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Abstract

Rooted monounary algebras can be considered as an algebraic counterpart of directed rooted trees. We
work towards a characterization of the lattice of compatible quasiorders by describing its join- and meet-
irreducible elements. We introduce the limit B∞ of all d-dimensional Boolean cubes 2d as a monounary
algebra; then the natural order on 2d is meet-irreducible. Our main result is that any completely meet-
irreducible quasiorder of a rooted algebra is a homomorphic preimage of the natural partial order (or
its inverse) of a suitable subalgebra of B∞. For a partial order, it is known that complete meet-
irreducibility means that the corresponding partially ordered structure is subdirectly irreducible. For a
rooted monounary algebra it is shown that this property implies that the unary operation has finitely many
nontrivial kernel classes and its graph is a binary tree.
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1. Introduction

Rooted monounary algebras can be considered as an algebraic counterpart of directed
rooted trees. Namely, a rooted tree T with vertex set A and root > ∈ A can be interpreted
as the graph of a unary mapping f : A→ A, yielding a rooted monounary algebra
A = (A, f ). Clearly, the top element > then corresponds to the unique fixed point
of f , and f (a) is the father of a ∈ A \ {>} in the tree T .

Rooted monounary algebras also form a special class of acyclic monounary
algebras, which have the remarkable property that each compatible partial order can
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be extended to a compatible linear order (see Szigeti and Nagy [8]). For arbitrary
monounary algebras and partial orders we refer to Foldes and Szigeti [3].

Because compatible partial orders do not form a lattice, their investigation led
us naturally to the study of the lattice QuordA of compatible quasiorders, that is,
reflexive and transitive relations, which constitute the least common generalization
of congruences and compatible partial orders. In [6] several structure properties of
QuordA and of its down-set of compatible partial orders are given (for example,
QuordA is a glued sum of intervals in the lattice Quord(A) of all quasiorders on the
set A).

It is well known that the ‘building bricks’ of each finite or, more generally, double-
founded lattice, are its (completely) ∧- and ∨-irreducible elements (see, for example,
Ganter and Wille [4]). Aiming to characterize the lattice QuordA, the present
paper is devoted to the description of its (completely) ∧- and ∨-irreducible elements.
The completely ∨-irreducible quasiorders are easy to describe (see Proposition 3.1).
However, ∧-irreducible quasiorders not only need much more effort but are also of
special importance: a compatible quasiorder q of an algebra A is completely ∧-
irreducible if and only if the corresponding canonical factor structure A/q0 (see
Definition 2.2) considered as an ordered algebra is subdirectly irreducible in the sense
of Czédli and Lenkehegyi [1, Section 3]; see Proposition 2.8 (and also Remark 5.7).
Thus, if a partially ordered algebra (A, f , r) is represented as a subdirect product of
subdirect irreducibles, then this means that it is represented as a subalgebra of a direct
product of smaller algebraic structures with completely ∧-irreducible partial order
relations.

Therefore the main part of the paper aims to characterize compatible completely
∧-irreducible quasiorders. The first step is a reduction to ∧-irreducible partial orders
(Proposition 2.6). These are characterized in Section 3 via so-called critical pairs.
In Section 4, the d-dimensional Boolean cubes with their ∧-irreducible partial orders
(induced by the natural order of the Boolean cube) and their limit B∞ are considered.
It turns out in Section 5, that B∞ – or for finite algebras, the Boolean cubes Bd –
include all necessary information for the characterization of arbitrary completely ∧-
irreducible quasiorders. The main result is the characterization theorem for completely
∧-irreducible partial orders (Theorem 5.2) together with Corollary 5.6 for completely
∧-irreducible quasiorders.

2. Preliminaries

D 2.1. A quasiorder q on a set A is a reflexive and transitive relation q ⊆
A × A. The quasiorders on A form (with respect to ⊆) an algebraic, complemented,
atomistic and dually atomistic lattice (see Erné and Reinhold [2]) denoted by
Quord(A), which contains as a complete sublattice the lattice Equ(A) of all equivalence
relations on A. For q ∈ Quord(A) its inverse q−1 := {(y, x) | (x, y) ∈ q} is also a
quasiorder and the relation

q0 := q ∩ q−1
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is an equivalence on A. Obviously, q is a partial order if and only if q0 = ∆ (where
∆ := {(x, x) | x ∈ A}). The q0-equivalence class of an element a ∈ A will be denoted by
[a]q0 . It is well known that q ∈ Quord(A) induces a natural partial order q/q0 on the
factor set A/q0 := {[a]q0 | a ∈ A} given by

([a]q0 , [b]q0 ) ∈ q/q0 :⇐⇒ ∃ u ∈ [a]q0 ∃ v ∈ [b]q0 : (u, v) ∈ q.

It is easy to verify that ([a]q0 , [b]q0 ) ∈ q/q0 holds if and only if (x, y) ∈ q for all x ∈ [a]q0

and y ∈ [b]q0 .

For a unary mapping f : A→ A we write for simplicity f x and f nx instead of f (x)
and f n(x) (where f 0(x) := x, f n+1(x) := f ( f n(x)), n ∈ N).

D 2.2. A unary mapping f : A→ A preserves a binary relation % ⊆ A × A (or
f is an endomorphism of %, or % is invariant for or compatible with f ; notation f . %),
if

∀x, y ∈ A : (x, y) ∈ % =⇒ ( f x, f y) ∈ %.

For a monounary algebra A = (A, f ) we consider the following sets of compatible
relations:

QuordA := {% ⊆ A2 | % quasiorder, f . %},

ConA := {% ⊆ A2 | % equivalence relation, f . %},

PordA := {% ⊆ A2 | % partial order, f . %}.

It is known that QuordA is a complete sublattice of Quord(A), and ConA is a
complete sublattice of Equ(A) (we sometimes write r ≤ q and r < q instead of r ⊆ q and
r $ q). This follows from the fact that the infimum of a system {αi | i ∈ I} of elements
in each of these lattices is equal to the set-theoretical intersection

⋂
{αi | i ∈ I}; and that

the supremum is equal to (
⋃
{αi | i ∈ I})tra where αtra stands for the transitive closure of

a binary relation α ⊆ A2. PordA is an order ideal of QuordA, since r ∈ PordA and
q ⊆ r imply that q ∈ PordA for any q ∈ QuordA.

If q ∈ Quord(A, f ) then q0 ∈ Con(A, f ) and A = (A, f ) has a natural homomorphic
imageA/q0 := (A/q0, f̄ ), where f̄ is defined by f̄ ([x]q0 ) := [ f (x)]q0 . The partial order
q/q0 is also compatible: q/q0 ∈ Pord(A/q0, f̄ ).

