,, 1, we choose a partition of unity {&;}7; C C§°(RY) associated
with an open cover {B;},, that is, we have

Observe that

/ dIV (4 — k1) P de
N2NAE

.
_ / AV (1~ by 1) P S & da
2NAg i=1

‘n+41

Z/Wk A1Vt~ ko)

n+1

Pi —1}¢dx

Z/ d|V(u — n+1)|p7 fp’ de —d|2N Ay, |-
02NAg b1

Therefore, it follows from the above inequality, (4.4) and (4.5) that we obtain

Z/ d|§l u - n+1)‘p1 dzr < (dl +d + d3 + d4) n+QZn + d“Q N Akn+1|
2NAg nt1

d6n+l

< (dl —+ d2 —+ d3 —+ d4)e?+2Zn —+ Zn

*

= ege Zp, (4.7)

where €g = (dl + d2 + d3 + d4)6% + d@l/k}*.
Now, we estimate Z,4; from Z,,. Using the partition of unity and Jensen’s
inequality, we get

Zapi= [ ke @det [ k) ds
2NAg +1 ONNAy

n41

_/QOA;%H (u — knt1) <Z£z) dw
8() .
o, e (36 s

n+1
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<mo+rt Z/ — k1) @EM da

ONAy,
+mP+t Z/ — kny1) (x)f;'6+ ds
BQﬂAkn+1
<mor ! Z/ (u— kn+1)a(z)f?(x) dx
i=1 QﬂA’%Jrl
m
+mAt Y / (4 — kpy1)? @™ as.

Thus

Zpr < mimax{osfe—1 Z [/ (U= kny1)*+E " da
02NAg

i=1 n41

+ / (1 — kpyr)?+ €0 AS
ONNAg +1

—|—/ (u—kpt1)® f dz
QMAy,

+1/ (1 — knar)® €0 S|
8QﬂAkn+1

For each i € {1,...,m}, define

S {%(afﬂp;)*) if (p7)* < o0,

af +1 if (p; )" = oo,
5 LB+ @D i )7 <o,
B+ if (p; )? = .

23

Thus, o < @; < (p;)* and 8 < B < (p;)?, and so we deduce following continu-

ous embedding:

WP () < Lo (Q), WP (2) — L (09).

Let ¢ € {1,.. m} be fixed and suppose that v; € {ozl o }ove € {B5.8 )

Then,pi_gw\oz <@ < () and p; <y < B < Bi < (py)?.
Holder inequality and the claim about the embedding, we get

/ w—mHmGWwﬁ/ (t — ks 1) €7 S
QNAk,,, 00N Ak,

- ’71/&1 }
(o}

~ 72/51‘ -
+ (/ {&i(u — kn+1)+}ﬂi dS) 002N A, |1—vz/6¢
a0
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<0 = B )+ i gy b 15 4 65— B 1) 173, g A7/
< O (16w = Fn) oz g+ IVAE 0 = Fn) i} )7 Al 177205

o DF (160 = 1)l g+ T4 = )}l ) A [0

<oy ([ et ks

Pi dgx

_ v1/p; )
""/ |V{§i(u - kn+1)+} Pi dx) |Akn+1|1—’n/ai
n

Pi dx

+ @0 ([ 6t )

_ v2/P; ~
+/ IV{&(u — kpyr)4+ HP dx) |Ag, P72/
o

where C; and D; are the embedding constants. In addition, we have

/ [§i(w = Epga)+ Pde < / u) da S 671L+2va (4.9)
Q 2N Ak, .,
and from (4.3) and (4.7) we estimate
/ V{& (1 — Ens1) P da < 2p;_1/ &V (u — k1) [P da
2 QﬁAkn+l
+2p: 1 / (u — kpi)Pi V&P da
QﬁAkn+1
1 - _
< 2P _1Eege7on 4 2P L et 7 (4.10)

where L is a positive constant satisfying
V&GS L (i=1,...,m).
Using (4.10), relation (4.9) becomes

