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Abstract
Precise and efficient performance in remote robotic teleoperation relies on intuitive interaction. This requires both
accurate control actions and complete perception (vision, haptic, and other sensory feedback) of the remote environ-
ment. Especially in immersive remote teleoperation, the complete perception of remote environments in 3D allows
operators to gain improved situational awareness. Color and Depth (RGB-D) cameras capture remote environ-
ments as dense 3D point clouds for real-time visualization. However, providing enough situational awareness needs
fast, high-quality data transmission from acquisition to virtual reality rendering. Unfortunately, dense point-cloud
data can suffer from network delays and limits, impacting the teleoperator’s situational awareness. Understanding
how the human eye works can help mitigate these challenges. This paper introduces a solution by implementing
foveation, mimicking the human eye’s focus by smartly sampling and rendering dense point clouds for an intuitive
remote teleoperation interface. This provides high resolution in the user’s central field, which gradually reduces
toward the edges. However, this systematic visualization approach in the peripheral vision may benefit or risk los-
ing information and burdening the user’s cognitive load. This work investigates these advantages and drawbacks
through an experimental study and describes the overall system, with its software, hardware, and communication
framework. This will show significant enhancements in both latency and throughput, surpassing 60% and 40%
improvements in both aspects when compared with state-of-the-art research works. A user study reveals that the
framework has minimal impact on the user’s visual quality of experience while helping to reduce the error rate
significantly. Further, a 50% reduction in task execution time highlights the benefits of the proposed framework in
immersive remote telerobotics applications.

1. Introduction
Remote teleoperation has emerged as a potentially critical solution to challenges in bridging geo-
graphical distances and bypassing physical limitations, thereby enabling seamless control, monitoring,
and intervention in distant or inaccessible environments where direct human presence is unfeasible,
unsafe, or impractical [1–3]. Teleoperation extends human reach beyond immediate physical bound-
aries, amplifies human capability, and provides accessibility to distant terrains and complex possibly
hazardous scenarios. It has received increased interest in recent times due to the COVID-19 pandemic
and the growth in immersive virtual reality (VR) interfaces that form a channel to present the remote
environments to operators as dynamic 3D representations through real-time visualization [4, 5].

Despite the extensive research in controlling telerobotic systems through VR [4, 6–9], more research
is needed regarding visual feedback of the remote environment, as this can significantly enhance and
facilitate effective teleoperation. Immersive remote telerobotics, that is, the combination of VR and
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Figure 1. Three-dimensional point partitioning – The surfel point P(px, py, pz) is classified using the
ray L cast from the point of origin H(hx, hy, hz).

actual 3D visual data from distant RGB-D cameras can allow real-time immersive visualization by the
operator, simultaneously perceiving the color and the 3D profile of the remote scene [7, 10]. This can
give operators enhanced situational awareness while maintaining their presence illusion [9]. This com-
bination is the key distinguishing factor from traditional teleoperation interfaces, which rely on mono- or
stereo-video feedback and suffer from limitations in terms of fixed or non-adaptable camera viewpoints,
occluded views of the remote space, etc. [11]. Immersive remote teleoperation interfaces monitor user’s
gestures and movements in all six degrees of freedom (DOF), so that users can see the desired views,
regardless of where they are located and where they are looking [12]. Nevertheless, real-time immer-
sive remote teleportation has hard constraints regarding resolution, latency, throughput, compression
methods, image acquisition, and the visual quality of the rendering [9, 13]. For instance, latency and
low resolution have been shown to reduce the sense of presence and provoke cybersickness [14]. For
many applications, including remote inspection and disaster response, these constraints are not trivial to
overcome. They are further exacerbated by the fact that the environment may be a priori unknown and
should be reconstructed in real-time from the 3D input data (e.g., depth maps, point clouds). Immersive
remote teleoperation therefore presents the challenge of appropriately managing the data flow from the
data acquisition end to the visualization at the operator, while allowing optimal visual quality. Typically,
this data flow involves image data acquisition, some form of processing for point-cloud generation or 3D
reconstruction, data compression (encoding) and streaming, decoding at the operator side, and visual
rendering [13, 15]. These components must respect the limitations of the network communication, the
computation, and user’s display hardware.