D 2.3. A monounary algebraA = (A, f ) is acyclic, if f na = a for some a ∈ A
and positive n ∈ N+ implies that f a = a (that is, there are no cycles except loops). A
monounary algebraA is called connected if for any x, y ∈ A there exist some n, m ∈ N
such that f nx = f mx holds (see, for example, Jakubíková-Studenovská and Pócs [5]).
From the definition it follows easily that for a monounary algebra A = (A, f ) the
following conditions are equivalent.
(A) ∀x, y ∈ A ∃ n ∈ N : f nx = f ny.
(B) A is acyclic, connected and has a fixed point.
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In particular, (A) implies that there is a unique fixed point (denoted by >A or just >).
We call an algebra satisfying (A) also a rooted algebra since the unique fixed point
is the ‘root’ of the graph of f which is a rooted directed tree. In rooted algebras the
following definition makes sense: the depth of an element a ∈ A \ {>} is the natural
number n ∈ N such that f n−1(a) , f n(a) = >, and will be denoted by d(a). Moreover,
we put d(>) = 0. The branching depth of a rooted monounary algebra is defined by
bd(A) := max{d(a) | a ∈ A, |[a]ker f | ≥ 2} if this maximum exists, otherwise bd(A) =∞.

R 2.4. (a) Let A = (A, f ) be a monounary algebra. We denote by q(a, b) the
least compatible quasiorder of A containing the pair (a, b), that is, it is generated by
(a, b). It is easy to verify that

q(a, b) = ∆ ∪ {( f na, f nb) | n ∈ N}tra,

and in particular that

q(a, b) = ∆ ∪ {(a, b)} if (a, b) ∈ ker f .

(b) If A is acyclic, then q(a, b) is known to be a partial order (see Radeleczki and
Szigeti [7]). Further, ifA is rooted with the fixed point >, then for arbitrary a, b ∈ A,

q(a, >) = ∆ ∪ {( f na, >) | n ∈ N},

q(>, b) = ∆ ∪ {(>, f nb) | n ∈ N}.

(c) Because ( f ka, f kb) ∈ ker f \ ∆ for k = max{d(a), d(b)} − 1, in view of (a) it
immediately follows that a quasiorder q ∈ QuordA of a rooted monounary algebra
A = (A, f ) is an atom in QuordA if and only if q = q(a, b) for some (a, b) ∈ ker f \ ∆.

D 2.5. Let A be a set. For θ ∈ Equ(A), θ ⊆ γ ∈ Quord(A) and γ′ ∈ Quord(A/θ)
define

ιθ(γ) := γ/θ = {([x]θ, [y]θ) | (x, y) ∈ γ},

λθ(γ′) := {(x, y) ∈ A2 | ([x]θ, [y]θ) ∈ γ′}.

From these definitions it easily follows that θ ⊆ λθ(γ′), λθ(γ/θ) = γ and λθ(γ′)/θ = γ′,
that is, ιθ : [θ〉Quord(A)→ Quord(A/θ) is a bijection, and λθ is the inverse. Moreover,
these mappings are inclusion-preserving and therefore lattice isomorphisms.

Recall that an element r of a lattice (L, ≤) is ∧-irreducible if and only if r = x1 ∧ x2

implies r = x1 or r = x2 for x1, x2 ∈ L. In a complete lattice, r is completely ∧-
irreducible if and only if r =

∧
X implies r ∈ X for X ⊆ L (this is equivalent to

r <
∧
{x ∈ L | r < x}). The (completely) ∨-irreducible elements can be defined dually.

The following proposition will be a helpful tool for investigating ∧-irreducible
quasiorders of monounary algebras. Since compatibility of quasiorders depends only
on the unary polynomial operations of an algebra, we formulate the proposition for
arbitrary algebras but need to prove it only for unary ones.
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P 2.6. LetA be an arbitrary algebra.
(a) Let θ ∈ ConA. Then ιθ : [θ〉QuordA→ Quord(A/θ) is a lattice isomorphism.
(b) q ∈ QuordA is (completely) ∧-irreducible in QuordA if and only if q/q0 ∈

Pord(A/q0) is (completely) ∧-irreducible in Quord(A/q0).

P. Because of the properties mentioned after Definition 2.5, to verify (a), it
remains to prove that the mappings ιθ and λθ preserve compatibility. Let f : A→ A
be a (without loss of generality unary) operation of A; the corresponding operation
in the factor algebra A/θ will be denoted here by f̄ . Let θ ⊆ q ∈ QuordA and
([x]θ, [y]θ) ∈ ιθ(q) = q/θ. Then (x, y) ∈ q and, by compatibility, ( f x, f y) ∈ q, and
therefore ( f̄ [x]θ, f̄ [y]θ) = ([ f x]θ, [ f y]θ) ∈ q/θ. Similarly, for γ′ ∈ Quord(A/θ) and
(x, y) ∈ λθ(γ′) we get ([x]θ, [y]θ) ∈ γ′, thus ([ f x]θ, [ f y]θ) = ( f̄ [x]θ, f̄ [y]θ) ∈ γ′ which
gives ( f x, f y) ∈ λθ(γ′), showing that λθ(γ′) ∈ QuordA.

(b) immediately follows from (a) with θ := q0 ∈ ConA. �

Now we are also able to characterize the dual atoms.

C 2.7. Let A be a rooted monounary algebra with at least two elements. A
quasiorder q is a dual atom in QuordA if and only if q , q−1 and q0 = q ∩ q−1 has
exactly two equivalence classes.

P. By Proposition 2.6, a quasiorder q is a dual atom in QuordA if and only if
the corresponding partial order r = q/q0 is a dual atom in Quord(B) for B =A/q0.
We shall see in Proposition 3.4 that an algebra must be of binary type if there exists
a compatible partial order which is ∧-irreducible in the quasiorder lattice. Since a
dual atom r is ∧-irreducible (in Quord B), it follows that B is of binary type. Thus
the kernel class [>]ker f consists of exactly two elements and r̃ = r ∪ {(u, >), (>, u)} is a
larger nontrivial compatible quasiorder containing r. If B has more than two elements,
then r̃ is nontrivial, a contradiction because r is a dual atom. Hence r is a linear order
on a two-element rooted monounary algebra. �

We mention here an interesting connection with subdirectly irreducible partially
ordered algebraic structures (ordered algebras in the sense of Czédli and
Lenkehegyi [1]). It is a direct consequence of [1, Theorem 3.1] that, for an algebra
A = (A, F(A)), a compatible partial order r ∈ PordA is completely ∧-irreducible if and
only if the partially ordered structure (A, F(A), r) is subdirectly irreducible. Therefore,
from Proposition 2.6(b) we immediately obtain the following.