/rmA (u = ki) dz + / (u— kni1) 267 dS
k

n41 090Ak71+1

_ 1 B _o\m/pi _ _ 5
< (20)m <e% + 2P 71E62 4 opi —1ppi e%) (ezfl/pi )nz;{l/pi |Akn+l‘1ﬂ1/ai

Akn+1 |1*'Y2/ﬁi'
(4.11)

1 _ o \"2/pi _ _
+ (2D;)? (6% + 9P 71g62 +opi 1P 6%) (€’1Y2/Pi )nZT’Zz/Pi

Noting that ZB/P ¢ T + gmedar/p—Se/p-} g R € {71,72} and using (4.5), we
have

n+1 1—y1/é&;: 1—y1/G;

e e I

1 1 l-m/a
Zn) < — ’

A5 < (6 e T G 2 a12)
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and
_ en+1 1*’Y2/Bi 61—’71/57: .
|Akn+1|1“/3i<<}fzn) <= (ex ") (20 + 227, (4.13)

where 7 1= maxi<icm{a; /&, 85 /3;} < 1. Tt follows from (4.11)-(4.13) that

/ (U = kpyr) €] da + / (u — kny1)72€]% dS
QﬁAkn+1 BQﬂAkn+1
< @Y T I Z e TN (B 200
o (M AT N (2 4 2 (e 2y 0 )
< (671 + 672)k1777 (e}+(a++ﬁ+)/1)_)n(zn + Zrll—n)(Zn + erzlax{aJr/ZLﬁJr/P—}),
(4.14)
where
ey 1= (20)71 (€3 + 270 THd ey 2P0 TIP3/ TN
and

€0y 1= (2D;)72 (2 + 277 1d" ey 4 207 TLLPE (2 )02/P0 (121
We deduce from (4.8) and (4.14) that

€3

AR b”(Z,QL + Z,%_" + Z711+max{a+/p7ﬁ+/p7} + Z711+max{a+/p77ﬁ+/p7}—n),

ZnJrl <

where

m
e3 = 4mmaxlas.fil=1 Z(eaf +egr teg- + eﬁ;) > 0,
i=1

h— e%+(a++ﬁ+)/p7 > 1.

Arguing the cases Z,, > 1 and Z,, < 1, and noting that the smallest and the largest
exponents are 2 — n and 1 + max{«ay /p_, B+ /p—}, respectively, we get
€3

1—
k"

Zng1 < b"(ZTQL_” + Z7ll+max{a+/p77ﬁ+/p7}).

In other words,
Znt1 < %b”(Z}ﬁ‘” + Zpt02), (4.15)

*

where 0 < 61 =1 -1 <1< §, = max{ay/p_, 3+ /p—}. Applying lemma 4.2 with
(4.15), we obtain that

Z, = / (u— k)™ da +/ (u— k)1 dS =0 asn— oo (4.16)
2 992
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provided that

Zo < min{1, k3 01p=1/5y (4.17)
or
—1/5 —1/5
Zo < min{(2§3> 1b_1/‘5%’ (2?))> 2b_1/(5152)—(62—51)/5§}_ (4.18)
Observe that
Zo = (w — k,)*@® dz + / (u — k)@ ds
QﬁAk* BQﬁAk*

< / ut™ de + / W) ds.
9] o0

Set

52/61
k, = [1 + (263)1/51b1/5%+(52*51)/5162] |:1 4 (/ Ui(T) dil'-i--/ ui(”f) dS) :|
0] o

So we have inequality (4.17) if p < 1 or inequality (4.18) if p > 1, where

p= / ut™ de + / W) as.
9] o

Since k,, 1 2k., (4.16) implies that

n

/ (u— 2k) 7 dz + / (u—2k,)7™ ds = 0.
2 o

Consequently, (u — 2k,); = 0 a.e. in {2 and this means that ess supgu < 2k,. The
boundedness from below of u can be shown analogously by replacing u with —u,
Aj, with Ay, and using (4.2) instead of (4.1). This completes the proof. O

The following lemma is quoted from [19].

