
Glasgow Math. J. 57 (2015) 1–5. C© Glasgow Mathematical Journal Trust 2014.
doi:10.1017/S0017089514000093.

SAW∗-ALGEBRAS ARE ESSENTIALLY NON-FACTORIZABLE

SAEED GHASEMI
Department of Mathematics, York University, Toronto, ON M3J 1P3, Canada

e-mail: saeed.ghas@gmail.com

(Received 17 July 2013; revised 16 August 2013; accepted 7 September 2013; first published online 26
August 2014)

Abstract. In this paper, we solve a question of Simon Wassermann, whether the
Calkin algebra can be written as a C*-tensor product of two infinite dimensional C*-
algebras. More generally, we show that there is no surjective *-homomorphism from a
SAW ∗-algebra onto C*-tensor product of two infinite dimensional C*-algebras.
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1. Introduction. It was shown by Ge [7], using free entropy, that if the group
von Neumann algebra of �2, L(�2) is written as the von Neumann tensor product of
two von Neumann algebras M and N, then either M or N has to be isomorphic to
the algebra of n × n matrices �n(�) for some n. For two C*-algebras A and B the
C*-algebra tensor product is not unique and for a C*-norm ‖.‖ν on the algebraic
tensor product A � B the completion is usually denoted by A ⊗ν B (see [1]). A C*-
algebra A is called essentially non-factorizable if it cannot be written as B ⊗ν C, where
both B and C are infinite dimensional for any C*-algebra norm ν. In a presentation
at the London Mathematical Society meeting held in Nottingham in 2010, Simon
Wassermann demonstrated that the reduced C*-algebra of �2, C∗

r (�2) is essentially non-
factorizable. In fact, if C∗

r (�2) = B ⊗ν C for some C*-norm ν and infinite dimensional
C*-algebra B then C = �n(�) with n = 1. At the same meeting, it was asked by Simon
Wassermann whether the Calkin algebra is essentially non-factorizable. We prove that
the answer to this question is positive by showing that all SAW ∗-algebras, of which
the Calkin algebra is an example, are essentially non-factorizable.

It is well known that C*-algebras can be viewed as non-commutative topological
spaces and the correspondence X ↔ C(X) is a contravariant category equivalence
between the category of compact Hausdorff spaces and continuous maps and the
category of commutative unital C*-algebras and unital *-homomorphisms. Each
property of a locally compact Hausdorff space can be reformulated in terms of the
function algebra C0(X), so it usually makes sense to ask about these properties for non-
commutative C*-algebras. SAW ∗-algebras were introduced by Pedersen [9] as non-
commutative analogues of sub-Stonean spaces (also known as F-spaces) in topology,
which are the locally compact Hausdorff spaces in which disjoint σ -compact open
subspaces have disjoint compact closure. Analogously a C*-algebra A is called an
SAW ∗-algebra if for every two orthogonal elements x and y in A+ there is an element
e in A+ such that ex = x and ey = 0. It is not hard to see that an abelian C*-algebra
C0(X) is a SAW ∗-algebra if and only if X is a sub-Stonean space.

Some of the properties of sub-Stonean spaces are generalised to SAW ∗-algebras
in [8, 9]. It is proved ( cf. [9]) that the corona algebra of any σ -unital C*-algebra is
a SAW ∗-algebra. In particular for a separable Hilbert space, the Calkin algebra
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is a SAW ∗-algebra. Another class of C*-algebras, called countably degree-1 saturated
C*-algebras, are introduced in [6] using model theoretic notions. It was shown that
countably degree-1 saturated C*-algebras contain all coronas of σ -unital C*-algebra,
ultrapowers of C*-algebras and relative commutants of separable subalgebras of a
countably degree-1 saturated C*-algebra, and these are all SAW ∗-algebras. In this
paper, we will use another property of sub-Stonean spaces to show that SAW ∗-algebras
are essentially non-factorizable. This will show that the ultrapowers of C*-algebras and
relative commutants of separable subalgebras of a countably degree-1 saturated C*-
algebra are also essentially non-factorizable. A similar result for ultrapowers of type
II1-factors with respect to a free ultrafilter is proved in [2].

In this paper we don’t require any knowledge about sub-Stonean spaces and it’s
enough to know that β�, the Stone–Čech compactification of �, is a sub-Stonean
space.