C 2.8. Let A = (A, F(A)) be an algebra and let q ∈ QuordA. Then q
is completely ∧-irreducible if and only if the partially ordered factor algebra
(A/q0, F(A/q0), q/q0) is a subdirectly irreducible partially ordered structure.

3. The irreducible quasiorders

As already mentioned in the introduction, completely ∨- and ∧-irreducible
quasiorders completely determine the quasiorder lattice QuordA. The ∨-irreducibles
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cause no problems, so we start with them; the remainder of the paper is devoted to the
characterization of the ∧-irreducible quasiorders. It is clear that each completely ∨-
irreducible quasiorder in QuordA is of the form q(a, b) (see the first formula in 2.4(a))
for some a, b ∈ A, a , b. The following proposition shows the converse.

P 3.1. For a rooted monounary algebra A = (A, f ), each q(a, b) with
(a, b) ∈ A2 \ ∆ is completely ∨-irreducible in the lattice QuordA. Moreover,
〈q(a, b)]QuordA is finite.

P. Let (a, b) ∈ A2 \ ∆. Since the graph of f is a rooted tree (see Definition 2.3),
there exist a least m and a least n such that f ma = f nb (observe that then f m′a = f n′b
implies in particular that n ≤ n′). Without loss of generality, we can assume that m ≥ n
(otherwise consider q(b, a) = (q(a, b))−1). Note that m = 0 is excluded, otherwise also
n = 0 and a = f ma = f nb = b in contradiction to (a, b) < ∆.

Let q∗ := q(a, b) \ {(a, b)}. Obviously, p ≤ q∗ for each p ∈ QuordA with p < q(a, b)
(since the latter implies that (a, b) < p). We shall prove that q∗ is transitive, therefore
it is a quasiorder and consequently q(a, b) is completely ∨-irreducible.

First we show that

q(a, b) = ∆ ∪ {(a, b)} ∪ {( f ja, f jb) | 1 ≤ j < n}

∪ {( f ia, f i+k(m−n)a) | n ≤ i ∈ N, k ∈ N+}.
(3.1)

Denote the right-hand side of this equation by r. Obviously, since a is of finite depth,
r contains only finitely many pairs, thus the last statement in Proposition 3.1 follows
from (3.1). Now, it is easy to see that r is reflexive and compatible. Moreover, r is
contained in q(a, b): in fact, for n ≤ i,

( f ia, f i+(m−n)a) = ( f ia, f i−n( f ma)) = ( f ia, f i−n( f nb)) = ( f ia, f ib) ∈ q(a, b)

and hence inductively by transitivity of q(a, b) we have ( f ia, f i+k(m−n)a) ∈ q(a, b) for all
k ∈ N+. Note that r contains (a, b). Thus, to show the equality r = q(a, b), it suffices to
prove that r is also a quasiorder, that is, r is transitive. Assume that (u, v), (v, w) ∈ r \ ∆.
We shall prove that (u, w) ∈ r. Observe that f jb = v = f ia is possible only if j ≥ n.
Therefore the only nontrivial case which must be considered is

(u, v) = ( f ia, f i+k(m−n)a) and (v, w) = ( f ja, f j+k′(m−n)a)

for some i, j ≥ n. If v = f ja = > then w = f k(m−n)( f ja) = > in contradiction to (v, w) <
∆. Thus f i+k(m−n)a = v = f ja , > implies that j = i + k(m − n), that is, (u, w) =

( f ia, f i+k′′(m−n)a) ∈ r where k′′ = k + k′. The transitivity of r is proved, and, as
mentioned above, this proves (3.1).

In order to proceed further, notice that a , >, because a = > would imply m = 0
(by minimality of m) which is excluded. Moreover, if b = > then from the first formula
in 2.4(b) we immediately conclude that q∗ = q(a, >) \ {(a, >)} = q( f a, >) is a quasiorder
and, as mentioned above, q(a, b) is completely ∨-irreducible. Thus we can also assume
that b , >.
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Now we want to derive from (3.1) a description of q∗ = r \ {(a, b)}. For this we
notice first that (a, b) cannot belong to {( f ja, f jb) | 1 ≤ j < n} (because f jb = b would
imply b = >). Next we look at which pairs of r of the form ( f ia, f i+k(m−n)a), with
n ≤ i ∈ N, k ∈ N+, may be equal to (a, b) (see Equation (3.1)).

Claim: ( f ia, f i+k(m−n)a) = (a, b) ⇐⇒ (n, i, k) = (0, 0, 1).
If (n, i, k) = (0, 0, 1), then clearly

( f ia, f i+k(m−n)a) = ( f 0a, f ma) = (a, f nb) = (a, b).

Conversely, let ( f ia, f i+k(m−n)a) = (a, b). Then f ia = a, which implies that i = 0
(because a , >), consequently n = 0 since n ≤ i. For the second component of the
pairs we have f i+k(m−n)a = b, therefore

b = f kma = f (k−1)m( f ma) = f (k−1)m( f nb) = f (k−1)mb.

Since b , >we conclude that (k − 1)m = 0 and hence k = 1 (since m , 0), and the claim
is proved.

Using this claim, from the description (3.1) of q(a, b),

q∗ = ∆ ∪ {( f ia, f ib) | 1 ≤ i < n}

∪{( f ia, f i+k(m−n)a) | n ≤ i ∈ N, k ∈ N+, (n, i, k) , (0, 0, 1)}.

The above proof of transitivity of r shows that q∗ = r \ {(a, b)} is also transitive: in fact,
(u, v), (v, w) ∈ q∗ implies that (u, w) = ( f ia, f i+k′′(m−n)a) ∈ q∗ because k′′ = k + k′ ≥ 2
and thus (n, i, k′′) , (0, 0, 1). Since transitivity of q∗ is proved, we are done. �

Now we start to consider (completely)∧-irreducible quasiorders. Proposition 2.6(b)
shows that every ∧-irreducible quasiorder can be obtained from a ∧-irreducible partial
order (in a suitable factor algebra). Thus, from now on, we restrict mainly to partial
orders. Note that throughout the paper ∧-irreducibility will be meant always in the
quasiorder lattice QuordA. Proposition 3.4 below shows that ∧-irreducible partial
orders can exist only under very special conditions on the algebra. In preparation we
need the following lemma.

L 3.2. Let A = (A, f ) be a monounary algebra such that there exists a ∧-
irreducible partial order r ∈ PordA. Then each congruence class of the kernel of
f is linearly ordered by r.

P. Assume by way of contradiction that (a, b) < r, (b, a) < r for some (a, b) ∈
ker f . Then γ1 := r ∨ q(a, b) and γ2 := r ∨ q(b, a) are quasiorders in QuordA strictly
containing r. We will show that r = γ1 ∩ γ2, which contradicts the ∧-irreducibility of
r and which therefore finishes the proof.