In this paper, the human visual system provides the inspiration to address the coupling between
data acquisition and its rendering for remote teleoperation using VR head-mounted display (HMD).
Specifically, the concept of the human visual foveation [16], where the human eye has high visual acuity
(sharpness) at the center of the field-of-view, with this acuity reducing falls off toward the periphery.
This visual effect has been harnessed by gaze-contingent (foveated) graphics rendering [17] and imag-
ing techniques. These foveation methods are designed for displays with fixed focal distances, such as
desktop monitors, or stereo displays that offer binocular depth cues. Here, however, we will use this
acuity fall-off to facilitate the processing, streaming, and rendering of 3D data to a remote user, thereby
reducing the amount of data to be transmitted. The user’s gaze or viewpoint is exploited to divide the
acquired 3D data into concentric conical regions of progressively reducing resolution, with the high-
est resolution in the central cone. The radii of the cone are determined based on the projection of the
eccentricity values of the human-eye foveal regions into the acquired 3D data. Figure 1 visually shows
the concept of projecting the foveated regions into the 3D visual data.

Validation and experimental evaluations show that the system runs at reduced throughput require-
ments with low latency while maintaining the immersive experience and task performance. As a result,
this approach presents a re-thinking of the immersive remote teleoperation processes – it includes the
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operators/user’s visual perspective in optimizing the data flow between the remote scene and the oper-
ator, without affecting the quality of experience and task performance for the operator. The following
sections outline the contribution of this research in detail.

2. Related work and contribution
Our work combines diverse fields, including gaze tracking, real-time 3D reconstruction, compression,
streaming, rendering for immersive telepresence, and telerobotics. Substantial research exists in each of
these areas and a full review would be out-of-scope here; however, the most relevant approaches in the
related fields are briefly discussed.

A. Immersive remote telerobotics/telepresence: Researchers have long seen the advantages of using
3D VR environments in telepresence. Maimone et al. [18, 19] were among the first to investigate a
telepresence system offering fully dynamic, real-time 3D scene capture and viewpoint flexibility using
a head-tracked stereo 3D display. Orts–Escolano et al. [15] presented “holoportation” giving high-
quality 3D reconstruction for small fixed-sized regions of interest. Authors in refs. [7, 20] present remote
exploration telepresence systems for large- and small-scale regions of interest with reconstruction and
real-time streaming of 3D data. In refs. [9, 21], the authors extended this idea with simultaneous immer-
sive live telepresence for multiple users for remote robotic teleoperation and collaboration. Furthermore,
VR-based immersive interfaces for robotic teleoperation have gained a lot of traction, where mod-
els of the remote robots are combined with real-time point-cloud renderings, real-time stereo video,
and gesture tracking inside VR [4, 13]. Su et al. [22] present a comprehensive state-of-the-art frame-
work developed by the robotics community to integrate physical robotic platforms with mixed reality
interfaces.

B. Real-time 3D reconstruction: Recent years have seen an increasing research on dense 3D recon-
struction problems, following two directions: volumetric (voxel-based) and pointwise (surfel-based).
Due to the popularity of KinectFusion [23], volumetric reconstruction has become dominant owing to its
relatively straightforward CPU-GPU implementation and parallelizability. The surfel-based approach,
which represents the scene with a set of points [24], is inherently adaptive for higher resolution require-
ments as it combines frequent local model-to-model surface loop closure optimizations with intermittent
global loop closure to recover from arbitrary drifts. Nevertheless, both methods have their advantages
and disadvantages [25].

C. 3D Data compression and streaming: Efficient compression and representation techniques, such
as 3D polygon mesh, point clouds, and signed distance fields, are being investigated intensively [21, 26].
RGB-D cameras, for example, Intel Realsense, provide direct access to fast point clouds [27], but dense
and realistic remote reconstruction and streaming have large memory and bandwidth requirements. To
address this, a number of point-cloud compression techniques have been proposed [26, 28–30]. An
interesting work on remote teleoperation was proposed by De Pace et al. [31], where the authors utilized
the libjpeg-turbo library to compress color and depth frames before transmitting them over user datagram
protocol (UDP). Given that UDP does not inherently guarantee reliable data transmission, the authors
implemented additional mechanisms, including compression, frame validation, and decompression, to
enhance the effectiveness of data transmission while maintaining the maximum possible frame rate.