2. SAW ∗-algebras are essentially non-factorizable. We adopt standard notations
from the Ramsey theory and write [�]2 to denote the set of all (m, n) ∈ �2 such that
m < n and �2� to denote the diagonal of �2. For spaces X and Y , a rectangle is a subset
of X × Y of the form A × B for A ⊂ X and B ⊂ Y . We say a map f on A × B depends
only on the first coordinate if f (x, y) = f (x, z) for every (x, y) and (x, z) in A × B. In
[10, Lemma 5.1] Van Douwen proved that for any continuous map f : β�2 → β�

there is a clopen U ⊂ β� such that f � U2 depends on at most one coordinate and
conjecture [10, Conjecture 8.4] that there is a disjoint open cover of β�2 into such
sets. Farah in [4, Theorem 3] showed that for a sub-Stonean space Z, compact spaces
X and Y , every continuous map f : X × Y → Z is of a very simple form, which will
be clear from Theorem 2.2 (in fact, the theorem is proved for a larger class of spaces,
the so-called β�- spaces, in the range and arbitrary powers of a compact space in the
domain. However, the theorem remains true if products of arbitrary compact spaces
are replaced in the domain of the map). We sketch the proof of this theorem for the
convenience of the reader. Before this we need the following lemma.

LEMMA 2.1. Suppose X, Y and Z are arbitrary sets, ρ : X × Y → Z a map, then
exactly one of the following holds:

(1) X × Y can be covered by finitely many mutually disjoint rectangles such that ρ

depends on at most one coordinate on each of them.
(2) There are sequences xi ∈ X, yi ∈ Y such that for all i and all j < k we have

ρ(xi, yi) �= ρ(xj, yk).
Moreover if X, Y and Z are topological spaces and ρ is a continuous map, we can assume
that the rectangles in (1) are clopen.

Proof. For any map from X2 into X this is an immediate consequence of [3,
Theorem 3]. One can check the proof of this theorem to see that a small adjustment
in definitions would give the same result for any map from X × Y into Z. To see the
second part, note that the closures of this rectangles are still rectangles, and since ρ

is continuous, it depends on at most one coordinate on each of this closures. By [4,
Theorem 8.2] we can assume that these rectangles are clopen. �

THEOREM 2.2. If ρ is a continuous map from X × Y into Z, where X and Y are
compact topological spaces and Z is a sub-Stonean space, then X × Y can be covered
by finitely many mutually disjoint clopen rectangles such that ρ depends on at most one
coordinate on each of them.
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Proof. We just need to show that case (2) of Lemma 2.1 does not happen. Suppose
{xi} and {yi} are sequences guaranteed by (2). Define the map g : �2 −→ X × Y by
g(m, n) = (xm, yn). Then g continuously extends to a map βg : β�2 −→ X × Y and the
continuous map h : β�2 −→ Z defined by h = ρ ◦ βg has the property that h(l, l) �=
h(m, n) for all l and all m, n such that m < n. This contradicts Corollary 7.6 in [4] which
states that if h : β�2 −→ Z is a continuous map and Z is a sub-Stonean space then
the sets h([�]2) and h(�2�) have non-empty intersection. �

As a corollary to this, if X and Y are infinite, then any such ρ is not injective.
For C*-algebras, the product of non-commutative spaces corresponds to the tensor
product of algebras. By the Gelfand transform we can restate Farah’s theorem in terms
of commutative C*-algebras.

THEOREM 2.3. Suppose f : A → B ⊗ C is a unital *-homomorphism, where A,B and
C are unital commutative C*-algebras and A is a SAW ∗-algebra. Then there are finitely
many projections p1, . . . ps in B and q1, . . . qt projections in C such that

∑s
i=1 pi = 1B and∑t

i=1 qi = 1C and for every 1 ≤ i ≤ s and 1 ≤ j ≤ t and either for every a ∈ A we have
(pi ⊗ qj)f (a) ∈ (piBpi) ⊗ qj or for every a ∈ A we have (pi ⊗ qj)f (a) ∈ pi ⊗ (qjCqj).

Note that in particular every element in the image of f is a finite sum of elementary
tensor products and if A is a commutative SAW ∗-algebra with no projections (e.g.
A = C(X), where X is a connected sub-Stonean space like β� \ �), the image of f can
be identified with a C*-subalgebra of B or C.

LEMMA 2.4. If B is an infinite-dimensional, unital C*-algebra, we can find an
orthogonal sequence {a1, a2, . . . } in B such that 0 ≤ ai ≤ 1B for all i and a sequence
of states on B, {φn}, such that φn(an) = 1 and φn(am) = 0 if m �= n.