LEMMA 4.4 (Heinz [19]). Let I € C*(X,R), where X is a Banach space. Assume
that I satisfies the (PS)-condition, is even and bounded from below, and I(0) = 0.
If for any n € N there exists an n-dimensional subspace X, and a p, > 0 such that

sup I <0,
X,NS,,

where S, := {u € X: ||ul[x = p}, then I has a sequence of critical values c,, < 0
satisfying ¢, — 0 as n — oo.

LEMMA 4.5. Assume that (J1), (J2), (J4), (J6), (F1), (F2) and (G1) hold. If,
furthermore,

p_F(x,t) — f(x,t)t >0 for all z € 2 and fort # 0, (4.19)
and

p_G(z,t) — g(x,t)t >0 for all x € 312 and fort # 0, (4.20)
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then
I(u) = (I'(u),u) =0 if and only if u=0.

Proof. Let I(u) = (I'(u),u) = 0. Then we see that

1
0= —p_I(u :fp_/@ z,Vu d:z:fp_/ — |ulP®) g
(w) n ol ) QP($)| |

er_/F(:c,u)derp_/ G(z,u)dS
2 o1
> fp_/Q@O(a:,Vu) dx7/9|u|p("”) dzx

+p_ / F(z,u)dz +p_ G(z,u)dsS, (4.21)
o) a0

and
(I'(u),u) = / o(z,Vu) - Vudz —|—/ [P dz
Q Q
—/ flz,u)ude —/ g(z,u)udS
Q a0
=0. (4.22)
It follows from assumption (J6) and relations (4.21) and (4.22) that
/ {p_F(z,u) — f(z,u)u}dz + {p-G(z,u) — g(z,u)u}dS < 0.
Q 09
Consequently, assumptions (4.19) and (4.20) imply that v = 0. The converse is

clear from assumption (J1). O

LEMMA 4.6. Assume that (F1), (F2), (F6), (F7), (G1), (G5) and (G6) hold. Then
there are to > 0, f € CY(2 x R,R) and § € C1(052 x R,R) such that f(x,t) and
g(x,t) are odd in t and satisfy

F(z,t) = p_F(x,t) — f(z,t)t >0,
Gz, t) = p_G(z,t) — §(z,t)t > 0,
Flz,t)=0 <<= t=0 or|t| > 2,
Glz,t) =0 <= t=0 orlt| > 2t.

Proof. Let us define a cut-off function x; € C'(R,R) satisfying x(t) = 1 for
[t| < to, k1(t) = 0 for [t] = 2ty, |x](¢)| < 2/t and &} (t)t < 0. So, we define

F(x,t) = k1 (1) F(2,t) + (1 — k1 ()3 [t|P~ and  f(x,t) = %F(m,t}, (4.23)

where 1 > 0 is a constant. It is straightforward to see that

p-F(z,t) = f(x,t)t = k1 () F (2,1) — K (OLF (2,1) + £ (Otn [P
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where F(x,t) := p_F(z,t) — f(z,t)t. For 0 < [t| < to and |t| > 2ty the conclusion
follows. By (F7), we choose a sufficiently small ¢t > 0 such that F(z,t) > v,tP~ for
to < |t] < 2tg. Due to the assumption that £} (¢)t < 0 we get the conclusion.

Let us define a cut-off function ko € C*(R,R) satisfying xa(t) = 1 for |t| < to,
ka(t) = 0 for |t| > 2to, |kL()] < 2/tg and K, (t)t < 0. As in (4.23), we define

Gl t) = ma()G(w, 1) + (1= ra(t)altl~ and (o, t) = £.Glat),  (4:24)

where 72 > 0 is a constant. From analogous arguments, we deduce the conclusion.
O

Now we prove the second main result using proposition 4.3 and lemmas 4.4
and 4.6.