In fact, if (x, y) ∈ γ1 ∩ γ2, then we have chains

x = u0
r
−−→ u1

q(a,b)
−−−−−→ u2

r
−−→ · · ·

q(a,b)
−−−−−→ un−1

r
−−→ un = y,

x = v0
r
−−→ v1

q(b,a)
−−−−−→ v2

r
−−→ · · ·

q(b,a)
−−−−−→ vm−1

r
−−→ vm = y
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(here we use the notation v
s
−−→ w for (v, w) ∈ s where s is any binary relation). If

q(a, b) or q(b, a) is not involved, then we immediately get (x, y) ∈ r. Otherwise we
may assume n ≥ 3, m ≥ 3. Since (a, b) ∈ ker f , by the second formula in 2.4(a) we get
x = u0

r
−−→ u1 = a = vm−1

r
−−→ vm = y, that is, we also have (x, y) ∈ r by transitivity of r;

thus γ1 ∩ γ2 = r. �

D 3.3. We say that a monounary algebra A = (A, f ) is of binary type if
|[a]ker f | ≤ 2 for all a ∈ A.

P 3.4. Let A be a monounary algebra. If there exists a ∧-irreducible
compatible partial order forA thenA is of binary type.

P. Let r ∈ PordA be ∧-irreducible. Assume to the contrary that there is a kernel
class with at least three elements. By Lemma 3.2 we find a three-element chain
a

r
−−→ b

r
−−→ c in [a]ker f . Then γ1 := r ∨ q(b, a) and γ2 := r ∨ q(c, b) are quasiorders

in QuordA strictly containing r (since (b, a), (c, b) does not belong to r, note that r is
a partial order).

We proceed as in the proof of Lemma 3.2, taking (x, y) ∈ γ1 ∩ γ2, obtaining chains

x = u0
r
−−→ u1

q(b,a)
−−−−−→ u2

r
−−→ · · ·

q(b,a)
−−−−−→ un−1

r
−−→ un = y,

x = v0
r
−−→ v1

q(c,b)
−−−−−→ v2

r
−−→ · · ·

q(c,b)
−−−−−→ vm−1

r
−−→ vm = y,

where we can assume n ≥ 3, m ≥ 3, and thus getting

x = u0
r
−−→ u1 = b = vm−1

r
−−→ vm = y,

that is, (x, y) ∈ r. This shows that r = γ1 ∩ γ2 which contradicts the ∧-irreducibility
of r. �

R 3.5.

(i) The converse statement, namely that a monounary algebra A = (A, f ) of binary
type has a completely ∧-irreducible compatible partial order, is not true in
general. There exist even finite monounary algebras of binary type which
admit no ∧-irreducible partial order (for example, a three-element connected
monounary algebra with a cycle of length two). However, in Proposition 5.5
we shall see that a rooted monounary algebra A = (A, f ) of binary type has
a completely ∧-irreducible compatible partial order if and only if its branched
depth (see Definition 2.3) is finite. In particular, this holds for all finite rooted
monounary algebras.

(ii) In view of [1] (as mentioned before Corollary 2.8), from Proposition 3.4 it
immediately follows that if, for a rooted monounary algebra A = (A, f ) and
r ∈ PordA, the ordered algebra (A, f , r) is subdirectly irreducible, then A must
be of binary type, consequently it has at most countable cardinality.
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L 3.6. Let A = (A, f ) be a rooted monounary algebra of binary type and let
r ∈ PordA.
(a) If r is ∧-irreducible, then the fixed point > is either the greatest or the least

element with respect to r.
(b) Let > be the greatest element, (x, y) ∈ r and u ∈ A \ {>} such that f (u) = >. Then

d(x) ≥ d(y), and u is maximal (with respect to r) in A \ {>}.
(c) If > is the greatest element, then {a ∈ A | d(a) ≤ k} is finite for each k ∈ N; in

particular, each filter [m〉r is finite (m ∈ A).

P. To prove (a), we assume to the contrary that there exist a, b ∈ A such that
(a, >) < r and (>, b) < r. Analogously to the previous proofs, consider γ1 := r ∨
q(a, >) and γ2 := r ∨ (>, b) which strictly contain r. We will show that r = γ1 ∩ γ2,
contradicting the ∧-irreducibility of r and hence finishing the proof.

Thus let (x, y) ∈ γ1 ∩ γ2. Consequently, we have chains

x = u0
r
−−→ u1

q(a,>)
−−−−−→ u2

r
−−→ · · ·

q(a,>)
−−−−−→ un−1

r
−−→ un = y,

x = v0
r
−−→ v1

q(>,b)
−−−−−→ v2

r
−−→ · · ·

q(>,b)
−−−−−→ vm−1

r
−−→ vm = y.

From the formulas in 2.4(b) we conclude that x = v0
r
−−→ v1 = > = un−1

r
−−→ un = y, that

is, (x, y) ∈ r, and we are done.
We prove (b). For (x, y) ∈ r we have ( f d(x)x, f d(x)y) = (>, f d(x)y) ∈ r, and

consequently f d(x)y = > because > is the greatest element, that is, d(y) ≤ d(x). Now
let (u, u′) ∈ r. Then (>, f u′) = ( f u, f u′) ∈ r. By assumption ( f u′, >) ∈ r, consequently
f u′ = >. SinceA is of binary type we get u′ = u or u′ = >.

Let us show (c). BecauseA is of binary type there are only finitely many elements
of a fixed depth k (namely ≤ 2k−1). Thus, by (b), there are only finitely many elements
of bounded depth. �

D 3.7. Let r ∈ Pord(A, f ). A pair (a, b) ∈ A2 is called critical for r in (A, f )
(or r-critical for short) if:
(1) ( f a, f b) ∈ r;
(2) a is a minimal element (with respect to r) in A \ 〈b]r;
(3) b is a maximal element (with respect to r) in A \ [a〉r.

R. The definition implies that (a, b) < r because otherwise (a, b) ∈ r would
imply that a ∈ 〈b]r. Thus, instead of (1), we can also write (a, b) ∈ f −1(r) \ r. A pair
(a, b) < r satisfying (2) and (3) is called a critical pair of (A, r); see Trotter [9].

L 3.8. Let r ∈ PordA, q ∈ QuordA and r ≺ q in QuordA for some monounary
algebraA = (A, f ). Then there exists an r-critical pair (a, b) such that q = r ∪ {(a, b)}.