D. Gaze tracking: Dating as far back as the 18th century, eye tracking has fascinated researchers
studying human emotions and mental state. One of the first eye trackers was built by Edmund Huey
[32], to understand the reading process of humans, using contact lenses having a hole for pupil tracking.
A similar approach was used by Fitts et al. [33] when studying pilot eye movements during landings.
Another significant contribution in eye tracking by Yarbus [34], showed that gaze trajectories depend on
the task. The past three decades have seen a major revolution in eye-tracking research and commercial
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Table I. Comparison of different state-of-the-art research
works in foveated rendering.

Method Data type Rendering paradigm
[39] Image and video Neural rendering
[40] Image and video Transmission
[37] Volume data Ray casting
[41] Volume data Ray casting
[36] Geometric meshes Rasterization
[17] Geometric meshes Rasterization
[42] Point cloud LoD simplification
Our Point cloud Transmission

applications due to the ubiquity of artificial intelligence algorithms and portable consumer-grade eye-
trackers. Commercial HMDs that include eye trackers are the Fove-0, Varjo VR-1, PupilLabs Core, and
the HTC Vive Pro Eye [35].

E. Foveated rendering: Increasingly, research is investigating how the human visual system, espe-
cially the concept of foveation, can facilitate graphics rendering, both in 2D and 3D. Guenter et al.
[17] presented an early foveated rendering technique that accelerates graphics computation. This ren-
dered three eccentricity layers around the user’s fixation point with the parameters of each layer being
set by calculating the visual acuity. Stengel et al. [36] proposed gaze-contingent rendering that only
shades visible features of the image while cost-effectively interpolating the remaining features, lead-
ing to a reduction of fragments needed to be shaded by up to 80%. Bruder et al. [37] used a sampling
mask computed based on visual acuity fall-off using the Linde-Buzo-Gray algorithm. Commercially,
VR headsets are exploiting foveated rendering for increased realism and reduced graphical demands
[38]. Table I summarizes and compares different state-of-the-art research works in foveated rendering.

2.1. Contributions
Drawing on the advances in the above fields, this paper presents our research work on immersive tele-
operation. A key innovation is utilizing foveation for sampling and rendering of real-time dense 3D
point-cloud data for immersive remote teleoperation. This has the following contributions:

1. Main: A novel approach for foveated rendering of real-time, remote 3D data, for immersive
remote teleoperation in VR, i.e., differentially sampling, unicasting, and rendering of real-time
dense point clouds in VR, exploiting the human visual system.

2. Additional:

(a) A method for streaming a partitioned point cloud and combining it at the operator site using
GPU and CPU parallelization.

(b) A new volumetric point cloud density-based peak signal-to-noise ratio (PSNR) metric to
evaluate the proposed approach.

(c) A user study with 24 subjects to evaluate the impact of the proposed approach on perceived
visual quality.

3. System overview
This section briefly overviews the proposed interface and theoretical foundation behind the proposed
framework. As shown in Figure 2, it follows a general teleoperation setup, which includes an opera-
tor with a visualization interface and a remote environment. As illustrated in Figure 3, the proposed
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Figure 2. Proposed telerobotics interface: A user teleoperating a remote robotic arm using the HTC
VIVE focus virtual reality (VR) system. The Unreal VR graphics engine provides immersive visualization.
Remote RGB-D camera provides foveated point cloud in real-time.

Figure 3. Proposed interface: A user teleoperating a remote robotic arm using the HTC VIVE focus
virtual reality (VR) system. Unreal VR graphics engine provides immersive visualization. Remote RGB-D
camera provides foveated point cloud in real-time.

framework comprises three primary components: the operator site, the remote environment, and a com-
munication network. The gesture/motion controllers located at the operator site transmit instructions
to the remote environment. Additionally, the gaze direction and pose of the head-mounted display at
the operator site are transmitted to the remote environment. This allows for the capturing, processing,
streaming, and visualization of remote environments in 3D for the operator. The communication network
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Figure 4. A) Photoreceptor distribution in the retina and retinotopic organization, image adapted from
ref. [43]. B) minimum angle of resolution against eccentricity for the retinal regions (R0 − R5), based
on Eq. (1).

allows real-time data exchange between the operator site and the remote environment, that is, sending
commands, receiving remote robot status, and receiving real-time dense point cloud. The proposed
framework was implemented according to the figure outlined in Figure 3 and the complete components
are further described in the subsequent sections for a detailed description.

