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Abstract

This paper provides an asymptotic estimate for the expected number of K -level crossings of the random
trigonometric polynomial g, cos x + g, cos 2x 4. ..+ g, cosnx where g;(j = 1, 2, ..., n) are dependent
normally distributed random variables with mean zero and variance one. The two cases of p;,, the
correlation coeffiecient between the j-th and r-th coefficients, being either (i) constant, or (ii) p!/~"!
j #r.0 < p < 1, are considered. It is shown that the previous result for p;, = 0 still remains valid for
both cases.
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1. Introduction

Suppose that g, (w), g2(w), - . ., g.(w) is a sequence of random variables defined on a
probability space (2, A, P), each normally distributed with mathematical expectation
zero and variance one, and that N, (a, b) = N(a, b) is the number of real roots of
the equation T () = K where

(1.1) T6) =T,(0,0) = Y _ g;(w)cos jb.
j=1

Dunnage [2] has shown that in the case of independent coefficients in the interval
0 < 6 < 27 all save a certain exceptional set of equations 7(8) = 0 have 2n/+/3 +
0{n'"/B(log n)*'?} roots, when n is large. The measure of his exceptional set does
not exceed (logn)~!. For K # 0 such that K = o(/n) Farahmand [3] and [4]
has shown that the mathematical expectation of N (0, 2m), denoted by EN (0, 27), is
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asymptotic to 2n/+/3. Here we consider the effect of coefficients being dependent
on EN(a, b). We show that the above asymptotic formula persists whenever the
correlation coefficient between any two coefficients g; and g,, denoted by p;, is either
(i) constant, or (ii) o ~"'j # r,0 < p < 1. For the case of K = 0 the same result has
been obtained separately by Sambandham [8] and Renganathan and Sambandham [5].
We prove the following results in this paper.

THEOREM 1. If the coefficients of T (x) in (1.1) are normally distributed random
variables with mean zero, variance one and p;., the correlation coefficients between
j-th and r-th coefficients, are either (i) constant, or (ii) p/~"'j #r,0 < p < 1, then
for all sufficiently large n and any constant K, the expected number of real roots of
the equation T (0) = K satisfies

EN(0,2n) =2n/v/3+ 0™ if K =0@*®)

and
EN(0,27) =2n/v3+0(m)  if K =o(/n).
2. Preliminary Analysis
Let ., .
A’= cos’j6, B =) jsin’j6
j=1 j=1
and

C =Y jsin j6 cos jo.

j=1
By using the expected number of level crossings given by Cramér and Leadbetter [1,

page 285] for the equation T (f) — K we can obtain

P A2 K Ky Ky
vien = [ o () |o () v o (i) -1}
2.1
where

22)  a=var{T®)}=A>+) ) p;cos jfcosro,
i#r

(23)  B=var{T'(0)} = B>+ Y _ Y pjjrcosjfsinro,
J#r

24) ¥y =Cov{T®),T'®)}=—-C—) Y p;jcosjfsinro,
i
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t

A=apf —vy? d@t) = (27r)"/2/ exp(—y?/2)dy and
¢ =@ (1) = ) exp(~1?/2).
From (2.1) and since ®(¢) = 1/2 + ()~"/?erf(r /+/2) we have the extension of the
Kac-Rice formula [5]

b
EN(a,b):f (A2 /) exp(—K?B/2A) d6

b
+(\/§/7T)/ |Ky|a‘3/2 CXP(—KZ/Q,(Y)CI'f(lk}/‘/\/ial/zAl/z) do
2.5) = I,(a, b) + hL(a, b),

say.
Let $(8) = sin(2n + 1)@/ sin @ then the terms A%, B? and C appearing in (2.5) can
all be written as a function of S(8) as follows. Since

(2.6) S©)=1+2) cos2j6,
j=1
we have .
.7 A?=(1/2) Z(l +co0s2j0) =n/2+ (1/4){S(0) — 1}.
j=1
Also since from (2.6)

S' @) =-8)  jcos2jo =4y j*2sin’ jO — 1),
=1 j=1

J J

we have
(2.8) B2=n(n+1)2n+1)/12 4+ (1/8)S (6).