P. By [6, Proposition 5.3] (the proof of this proposition is formulated for finite
algebras in [6], but it does not require finiteness and therefore holds also for
arbitrary rooted monounary algebras), r ≺ q in QuordA implies r ≺ q also in Quord(A)
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and f̃ (q) ⊆ r ≺ q ⊆ f −1( f̃ (q)) where

f̃ (q) := ∆ ∪ {( f x, f y) | (x, y) ∈ q}tra.

Due to a result of Erné and Reinhold, [2, Lemma 1.4], we have r ≺ q in Quord(A)
if and only if there exists (a, b) ∈ A2 \ r such that q = r ∪ {(a, b)} where a is minimal
in 〈b]r and b is maximal in A \ [a〉r. It remains to show that ( f a, f b) ∈ r: clearly
(a, b) ∈ f −1( f̃ (q)) yields ( f a, f b) ∈ f̃ (q) ⊆ q. Thus (a, b) is r-critical. �

P 3.9. LetA = (A, f ) be a rooted monounary algebra and let r ∈ Pord(A, f ).
Then the following are equivalent.
(1) r is completely ∧-irreducible in Quord(A, f ).
(2) There exists an r-critical pair (a, b) with

∀v, w ∈ A : (v, w) < r, ( f v, f w) ∈ r =⇒ (a, v) ∈ r, (w, b) ∈ r. (C)

Moreover, if (2) is satisfied, then (a, b) is the unique r-critical pair.

Note that condition (C) can also be written in the more condensed form,

f −1(r) \ r ⊆ [a〉r × 〈b]r. (C′)

P. We show that (1) implies (2). Since r is completely ∧-irreducible, for

r∗ :=
∧
{q ∈ QuordA | r < q}

we have r ≺ r∗. According to Lemma 3.8 there exists an r-critical pair (a, b)
such that r∗ = r ∪ {(a, b)}. To prove the required properties, take (v, w) ∈ f −1(r) \ r.
Then ( f v, f w) ∈ r and it is easy to check that qr := r ∪ 〈v]r × [w〉r is a quasiorder.
Moreover, qr is compatible. In fact, let (x, y) ∈ qr. If (x, y) ∈ r then ( f x, f y) ∈ r ⊆ qr.
Otherwise, if (x, y) ∈ 〈v]r × [w〉r, then x

r
−−→ v, w

r
−−→ y and hence f x

r
−−→ f v

r
−−→ f w

r
−−→

f y, consequently ( f x, f y) ∈ r. Thus qr ∈ QuordA. Since (v, w) < r, it follows that
r < qr, thus r∗ ⊆ qr. Therefore, (a, b) ∈ qr \ r implies (a, b) ∈ 〈v]r × [w〉r, that is,
(a, v), (w, b) ∈ r.

Now we show that (2) implies (1). Let (a, b) be r-critical with (C′). Then (a, b) < r.
We show that (a, b) ∈ q for every q ∈ QuordA with r ⊂ q, which implies that r is
completely ∧-irreducible. Thus let r < q. Then there exists (x, y) ∈ q \ r. We can
assume that ( f x, f y) ∈ r (otherwise choose ( f nx, f ny) ∈ q \ r satisfying ( f f nx, f f ny) ∈
r; such an n exists because of condition (A) of Definition 2.3). Consequently, by
(C′), we have (x, y) ∈ f −1(r) \ r ⊆ [a〉r × 〈b]r, that is, (a, x), (y, b) ∈ r ⊆ q. Hence, by
transitivity of q and (x, y) ∈ q, we have (a, b) ∈ q.

To prove the last statement in Proposition 3.9, namely that (a, b) is unique, let (c, d)
be another r-critical pair, (c, d) , (a, b). We can assume that c , a (the case d , b can
be treated analogously using condition (3) of Definition 3.7). Now (c, d) ∈ f −1(r) \ r ⊆
[a〉r × 〈b]r shows that (a, c) ∈ r and (d, b) ∈ r. Since c is minimal in A \ 〈d]r (see
condition (2) of Definition 3.7) and a , c, it follows that a ∈ 〈d]r. Hence, (a, d) ∈ r,
and by transitivity (a, b) ∈ r, a contradiction. �
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We mention that, if (a, b) is the unique r-critical pair, then, in view of Lemma 3.8,
r∗ = r ∪ {(a, b)} is the unique upper cover of r. Consequently, for finite algebras, r is
(completely) ∧-irreducible (that is, condition (1) of Proposition 3.9 is satisfied).

T 3.10. Let A = (A, f ) be a rooted algebra of binary type and let [>]ker f =

{u, >}. Then the following conditions are equivalent for a partial order r ∈ PordA.
(I) r is completely ∧-irreducible with (u, >) ∈ r.
(II) ∃ m ∈ A \ 〈u]r : f −1(r) \ r ⊆ [m〉r × 〈u]r.

P. We show that (I) implies (II). Since r is completely ∧-irreducible, by Proposi-
tion 3.9 there exists an r-critical pair (a, b) satisfying condition (C). For any x ∈ A \ 〈u]r

we have (x, u) < r and ( f x, f u) = ( f x, >) ∈ r. Therefore, by condition (C), we get
(a, x) ∈ r and (u, b) ∈ r. Thus ( f u, f b) ∈ r since r is compatible, and therefore (>, f b) =

( f u, f b) ∈ r, which implies f b = > and hence b = > or b = u. Since (a, b) < r and > is
the greatest element (by Lemma 3.6), the case b = > is excluded and therefore b = u
and, for m := a, (m, u) = (a, b) is an r-critical pair. It satisfies condition (C) as assumed
above; moreover, we have m ∈ A \ 〈u]r because of (m, u) < r. Thus (II) is proved.

Now we show that (II) implies (I). We have (u, >) ∈ r because, by (II), (u, >) < r
together with ( f u, f>) = (>, >) ∈ r would imply that u ∈ [m〉r, contradicting m < 〈u]r.
We show further that (a, >) ∈ r for all a ∈ A. Assume that (a, >) < r. Then there exists
a least i ∈ N such that ( f ia, f i

>) = ( f ia, >) < r but ( f i+1a, >) ∈ r. By (II) this implies
> ∈ 〈u]r in contradiction to (u, >) ∈ r.

We now prove that (m, u) is an r-critical pair. Then condition (C′) is satisfied
for (a, b) = (m, u) because of (II), and r has to be completely ∧-irreducible by
Proposition 3.9, and the proof is finished.

Thus it remains to check conditions(1)–(3) of Definition 3.7 for the pair (m, u). (1)
is satisfied since, as proved above, ( f m, f u) = ( f m, >) ∈ r. Concerning (2) we prove
even more: m is the least element in A \ 〈u]r. In fact, let c < 〈u]r, that is, (c, u) < r.
Because of ( f c, f u) = ( f c, >) ∈ r we have (c, u) ∈ f −1(r) \ r and conclude from (II)
that c ∈ [m〉r, that is, (m, c) ∈ r. Thus m is the least element in A \ 〈u]r and therefore
A = 〈u]r ∪ [m〉r is a partition of A, whence A \ [m〉r = 〈u]r. But the latter implies that
u is the greatest element in A \ [m〉r and therefore also (3) is fulfilled. �

D 3.11.