3.1. Operator site
The operator site manages the following functionalities: (1) Gaze tracking and calculating fixation points
in 3D, (2) decoding and rendering of the streamed point-cloud data, (3) facilitating functionalities for
operator to command the remote robot using HTC motion controllers (HMC), and (4) real-time trans-
fer of this information. A VR-based interface is created using the Unreal Engine (UE) to provide an
immersive remote environment. Figure 3 illustrates the implementation of a parallel streamer, a point-
cloud decoder, and a conversion system for transferring textures to the UE GPU shaders. It has the HTC
Vive Pro Eye VR headset as the main interaction interface, which comes with gesture controllers and a
tracking system, as well as a built-in Tobii Eye Tracking system. The Tobii system gives an accuracy of
0.5◦ − 1.1◦ with a trackable FOV of 110◦. Computing resources include Windows 10, Nvidia GeForce
GTX 1080 graphics card, and UE4 for the virtual environment. It also transfers the gaze and headset
pose information to the remote site in real-time. The following section will outline the theoretical and
practical implementation of the operator site functionalities.

3.1.1. The human visual system and gaze tracking
Humans perceive visual information through sensory receptors in the eyes. The process begins when
light passes through the cornea, enters the pupil, and then gets focused by the lens onto the retina. This
is then processed in the brain where an image is formed. The retina has two kinds of photoreceptors:
cones and rods. Cones are capable of color vision and are responsible for high spatial acuity. Rods are
responsible for vision at low light levels. As shown in Figure 4-A, the cone density is highest in the
central region of the retina and reduces monotonically to a fairly even density in the peripheral retina
region. Retinal eccentricity (or simply, eccentricity) implies the angle at which the light from the image
gets focused on the retina. This distribution of the photoreceptors gives rise to the concept of Foveation
and helps define the idea of visual acuity.

The density of photoreceptors (cones and rods) declines monotonically and in a continuous manner
from the center of the retina to its periphery. Nevertheless, approximating the retina as being formed of
discrete concentric regions, where the density of the photoreceptors corresponds to eccentricity angles,
helps simplify the concept – this is the concept of Foveation. A summary of photoreceptors distribution
is presented in Table II, followed by further details below:
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Table II. Human retinal regions and their sizes in diameter and
angles (derived from [44]).

Region Size in diameter (mm) Size in angle
R0 Fovea 1.5 5◦

R1 ParaFovea 2.5 8◦

R2 PeriFovea 5.5 18◦

R3 Near peripheral 8.5 30◦

R4 Mid peripheral 14.5 60◦

R5 Far peripheral 26 > 60◦

• The region from the center of the retina up to 5◦ of eccentricity is the Fovea region. The Fovea
is only about 1% of the retina but has the highest density of cone photoreceptor cells, and the
brain’s visual cortex dedicates about 50% of its area to information coming from the Fovea [45].
Therefore, the Fovea has the highest sensitivity to fine details.

• The region that surrounds the Fovea is commonly known as the Parafovea, which goes up to 8◦

of the visual field [16]. The parafoveal region provides visual information as to where the eyes
should move next (saccade) and supports the Fovea to process the region of interest in detail.
Previous research has investigated if meaningful linguistic information can be obtained from
parafoveal visual input while reading [46].

• The next region that surrounds the Parafovea is called Perifovea, which extends approximately
up to 18◦ of eccentricity. In this region, the density of rods is higher than that of cones, about
2:1. Consequently, unlike the Fovea and Parafovea, only rough changes in shapes are perceived
in this region [47].

• The region beyond 18◦, and up to about 30◦ of the visual field, is known as the Near-Peripheral
Region. It has the distribution of 2–3 rods between cones [44]. This region is responsible for the
segmentation of visual scenes into texture-defined boundaries (“texture segregation”) and the
extraction of contours for pre-processing in pattern and object recognition [48].

• The region between 30◦ and 60◦ of eccentricity is called the Mid-Peripheral Region [49].
Although acuity and color perception degrade rapidly in this region, researchers have shown
that color perception is still possible even at large eccentricities, up to ∼ 60◦ [50].

• The region at the edge of the visual field (from 60◦ up to nearly 180◦ horizontal diameter) is
called the Far Peripheral Region. This region has widely separated ganglion cells, and visual
functions such as stimulus detection, flicker sensitivity, and motion detection are still possible
here [48].

Visual acuity can be quantitatively represented in terms of minimum angle of resolution (MAR0,
measured in arcminutes) [17, 48, 51]. MAR0 can be understood as the smallest angle at which two
objects in the visual scene are perceived as separate [51]. MAR0 accounts for the number of neurons
allocated to process the information from the visual field, as a function of the eccentricity. This relation
between MAR0 and eccentricity can be approximated as a linear model, which has been shown to closely
match the anatomical features of the eye [17, 37, 48, 51].