From (2.7) we also obtain
C= 1/ 54 = 195 ©).
As they will be required later, we define
Dzicosje and E=ijsinj0.
Jj=1 j=1

From (2.6) we can show that

2.9) D = (1/2){506/2) - 1}
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and
(2.10) E = (—1/4)5(9).

As 5(8) occurs frequently, we collect together some related inequalities. From (2.6)
it is obvious that as n — oo,

S(U)(e) — O(n"“)

uniformly in 6. Stricter inequalities can be obtained by confining € to the intervals
e <0 <m—eandi1+¢€ <0 < 2w — ¢, where € is any positive constant smaller than
7. Then, since |S(8)| < 1/ sin¢, we can obtain

S(0) = 0(1/e).

Also
SO =Cn+ 1)cos(2n + 1)6/5infB — cot0S(@) = O(n/e)
and
S$(0) = —2n + 1)*85() — 2n + 1) cos @ cos(2n + 1)0 sin2 6

— cotfS (6) — cosec’HS(6)
= O(n*/e).

These together with (2.7) - (2.10) give

2.11) A*=n/2+ 0(1/e),
(2.12) B2 =n’/6+ O(n*/e),
(2.13) C = O(n/e),

(2.14) D=0(/e) and
(2.15) E = O(n/e).

3. Proof of the Theorem

We shall divide the roots of T(#) — K = 0 into two groups: (i) those lying in the
intervals (0, €), (m — €, m + €) and (27 — €, 27), and (ii) those lying in the intervals
(e, m —¢€) and (m + €,27 — €). For the roots of type (i) which, it so happens, are
negligible, we need some modification to apply Dunnage’s [2] approach. Those roots
which make a significant contribution to the final result are of type (ii) and their
expected number is found by using the Kac-Rice formula (2.5). The choice of € is
important. It must not be too large, so that we can deal easily with type (i) roots; but
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if it is too small the approximation for type (ii) will become inadequate. We will see
€ = n~'/4 is sufficient for both requirements.

First we consider the case of p;, = p (constant). From (2.2), (2.11) and (2.14) We
have

2
o = A? -I—pZZcostcoer =A’+p (Zcosje) + Z:cos2 j6
j#r j=1 j=1
GB.1) =0 —-p)A2+pD*=n(l — p)/2+ O ).
Similarly from (2.3), (2.4) and (2.12) we can obtain

(3.2) B=n*(1—p)/6+ O(n*e?), and
(3.3) y = O(ne-2).

Hence from (3.1)—(3.3) we have
(3.4) A =n*(1 — p)* /124 O(n’e™?).
So from (2.5) and (3.1)—(3.4) we can write
(35) Li(e,m —€) = (nv/3){1 + O(e)}exp{—2K*/n(1 — p) + O(K?/n*e?)}

and
(3.6) Lie,m —€) = O(K’n™¥%7?).

Hence for K = O(n*®) from (2.5), (3.5) and (3.6) we have
3.7 EN(e, T —€) = n/v/3+ 0(n¥?),
and for K = o(/n),

(3.8) EN(e,m —€) = n/v/3 + o(v/n).

Now we tumn to the intervals (0, €), (m — €, 7w +¢€) and 2w — €, 27), and we show
that the equation has a negligible expected number of real roots in these intervals. By
periodicity, the expected number of real roots in (0, €) and (27 — ¢, 27) is the same
as the expected number in (—¢, €). We shall therefore confine ourselves to this last
interval; the interval (m — €, m + €) can be treated in exactly the same way to give
the same result. The idea, due to Dunnage [2], is to consider the random integral
function T (z, w) — K of the complex variable z. The number of real roots between
+e does not exceed the number in the circle |z| < €. Let N(r) = N(r, o, K) denote
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the number of real roots of T(z, w) — K = 0Qin |z| < r. Assuming that T(0) # K
then by Jensen’s theorem [9, page 125] or [7, page 332] we have

27
3.9 N(e)log2 < (27{)_‘/ log {T (2e€'®, w) — K}/{T(0) — K} d6.
0

Let A = n + pn(n — 1); then, by standard probability theory, the distribution
function of T(0, w) = Y _|_, g;(w) is

]

G(x) = 2nA?)~ f " exp(—t2/20%) dt,

—00

from which, for any positive v, we can see that |T (0, w) — K| > e~ except for sample
functions in an w-set of measure not exceeding

K+e™
(3.10) QrA*)~? f exp(—t2/2AY) dt < 2Qa A*)72e™.