(i) Let A = (A, f ) be a rooted algebra. A pair (C0,C1) of nonempty subsets of A
is called a ?-partition of A if it is a partition of A (that is, A = C0 ∪C1 and
C0 ∩C1 = ∅) such that the unique fixed point > of f belongs to C1 and for all
a ∈ A we have |[a]ker f ∩C0| ≤ 1 and |[a]ker f ∩C1| ≤ 1, consequently |[a]ker f | ≤ 2,
that is,A is of binary type. Thus in each kernel class there is at most one element
of each class C1, C2, in particular > ∈C1, and therefore, for [>]ker f = {>, u}, we
have u ∈C0 (provided thatA has at least two elements).

(ii) Two algebras (A, f ) and (A′, f ′) with ?-partitions (C0,C1) and (C′0,C
′
1),

respectively, are called ?-isomorphic if there exists an isomorphism ϕ : (A, f )→
(A′, f ′) which maps C0 onto C′0, and C1 onto C′1.
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f

r

u

m

F 1. A ∧-irreducible r ∈ Pord(A, f ) with its r-critical pair (m, u) and corresponding ?-partition
(〈u]r, [m〉r) of (A, f ).

R 3.12. Let A = (A, f ) be rooted of binary type and let r ∈ PordA be
completely ∧-irreducible with [>]ker f = {u, >}, (u, >) ∈ r and m as in Theorem 3.10.
From Proposition 3.9 and the proof of Theorem 3.10 we conclude the following.

(a) (u, m) is an r-critical pair, m is the least element in A \ 〈u]r, u is the greatest
element in A \ [m〉r and A = 〈u]r ∪ [m〉r is a disjoint union; see Figure 1.

(b) (〈u]r, [m〉r) is a ?-partition (in the sense of Definition 3.11), which we shall call
the ?-partition ofA corresponding to r.

In fact, clearly > ∈ [m〉r, and for (a, b) ∈ ker f \ ∆ we have either (a, b) < r or (b, a) <
r (note that r is a partial order). If (a, b) < r then by condition (II) of Theorem 3.10 we
get a ∈ [m〉r and b ∈ 〈u]r since ( f a, f b) ∈ ∆ ⊆ r. Analogously for (b, a) < r.

(c) We have ([m〉r × 〈u]r) ∩ r = ∅ because (m, u) < r (that is, there are no r-edges
from the right part to the left part in Figure 1).

(d) The filter [m〉r is finite because of Lemma 3.6(c). If a kernel class [a]ker f

contains two elements then one of them must belong to [m〉r (due to the properties
of a ?-partition; see Definition 3.11), thus for the branched depth (Definition 2.3) we
get bd(A) ≤ dA(m).

4. The d-dimensional Boolean cubes and their limit as monounary algebras

First we introduce several notions and notations. Let 2 := {0, 1} and consider the
d-dimensional Boolean cube 2d := {0, 1}d with d ∈ N+. We write the elements w ∈ 2d

as words (of length d), and the components (letters) often will be denoted by wi,
that is, w = w1 . . . wd := (w1, . . . , wd), (wi ∈ {0, 1}, i ∈ {1, . . . , d}). Further, consider
the set 2[∞] of all infinite strings v = v1v2v3 . . . (vi ∈ 2) with finitely many 0s. The
concatenation of a word w and a word or a string v will be denoted as usual by wv.
Further, wn stands for w . . . w (n times, or for the empty word if n = 0).

Observe that all cubes 2d naturally embed into 2[∞] via w 7→ w1∞. Here 1∞ denotes
the string consisting of 1s only (∀i ∈ N+ : vi = 1).

https://doi.org/10.1017/S1446788712000328 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000328


[13] Irreducible quasiorders of monounary algebras 271

We define the monounary algebra B∞ := (2[∞], f∞) by

f∞(x1x2x3 . . . ) := x2x3 . . .

(this ‘tail operation’ just deletes the first component). The restriction of f∞ to the
d-dimensional Boolean cube gives the finite monounary algebra

Bd := (2d, fd), with fd(x1x2 . . . xd) := x2 . . . xd 1,

and the above natural embedding Bd →B∞ is an injective homomorphism.
Clearly,B∞ as well asBd is a rooted algebra of binary tree form: for x1 ∈ 2, v ∈ 2[∞],

we have [x1v]ker f∞ = {0v, 1v}, analogously [x1v]ker fd = {0v, 1v} for v ∈ 2d−1. Moreover,
> = 1∞ (respectively, > = 1d) is the unique fixed point of f∞ (respectively, fd) and
the kernel class [>]ker f∞ (respectively, [>]ker fd ) is {ε, >} where ε := 01∞ (respectively,
ε := 01d−1). Let K0 be the set of all strings v ∈ B∞ (respectively, words in Bd) with first
letter v1 = 0. Analogously K1 denotes the set of all strings starting with v1 = 1. Then
(K0, K1) is a ?-partition (in the sense of Definition 3.11) of B∞ as well as of Bd.

Further, we consider the usual componentwise order ≤, denoted also by p∞ on 2[∞],
and pd on 2d, respectively, given by

x1x2 . . . ≤ y1y2 . . . :⇐⇒ ∀i ∈ N+(respectively, ∀i ∈ {1, . . . , d}) : xi ≤ yi.

Note that v ≤ w implies f∞v ≤ f∞w, thus p∞ is compatible, that is, p∞ ∈ Pord B∞ (and
analogously pd ∈ Pord Bd). For a subalgebraB ofB∞ (respectively,Bd), the restriction
of ≤ to the carrier set B of B will be denoted also by pB := ≤ ∩ (B × B).

For any nonempty subalgebra B of B∞ (respectively, Bd) there is a canonical ?-
partition, namely (B ∩ K0, B ∩ K1), which we shall always use when subalgebras of
B∞ (respectively, Bd) are considered. Note that K0 = 〈ε]p∞ and K1 =

⋃
d∈N+

[µ(d)〉p∞
with ε = 01∞ as above and µ(d) := 10d−11∞. For d ∈ N+, we use the notation εd := 01d−1

and µd := 10d−1 (the indices may be omitted if d is clear from the context). These
elements of Bd correspond to ε and µ(d) in B∞ via the natural embedding. Then
Bd = K0 ∪ K1 = 〈εd]pd ∪ [µd〉pd .