MAR = mE + MAR0 (1)

Here, MAR0 is the intercept, which signifies the smallest resolvable eccentricity angle for humans,
and m is the slope of the linear model. MAR0 for a healthy human varies between 1 and 2 arcminutes,
that is, 1/60◦ to 1/30◦ (1◦ = 60 arcminutes). Authors in ref. [17] experimentally determined the values
of m based on observed image quality, ranging between 0.022 and 0.034. Figure 4-B captures this linear
relationship of Eq. (1), showing how visual acuity degrades as a function of eccentricity, represented
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Figure 5. A schematic showing the coordinate system on the remote and operator sites.

with a piece-wise constant approximation, that is, each retinal region has a distinct constant MAR value
[17].

The information from the operator’s site is subsequently transmitted to foveate the 3D point cloud.
Foveating a 3D point cloud implies introducing concentric regions in it that correspond to the retinal
fovea regions. The regions are centered on the human eye-gaze direction, each of them having a specific
radius and its associated visual acuity, that is, rendering quality.

3.1.2. Visualization and coordinate transformations
To visualize and explore the incoming point cloud, as well as the remote robotic platforms, a VR-based
interface is designed using the Unreal graphics engine on Windows 10. This creates the immersive
remote teleoperation environment for the operator. As noted earlier, there is an interdependence between
the operator site and the remote site, in that, the eye-gaze data from the operator site is required for the
foveation model at the remote site. The foveated point cloud is then streamed back to the operator site
to be rendered for visualization. Furthermore, the operator site and the remote site are independent
environments with their respective reference frames. It is therefore necessary to implement appropriate
transformations among all the entities to ensure correct data exchange and conversion. As shown in
Figure 5, the reference frames are as follows: UE world coordinate frame U, HMD coordinate frame E,
and the gaze direction vector E �D ∈ R3 on E.

To calculate the correct gaze pose in U, transforming E �D from E → U is required, through the head
pose UH on U, as follows:

U �D =U H ·E �D (2)

This gaze direction U �D, along with the head pose H are communicated to the remote site for additional
processing. Further, the received point cloud from the remote site is visualized in Unreal and needs to
be positioned based on the pose of the camera positioned at the remote site. At the remote site, the
coordinate system of the camera pose, OP is in OpenGL, O. The pose has to be transformed, using a
change-of-basis matrix, into the UE coordinate system. UE uses a left-handed, z-up coordinate system,
while the camera coordinates of OpenGL use a right-handed coordinate system, y-up. Eq. (3) provides
the coordinate transformation formula, where B is the change-of-basis transformation matrix.

UP = B ·O P · B−1 (3)
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At the operator site, rendering the received real-time dynamic point-cloud data from the remote site
requires a high-speed large data transfer, as well as efficient and high-quality visualization. To meet these
requirements, the following modules were developed, as seen in Figure 3:

A real-time point-cloud decoder: that decompresses the data received at the operator site. The decoding
module includes the state-of-the-art point-cloud codec algorithm from ref. [26] and implemented the
Boost ASIO over a TCP socket for data transfer. As the point cloud codec needs to compress and stream
point clouds using gaze information from master station, TCP was chosen to ensure data integrity and
packet reception.

Conversion system: Each decoded point-cloud region Pn(∀n ∈ 1, · · · , N) has to be converted into a
texture for visualization, where the reference frame of the received data has to be transformed into that
of the user site, that is, the unreal graphics engine coordinate system.

A rendering system: The data should be transferred to the GPU and made accessible to the graphics
engine shader for real-time rendering. We’ve implemented a splatting-based technique to render point
clouds using UE’s Niagara particle system. After decoding the point cloud data, positions, and colors, we
transferred this data to the GPU via the Niagara module. Once on the GPU, each particle’s UV coordi-
nates are calculated based on its unique identifier, texture size, and virtual camera positions. This process
ensures precise mapping of the point cloud data onto the rendered surfaces. By integrating Niagara’s
rendering capabilities, we achieve faster rendering performance, which is around eight milliseconds.