THEOREM 4.7. Assume that (J1)-(J4), (J6), (F1), (F2), (F5)-(F7), (G1) and
(G4)~(G6) hold. If Do(x, —v) = Py(x,v) holds for all (z,v) € 2 xRN, then problem
(P) has a sequence of weak solutions wn such that |[u, || ) — 0 as n — oco.

Proof. Let u € X and |lul|[x > 1. We can choose positive constants ¢; and ¢y
satisfying

lalls o) < crllullle and [ullfs g < callulls

For the given functions f(z,t) and g(z,t), we can modify and extend f € C(£2 x
R,R) and § € C*(02 x R, R) satisfying all properties listed in lemma 4.6 with ~y;
and 72 such that py (c171 + coy2) < min{d, 1} for the positive constant d from (J4).
And also, by lemma 4.6, it is easy to show that Iect (X,R) and is even on X.
Moreover,

I(u) :/QQZSO(:E,Vu)dqu/Qp:x)mW(w) dx—/ﬂﬁ'(x,u)dx—/ané(x,u)dS
d

1
> — [ |[VuP® dz + 7/ [ulP®) dz
P+ Jo P+ Jo

- [ m@F@w + 0= sl do- [ gl do
2082,

2N
- [ G )+ (0 m(aluPbas = [ aful-ds
09N 2, 02N
i 1
> %Huﬂgg —/ F(z,u)dz —/ y1|u|P~ dz —/ G(z,u)dS
P+ N2, ? NN,

—/ Yo|ulP— dS
o2

min{d, 1} _
> ———ulk
D+

d d
_ / {d1|u + 2|ua<ﬂff>} dz — / {d3|u + 4|u|ﬁ<z>} as,
2N, P+ lelatedt P+

—malull —yacallull
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where 1 := {z € 2: 0 < |u(z)| < 2t} and 25 := {x € 2: 2ty < |u(x)|}. Thus, we
have n{d. 1}

- min{d, _ _

I(u) > THUH};( — (mer +eea)|lull’ + Cro

+

for some positive constant Cg, so that I is coercive, that is, I(u) — oo as ||ul|x —
00. By a standard argument, I satisfies the (PS).-condition. In order to apply
lemma 4.4, we only need to find, for any n € N, a subspace X, and a p, > 0 such
that supx g, I < 0. For any n € N we find n independent smooth functions ¢;
fori=1,...,n, and define X,, := span{éy, ..., ¢, }. By (J2) and lemma 4.6, when
|lul|x < 1 we have that

I(u) ::/9450(;C,Vu)dx+/nﬁ\uw(”)dx—/nﬁ(%u)dx— 8Qé(m,u)d5

< @lalloe + b+ Dl —Cn [ Flewde—cu [ Glnds
Q Je)
for a positive constant Cq;. It follows from assumptions (F7) and (G6) that, for a
sufficiently large My > 0, there exists dp > 0 such that |¢t| < dp implies both

M, M,
/F(x,t) dz > J/ - de and [ G(z,6)dS > J/ 7~ ds.
7] p—Jo an - Jon
By this and the fact that all norms on X,, are equivalent, choosing a suitable
constant C7; and sufficiently small p,, > 0, we can obtain

sup I <0. (4.25)
XnNS,,

By lemma 4.4, we get a sequence ¢, < 0 for I satisfying ¢, — 0 when n goes to co.
Then for any u, € X satisfying I(u,) = ¢, and I’(u,) = 0, the sequence {u,} is a
(PS)o-sequence of I(u), and {u, } has a convergent subsequence. By lemmas 4.5 and
4.6, 0 is the only critical point with 0 energy and the subsequence of {u,} has to
converge to 0. An indirect argument shows that the sequence {u,} has to converge
to 0. On the other hand, by proposition 4.3, u,, € C(£2). Since [tnll oo () — 0, by
lemma 4.6 again, we have [|un [|c(g) < to. Thus, {u,} are weak solutions of problem
(P). The proof is complete. O
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