K—ev

Also since | cos(2nee’?)| < 2e**€ we have
(3.1 IT(2€€)| < 26(1g1] + Ig2l + ... + 1ga) < 2ne” max |g;|
where the maximum is taken over 1 < j < n. The distribution function of |g;| is
42
Fx) = ,/2/71/0 exp(—t°/2)dt x>0
0 x < 0.

Now if max |g;| > ne” then |g;| > ne" for at least one value of j < n, so that

n

Prob(max |g;| > ne") < ZProb(Igj! > ne’) < nProb(|g,| > ne’)

j=1

(3.12) =n2/m /oo exp(—t?/2) dt ~ /2/m exp(—v — n%e*’ /2)

-4

for all sufficiently large n. Therefore from (3.11) and (3.12) except for sample
functions in an w-set of measure not exceeding (2/7)!/2 exp(—v — n%e?"/2),

(3.13) IT 2ee’®) — K| < |n* exp(2ne +v) — K|.
Combining (3.10) with (3.13) and since for both K = O(n*®) and K = o(y/n)

[n*exp(ne + v) — K| < 2n? exp(2ne + v),

https://doi.org/10.1017/51446788700038076 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038076

7N Level crossings of a random trigonometric polynomial with dependent coefficients 45

for all 6 we get

(3.14) HT Qee®, w) — K}/{T (0, w) — K}| < 2n* exp(2ne + 2v)

except for sample functions in an w-set of measure not exceeding
2Qr AN Ve + (2/m) 2 exp(—v — e /2).

Therefore from (3.9) and (3.14) we can show that outside the exceptional set

3.15 N(e) < (log2 +2logn + 2ne 4+ 2v)/log2.

Since € = n~'/* from (3.15) and for all sufficiently large n

(3.16) Prob{N (¢) > 3ne +2v} < 22n A*)~?e™"
+©2/m) " exp(—v — ne* /2).

Let n' be the integer part of 3,/n. Then from (3.16) and for n sufficiently large we
have

EN(e) = ) Prob(N(e) > j}
j>0
= Y Prob{N(e) > j} + ) _Prob{N(e) > n + j}
1<j<n’ jz1
<n' +2QrA)Y e+ (2/m)' ) exp{—j/2 —n’el [2)
jz1 Jj=1

3.1 = 0(n**).

This gives an upper bound for the number of real roots of T (8) in the interval (—e¢, €),
which together with (3.6) and (3.7) completes proof of the theorem for the case of
Pjr = P.

Now we consider the case of p;, = p"~"!, j #r,0 < p < 1. Toavoid repetition we
only point out the adjustment necessary in the calculationof ¢, 8, y. Fore < 0 < m—¢
from (2.14) we have

ZZp”"' cos j6 cosrd < D* = O(e™?)
J#r

which together with (2.2) and (2.11) gives

(3.18) a=A"+Y > plcos jOcosrg =n/2+ O?).
T
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Similarly, since from (2.14) and (2.15)

D> " jrp 7 sin j6sinre < E* = O(ne™?)

i
and
Zij”‘" sinfsinr® < DE = O(ne™?),
j#r
we obtain
(3.19) B=n’/6+ 0%
and
(3.20) y = O(ne™?).

Now (3.18)—(3.20) are sufficient for obtaining (3.7) and (3.8). For the intervals
(0,¢€), (mr —€, m +€) and (2w — €, 27r) the same argument remains valid if we replace

A%in (3.10) by
A=n+ 33 pin
J#r
Then since A? < A? from (3.17) we can obtain EN (¢), which completes the proof
of the theorem for the case p;, = p/~"!.
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