Proof. It is well known that any maximal abelian subalgebra (MASA) of an infinite-
dimensional C*-algebraB is also infinite-dimensional. If not, then there are orthogonal
1-dimensional projections {p1, p2, . . . , pn} in MASA such that

∑n
i=1 pi = 1B. Since B =∑n

i,j=1 piBpj and for each pair i, j, we have piBpj as either {0} or 1-dimensional, and
B is finite-dimensional. Fix such a MASA, and by the Gelfand–Naimark theorem
identify it with C(X) for some compact Hausdorff space X . We can also identify the
set of pure states of C(X) with X . Since X is an infinite normal space, we can choose
a discrete sequence of pure states {φn} in X and find a pairwise disjoint sequence {Un}
of open neighbourhoods of {φn}. By Uryshon’s lemma we get an orthogonal sequence
0 ≤ an ≤ 1B in C(X) such that φn(an) = an(φn) = 1 and an vanishes outside Un. So
φn(am) = am(φn) = 0 if m �= n. Now by the Hahn–Banach extension theorem extend
φn to a functional on B of norm 1. Since φn(1B) = 1, this extension is a state. �

Note that if φ is a state on a C*-algebra A and φ(a) = 1 for 0 ≤ a ≤ 1A, as a
consequence of the Cauchy–Schwartz inequality for states we have φ(b) = φ(aba) for
any b ∈ A (cf. [5, Lemma 4.8]).

LEMMA 2.5. Let {φn} be a sequence of states on a SAW ∗-algebra A. If there exists a
sequence {an} of mutually orthogonal positive elements in A such that ‖an‖ = φn(an) = 1
and φn(am) = 0 if m �= n, then the weak*-closure of {φn} is homeomorphic to β�.

Proof. Let D be a subset of �. We show that {φn : n ∈ D} ∩ {φn : n ∈ Dc} = ∅.
Take ψ ∈ {φn : n ∈ D}. Let a = ∑

i∈D 2−iai and b = ∑
i∈Dc 2−iai. Since A is a SAW ∗-

algebra, there exists a positive e ∈ A such that ea = a and eb = 0. Then ean = an for
n ∈ D and ean = 0 for every n ∈ Dc. For n ∈ D we have φn(e) = φn(ean) = φn(an) = 1
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and for n ∈ Dc we have φn(e) = φn(ean) = φn(0) = 0. Hence, ψ(e) = 1 and ψ is not in
{φn : n ∈ Dc}.

Now let F : β� −→ {φn : n ∈ �} be the continuous map such that F(n) = φn. Let
U and V be two distinct ultra filters in β� and pick X ⊆ � such that X ∈ U but X is
not in V . Therefore,

F(U) ∈ F(X) ⊆ F(X) = {φn : n ∈ X}.

Similarly, F(V) ∈ {φn : n ∈ Xc}. So F is injective and clearly surjective. Since β� is
compact and {φn} is Hausdorff, it follows that F is a homeomorphism. �

THEOREM 2.6. Any SAW ∗ algebra is essentially non-factorizable.

Proof. LetA be a SAW ∗-algebra. Suppose that A = B ⊗ν C for the C*-completion
of the algebraic tensor product B � C of infinite dimensional C*-algebras B and C
with respect to some C*-norm ‖.‖ν . By Lemma 2.4 there are orthogonal sequences of
positive contractions {bn} ⊆ B and {cn} ⊆ C and sequences {φn} ⊆ B∗ and {ψn} ⊆ C∗

such that φn(bn) = ψn(cn) = 1 and φn(bm) = ψn(cm) = 0 for m �= n. Identifying A with
B ⊗ν C and letting am,n = bm ⊗ cn and γm,n = φm ⊗ ψn, it is immediate that

γm,n(am′,n′ ) =
{

1 (m, n) = (m′, n′)
0 (m, n) �= (m′, n′) .

Let X = {φn : n ∈ �}w
∗

and Y = {ψn : n ∈ �}w
∗
. Then X and Y are compact subsets of

B∗ and C∗, respectively, {φn : n ∈ �} × {ψn : n ∈ �} is a dense subset of {γm,n}w
∗

and by

compactness X × Y is homeomorphic to {γm,n}w
∗
, which is homeomorphic to β� by

Lemma 2.5. This contradicts the remark following the proof of Theorem 2.2. Hence,
there is no *-isomorphism A ∼= B ⊗ C with B and C infinite dimensional. �

COROLLARY 2.7. The Calkin algebra is essentially non-factorizable.

We do not know whether Theorem 2.3 is true for non-commutative C*-algebras.
But an analogous theorem for non-commutative C*-algebras would provide us with
a strong tool to study the automorphisms between tensorial powers of the Calkin
algebra or other SAW ∗-algebras such as ultrapowers of C*-algebras.
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