As an example, B3 is shown in Figure 2 (with ε := ε3, µ := µ3). Part (a) emphasizes
the usual cube order p3 while part (b) reorders (a) with emphasis on the binary type
(the graph of f3 is drawn with bold arrows while the edges for the (Hasse) diagram
of p3 are given by dashed arrows; p3 is the reflexive and transitive closure of these
arrows).

P 4.1. Let B = (B, f∞ �B) be a subalgebra of B∞ such that B ∩ K1 has
a least element µ with respect to p∞. Then there exists exactly one completely
∧-irreducible partial order r ∈ Pord B with > as greatest element such that the
corresponding ?-partition (see Remark 3.12(b)) equals (B ∩ K0, B ∩ K1), namely
r = pB = p∞ ∩ (B × B). Moreover, (ε, µ) is a pB-critical pair.

P. In the proof we write f instead of f∞, and, without loss of generality, we may
assume that |B| ≥ 2, thus ε, > ∈ B. First we show that pB is completely ∧-irreducible.
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(a) (b)
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f3
 

p3

F 2. The Boolean cube B3 = (23, f3) with ∧-irreducible p3 ∈ Pord B3.

According to Theorem 3.10 it suffices to prove that condition (II) of Theorem 3.10 is
satisfied for u = ε = 01∞ and m = µ. Let (a, b) ∈ f −1(pB) \ pB, that is, a � b but f a ≤ f b
for a, b ∈ 2[∞]. By definition of f and pB = p∞ ∩ (B × B), the second condition means
that ai ≤ bi for i ∈ {2, 3, . . . } and therefore the first condition implies a1 > b1, that is,
a1 = 1 and b1 = 0. Consequently, a ∈ K1 and b ∈ K0 and therefore (a, b) ∈ [µ〉pB × 〈ε]pB

which finishes the proof of condition (II) of Theorem 3.10. In view of Remark 3.12(a),
(ε, µ) is a pB-critical pair.

Now, let r ∈ Pord B be completely ∧-irreducible. According to Theorem 3.10 there
exists an element m ∈ B \ 〈ε]r such that f −1(r) \ r ⊆ [m〉r × 〈ε]r. By our assumption for
the ?-partition (〈ε]r, [µ〉r) (see Remark 3.12(b)) we have 〈ε]r = B ∩ K0, [m〉r = B ∩ K1

and > is the greatest element of r. We are going to show that these conditions for r
force r to be pB.

First we show r ⊆ pB. Assume that there exists a pair (a, b) ∈ r \ pB. Recall that for
a = a1a2 . . . the first letter of f i−1a is ai. Since (a, b) < pB there is some index i ∈ N+

with 1 = ai > bi = 0, thus ( f i−1a, f i−1b) ∈ K1 × K0. On the other hand, f preserves r
and therefore

( f i−1a, f i−1b) ∈ r ∩ (K1 × K0) = r ∩ ((B ∩ K1) × (B ∩ K0)) = r ∩ ([m〉r × 〈ε]r).

However, this is a contradiction because the latter intersection is empty according to
Remark 3.12(c).

Now we show that pB ⊆ r. Suppose that there exists a pair (a, b) ∈ pB \ r. Without
loss of generality we can assume that ( f a, f b) ∈ r (otherwise apply f several times
until we get a pair with the required properties). Thus (a, b) ∈ f −1(r) \ r ⊆ [m〉r × 〈ε]r,
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that is, a ∈ [m〉r = B ∩ K1 = [µ〉pB and b ∈ 〈ε]r = B ∩ K0 = 〈ε]pB . Consequently, (a, b) ∈
([µ〉pB × 〈ε]pB) ∩ pB. Again, this is a contradiction since this intersection is empty
according to Remark 3.12(c) and the complete ∧-irreducibility of pB which was shown
above. �

5. Characterization of completely ∧-irreducible quasiorders

From now on we explicitly assume that all algebras contain at least two elements.
Moreover, we use all notations introduced in Section 4.

The next proposition shows how rooted algebras with a ?-partition (and therefore
of binary type, see Definition 3.11) can be embedded into B∞.

P 5.1. LetA = (A, f ) be a rooted algebra and let (C0,C1) be a ?-partition.
Then there exists a unique subalgebra B = (B, f∞ �B) of B∞ such that B with the
canonical ?-partition (B ∩ K0, B ∩ K1) is ?-isomorphic toA.

P. We recursively define a mapping ϕ :A→B∞ as follows: ϕ(>A) := > = 1∞,

ϕ(a) :=

0ϕ( f a) if a ∈C0,

1ϕ( f a) if a ∈C1.

Since for every a ∈ A \ {>A} there exists a least na ∈ N+ such that f na a = >A, the
mapping ϕ is defined for every a ∈ A. By definition of f∞ and ϕ we have f∞(ϕ(a)) =

ϕ( f a), that is, ϕ is a homomorphism and the image of ϕ is a subalgebra B of B∞.
Moreover, ϕ is injective: for a , b there is a least j ∈ N+ with f ja = f jb. Therefore
f j−1a and f j−1b belong to different classes of the ?-partition (C0,C1) and their ϕ-
images differ in the first letter; consequently, by the above definition, the ϕ-images ϕ(a)
and ϕ(b) must differ in the jth letter (from the left), that is, ϕ(a) , ϕ(b). Finally, from
the above definition of the mapping ϕ it follows that a ∈Ci ⇐⇒ ϕ(a) ∈ Ki (i ∈ {0, 1}),
that is, ϕ is a ?-isomorphism fromA onto B.

It remains to show that B is uniquely determined. In fact, every ?-isomorphism
ϕ̃ :A→ B̃ onto a subalgebra B̃ of B∞ with the canonical ?-partition (B̃ ∩ K0, B̃ ∩ K1)
must satisfy the same conditions as ϕ above since the ?-isomorphism condition
(a ∈Ci ⇐⇒ ϕ̃(a) ∈ Ki; see Definition 3.11) implies that the first letter of the word
ϕ̃(a) must be i whenever a ∈Ci (for i ∈ {0, 1}). So there is no choice for another ϕ. �

T 5.2 (Characterization of completely ∧-irreducible partial orders). Let A =

(A, f ) be a rooted monounary algebra and r ∈ PordA. Then the following are
equivalent.
(1) r is completely ∧-irreducible.
(2) r = ϕ−1(pB) or r = (ϕ−1(pB))−1 for some isomorphism ϕ :A→B from A onto a

subalgebra B = (B, f∞ �B) of B∞ such that B ∩ K1 has a least element.