3.1.3. Robot control
The motion controllers of the HTC Vive Pro Eye allow remote teleoperators to send control commands
in real-time using a wireless motion controller interface. These HTC Motion Controllers (HMC) are
tracked in space, allowing the teleoperator to freely explore the VR environment and interact naturally
with the remote robots. The HMC has two buttons: To engage/disengage motion commands between the
HMC and remote robot, overcoming range limitations, and to open/close the remote robot’s end-effector
for precise object manipulation and control. Since the operator directly commands the motion of the
remote robot using a HMC controller, our design follows a human-in-the-loop design paradigm without
assuming any autonomy or semi-autonomy of the robots [4]. The remote environment point cloud is
sampled, streamed, and rendered for the human operator in real-time. Based on the remote scene, the
operator plans the next step and the action commands are sent to the remote robot. The remote robots
are considered passive and do not act autonomously. Velocity controller was used due to its ability to
provide smooth and continuous control over the movement of a remote robotic system. It calculates joint
angles, velocities, and accelerations, which are then transmitted from the HMC interface to the remote
robots. The joint states of the remote robots are relayed back to the interface to update the poses of
the virtual robot’s models. This integration allows the operator to see and command the motion of the
virtual robot, with the motion of the real robot being mapped 1:1 to the virtual robot motion. Due to
the non-homothetic nature of the kinematics between the remote robot and the operator controllers, the
velocity-control commands the 7-DOF pose of the robot. The inverse Jacobian method is employed to
calculate the velocity of the HMC, which is then mapped to the robot. To command the robot pose, the
position error e ∈ SE(3) is determined by comparing the current pose with the desired pose. The damped
least-squares solution, as shown in Eq. (4), is iteratively used to find the change in joint angles �q that
minimizes the error e.

�q = (JTJ + λI)−1JTe, (4)

where J is the manipulator Jacobian, λ ∈ R is a non-zero damping constant, and I is the identity matrix.
Finally, a proportional controller q̇ = Kp · �q sets the joint velocities to achieve the desired pose. The
values for λ and Kp were determined empirically as 0.001 and 0.6, respectively.
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3.2. Remote site
The remote site consists of modules implemented in OpenGL for coordinate frame transformation,
RGB-D data acquisition, real-time 3D reconstruction, partitioning, foveated sampling, encoding, and
streaming of each foveated region in separate parallel streams, as shown in Figure 3. It has the computing
resources of Nvidia GeForce GTX 1080 graphics card with Ubuntu 20 operating system.

3.2.1. Coordinate transformations
As shown in Figure 3, a parallel module will receive information about head pose UH and the gaze
direction U �D from the Operator site. The coordinate system of the head pose UH and the gaze direction
U �D has to be transformed from the Unreal frame, U, to the remote site OpenGL coordinate system, O,
using a similar change-of-basis matrix, Eq. (5). Here: Q is the change-of-basis transformation matrix
from UE to OpenGL. Figure 5 left shows the reference frames of the remote site, and they are described
as follows: OpenGL world coordinate frame O and the camera frame C.

OH = Q ·U H · Q−1

O �D = Q ·U �D · Q−1 (5)

Gaze direction vector O �D and the head pose OH have to be transformed into the camera coordinate
frame, in order to perform 3D reconstruction, map partitioning, and sampling. For every frame, the color
image C and depth map D are registered into the map modelM by estimating the global pose of the
camera P. Section 3.2.2 will provide a concise description of this.

CH = P−1 ·O H
C �D = P−1 ·O �D (6)

The head pose in the camera frame is used as a point of gaze origin H (hx,hy,hz) and using the gaze
direction vector, C �D, a ray, that is, the gaze vector L is projected into the 3D map.

3.2.2. 3D data acquisition, mapping, partitioning, and sampling
The acquisition and point generation module acquires RGB-D images from the RGB-D cameras, for
example, Intel RealSense and ZED stereo camera. The generated points (maps) pipeline leverages the
state-of-the-art real-time dense visual SLAM system, ElasticFusion [24] for initial camera tracking. The
mapM is represented using an unordered list of surfels, where each surfelMs has a position p ∈R

3,
a normal n ∈R

3, a color c ∈ R
3, a weight w ∈ R, a radius r ∈ R, an initialization timestamp t0, and a

current timestamp t. The camera intrinsic matrix K is defined by: (i) the focal lengths fx and fy in the
direction of the camera’s x− and y− axes, (ii) a principal point in the image (cx, cy), and (iii) the radial
and tangential distortion coefficients k1, k2 and p1, p2 respectively. The domain of the image space in the
incoming RGB-D frame is defined as � ⊂N

2, with the color image C having pixel color c : � →N
3,

and the depth map D having pixel depth d : � →R.
A. 3D point partitioning: For brevity, the symbolM is used for real-time point-cloud. The density of

M, especially at high resolutions, implies increased computational complexity and more graphical and
time resources for streaming it in immersive remote teleoperation. The foveation model can be utilized
here to reduce the data. By projecting the retinal fovea regions into it,M is partitioned into regions.
It is then resampled to approximate the monotonically decreasing visual acuity in the foveation model,
termed foveated sampling.