P. First we show that (1) implies (2). According to Lemma 3.6(a), >A is either the
least or the greatest element with respect to r. Without loss of generality, let >A be the
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greatest element. Let (C0,C1) := (〈u]r, [m〉r) be the ?-partition (see Remark 3.12(b))
corresponding to r. By Proposition 5.1 there exists a unique subalgebra B of B∞
which (together with its canonical ?-partition) is ?-isomorphic to A. Let ϕ :A→B
be this unique isomorphism. Then the image ϕ(r) = {(ϕ(a), ϕ(b)) | (a, b) ∈ r} is a
completely ∧-irreducible compatible partial order in Quord B with the ?-partition
(ϕ(C0), ϕ(C1)) = (B ∩ K0, B ∩ K1). By Proposition 4.1 we get ϕ(r) = pB. Analogously
we get ϕ(r)−1 = ϕ(r−1) = pB if >A is the least element.

Now we show that (2) implies (1). By Proposition 4.1, pB is completely ∧-
irreducible and therefore, since ϕ−1 is an isomorphism, ϕ−1(pB) and (ϕ−1(pB))−1 are
also completely ∧-irreducible. �

R 5.3. For concrete applications finite rooted algebras play a special role. In
such situations, complete ∧-irreducibility coincides with ∧-irreducibility, and each
such algebra A is of some finite depth d (Definition 2.3). Then any embedding
A→B∞ is in fact an embedding into the subalgebra {v ∈ 2[∞] | d(v) ≤ d} which is
isomorphic to Bd via

v1 . . . vd1∞ 7→ v1 . . . vd.

Therefore, for finite A of maximal depth d, Theorem 5.2 can be rewritten by using
Bd instead of B∞. Note that pd is (completely) ∧-irreducible in Quord Bd because K1

(as a subset of 2d) has 10d−1 as the least element. It is not difficult to see that also p∞
is ∧-irreducible in Quord B∞; however, p∞ is not completely ∧-irreducible because
K1 has no least element (101∞ > 1001∞ > 10 001∞ > · · · > 10n1∞ > · · · is an infinite
descending chain).

E 5.4. Let A = ({0, 1, 2, 3}, f ) where the graph of f is shown in the left-hand
part of Figure 3. In order to find all ∧-irreducible compatible partial orders, according
to Remark 5.3 and Theorem 5.2 we must find all subalgebras of B3 isomorphic
to A. There are four such subalgebras B, B′, B′′, B′′′, as given in Figure 3. The
corresponding partial orders (restriction of p3 to the base set of the subalgebras) are
drawn by dashed arrows. The elements of B3 which belong to K1 are marked as
black filled circles. From Figure 3 it is clear that only three of the subalgebras satisfy
the condition of Theorem 5.2 that B ∩ K1 has a least element, namely B, B′, B′′. In
B′′′ both 110 and 101 are minimal in B′′′ ∩ K1. Thus there are three ∧-irreducible
partial orders in QuordA with > as greatest element, that is, with their inverses,A has
altogether six ∧-irreducible partial orders.

According to Proposition 3.4, compatible completely ∧-irreducible partial orders
exist only if A is of binary type. We are now able to give a necessary and sufficient
condition.

P 5.5. A rooted monounary algebra A has (at least one) compatible
completely ∧-irreducible partial order if and only if A is of binary type and of finite
branched depth.
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F 3. The ∧-irreducible partial orders ofA.

P. Necessity of the condition follows directly from Proposition 3.4 and
Remark 3.12(d). To show sufficiency, letA = (A, f ) be a rooted algebra of binary type
and of branched depth d. If d = 1, then the graph of f is a directed path with a loop
in the root (no branching), and (C0,C1) := (A \ {>}, {>}) is a ?-partition and there is
a ?-isomorphism onto a subalgebra B of ({1∞, 01∞, 001∞, . . . }, f∞) ≤ B∞, for which
pB obviously is a ∧-irreducible compatible partial order since > is the least element of
B ∩ K1 = {>}.

Thus we can assume now that d ≥ 2. Then there exists b ∈ A such that |[b]ker f | = 2,
f d−1(b) , f d(b) = >. We can choose a ?-partition (C0,C1) of A such that b ∈C1,
f b, . . . , f d−1b ∈C0 and {a ∈ A | |[a]ker f | = 1} ⊆C0 (clearly such a ?-partition exists
since for each kernel class [a]ker f with two elements one can put, arbitrarily, one
element in C0, and the other in C1). Because of Proposition 5.1 there exists a unique
subalgebra B of B∞ with canonical ?-partition (B ∩ K0, B ∩ K1) such that there is
a ?-isomorphism ϕ :A→B. Then, by definition of branched depth, all elements
in B ∩ K1 have depth at most d. According to Definition 3.11 (?-isomorphism) we
have c0 := ϕ(b) ∈ K1, ci := ϕ( f ib) = f i

∞(c0) ∈ K0 for i ∈ {1, . . . , d − 1} and ϕ( f db) =

f d
∞(c0) = >. There exists exactly one sequence in B∞ with these properties, namely

(c0, c1, c2 . . . , cd−1) = (10d−11∞, 0d−11∞, 0d−21∞, . . . , 01∞). In particular, c0 = µ(d) =

10d−11∞ is the least element among all elements of K1 with depth at most d, and
therefore it is also the least element in B ∩ K1. Consequently, pB is completely
∧-irreducible (see Proposition 4.1) and thus ϕ−1(pB) is a compatible completely ∧-
irreducible partial order ofA (see Theorem 5.2). �

Now we can collect all our results and give a full description of all completely
∧-irreducible quasiorders.

C 5.6 (Characterization of ∧-irreducible quasiorders). Let A = (A, f ) be a
monounary rooted algebra. The completely ∧-irreducible compatible quasiorders q
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of A are precisely those of the form ψ−1(pB) or (ψ−1(pB))−1 for some homomorphism
ψ :A→B∞, where B denotes the image of ψ, |B| ≥ 2 and B ∩ K1 has a least element.

P. Every homomorphism ψ :A→B∞ can be factorized according to A→

A/ ker ψ
ϕ
→B∞, where ϕ is an isomorphism. Thus the result follows from

Proposition 2.6(b) and Theorem 5.2 (observe that ψ−1(pB) = λker f (ϕ−1(pB))). �

R 5.7. By Corollary 2.8 and Theorem 5.2, the subdirectly irreducible partially
ordered rooted monounary algebras (in the sense of [1]) are precisely those of the
form (A, f , ϕ−1(pB)) with ϕ as in Theorem 5.2. This leads to the following problem.

P. Find all (not only the rooted) subdirectly irreducible partially ordered
monounary algebras.

For instance, the partially ordered monounary algebras (A, f , ∆) and ({a, u, >}, g, r)
are not rooted but are subdirectly irreducible, where (A, f ) is a cycle of prime power
length, g(u) = g(>) = >, g(a) = a, and r is the linear order given by a < u < >.
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