To partitionM into regions, the discussion in Section 3.1.1 is taken forward. The center of the eye
gaze is used as a point of origin H(hx, hy, hz). To partitionM intoMn regions ∀n ∈ {0 · · · N}, for each of
the N retinal regions, a ray is cast from H(hx, hy, hz). This ray, i.e., the gaze vector L ∈R

3 is extended up
to last point of intersection G(gx, gy, gz) with the surfel map. The foveated regions are now structured
around L and (Figure 1) shows the foveated regions sampled, streamed and rendered. With 3D data,
the concentric regions are conical volumes, with their apex at H(hx, hy, hz), with increasing radii away
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Algorithm 1. 3d Point Partitioning Algorithm.
Input: M /* Map to be partitioned */

L /* Gaze direction vector */
0 . . . /* Eccentricity angles */

foreach surfel in the map M do
B ← projL /* projection of point P on L */

← /* distance between H and B */
d ← PB L /* shortest distance */
for j=1 to max(e) do

← tan ∗ /* compute the radii */
end
/* put into the maps M0 ...M */
if d 0 then

M0 ← P ;
else if d 0 AND d ≤ 1 then

M1 ← P ;
...
else

M ← P
end

end

from H. Algorithm 1, which is implemented in Compute Unified Device Architecture (CUDA) in the
GPU for faster processing, details how the radii are calculated based on dvi for each surfel. To assign each
surfel inM to a particular regionMn, the shortest distance, i.e., the perpendicular distance between the
surfel and L is used. As shown in Figure 1, the shortest distance from the surfel P(px, py, pz) to the ray
L is the perpendicular PB⊥L, where B(bx, by, bz) is a point on L. ‖PB‖ can be obtained using the the
projection of �HP on L, that is, the cross product of �HP and �HG, normalized to the length of �HG, refer
Eq. (7). Algorithm 1 assigns surfel P to the regionMn.

‖PB‖P = ‖ �HP × �HG‖
‖ �HG‖ (7)

B. Foveated Point-Cloud (PCL) Sampling: The partitioned global mapM, with the region-assigned
surfels, is converted into a PCL point-cloud data structure, Pn for eachMn region ∀n ∈ {0 · · · N}. This
conversion is sped up using a CUDA implementation in the GPU. To implement the foveated sampling,
the R3 space of each Pn region needs to be further partitioned into an axis-aligned regular grid of cubes.
This process of re-partitioning the regions is called voxelization and the discrete grid elements are called
voxels. After voxelization, the down-sampling of the PCL follows the foveation model – the voxels in
the fovea region of the PCL are the densest, and this density progressively reduces toward the peripheral
regions.

This voxelization and down-sampling is a three-step process: (1) calculating the volume of the voxel
grid in each region, (2) calculating the voxel size, that is, dimension, vn, for the voxelization in each
region, and (3) down-sampling the point cloud inside each voxel for the region by approximating it with
the 3D centroid point of the point cloud.

Calculating the volume of the voxel grid for each region is done by simply calculating the point cloud
distribution for that region, [(xn,min, xn,max), (yn,min, yn,max), (zn,min, zn,max)]. Calculating the voxel size, v, is a
more involved process. Here, the visual acuity discussion from Section 3.1.1 is utilized. Consider the
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Figure 6. Foveated point-cloud sampling example showing the different voxel grid sizes for the different
regions.

voxelization of the central fovea region, P0. As noted earlier, the smallest angle a healthy human with a
normal visual acuity of 20/20 can discern is 1 arcminute, that is, 0.016667◦. Following Eq. (1) therefore,
MAR0, which is the smallest resolvable angle, is 0.016667◦. The smallest resolvable object length on a
virtual image can be calculated as:

l= dvi ∗ tan (MAR0) (8)

Equation (8) itself could provide the optimum voxel size, v. The important consideration here is
the value of dvi. In Algorithm 1, a dvi value for each point is calculated. In contrast, here in order to
down-sample the region based on the voxelization, we calculate one dvi value for the entire P0 region,
approximated as the distance from the eye (point of gaze origin) to the 3D centroid of the point-cloud
in the region, Eq. (9).

pc0 = 1

NP0

⎛
⎝

NP0∑
i=1

xi,

NP0∑
i=1

yi,

NP0∑
i=1

zi

⎞
⎠ (9)

dvi
0 = d(H, pc0) (10)

where NP0 is the number of PCL points in P0, and H is the eye-gaze origin. Then, Eq. (8) is re-written
as Eq. (11) to give the voxel size v0 for the region.

v0 = dvi
0 ∗ tan (MAR0) (11)

Once the voxelization of region P0 is finalized, for the subsequent concentric regions from P1 to Pn,
the voxel sizes are correlated with the linear MAR relationship in Figure 4. Eq. (12) shows that as the
eccentricity angle of the regions increases, so do the voxel sizes.

MARn = m · En + MAR0

vn = MARn

MARn−1

∗ vn−1 (12)

The increasing voxel size away from the fovea region implies more and more points of the point
cloud of the corresponding regions are now accommodated within each voxel of that region. Therefore,
when the down-sampling step is applied, the approximation of the point cloud within a voxel is done
over progressively dense voxels. For the down-sampling part, the region P0 being the fovea region is
left untouched so its density is the same as the incoming global map density. The down-sampling in the
subsequent regions is done by approximating the point cloud within each voxel with its 3D centroid,
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using Eq. (13).

pcv
n (x, y, z) = 1

Nv
Pn

⎛
⎝

Nv
Pn∑

i=1

xi,

Nv
Pn∑

i=1

yi,

Nv
Pn∑

i=1

zi

⎞
⎠ (13)

Here, Nv
Pn

is the number of points in voxel v of the region Pn (∀n ∈ {1 · · · N}). Figure 6 shows the
sample voxel grids for the different regions. The foveated sampling and compression is the most com-
putationally expensive system component, and the OpenMP multi-platform, shared-memory, parallel
programing method is used to achieve real-time performance.

3.3. Communication network
Point cloud can be transmitted and received as a single stream, combining all the foveated regions of
the point-cloud, or as parallel separate streams of the regions. Single streams have the advantage of
synchronized data but can be very heavy in terms of bandwidth requirements. Parallel streams can help
the network optimize the data transmission, reducing simultaneous bandwidth requirement. However,
parallel streams may also suffer from varying data transmission rates due to network delays and size dif-
ferences. To address this issue, all streamed point-cloud regions are timestamped and a buffer resource
module is created at the user site for software synchronization using the local clock synchronized with a
central NTP server. Between the remote and user sites, a new point-cloud streaming pipeline was imple-
mented using the Boost ASIO cross-platform C++ library for network and low-level I/O programing.
This pipeline accounted for the throughput-intensive point-cloud data. The user site communicates with
the remote site using TCP sockets. Further, the Robot Operating System (ROS) served as an additional
connection to exchange lightweight data between the user VR interface and the remote site. This included
the head pose UH, the gaze direction vector U �D, and the pose of the remote camera OP, among other
things.

4. Experiment design and evaluation metrics
The experiment design focuses on a thorough evaluation of the proposed framework using; datasets,
online and acquired, using defined experimental conditions and benchmarking against defined metrics.

4.1. Experiments
To thoroughly assess the effectiveness of the proposed system, we carefully conducted a series of three
subjective experiments. These experiments were designed to investigate the system’s functionality and
performance deeply.

1. Quality of Experience (QoE): To assess the impact of the proposed framework on the quality
of the experience, we pose the following two research questions to guide the study, RQ1: Can
subjects differentiate between scenes with varying graphical contexts, streamed with and without
the proposed system? and RQ2: How do different combinations of the foveated regions impact
subjective quality of experience?

2. Visual search: The visual world is overwhelmingly rich – it contains far too much information to
perceive simultaneously. Given these limits, the human visual system needs mechanisms to allo-
cate processing resources optimally according to task demands. Several studies have shown that
targets presented near the fixation point (fovea) are found more efficiently than targets presented
at more peripheral locations. However, when targets are presented away from the fovea, accuracy
reduces and increases search times and number of eye movements [52]. In applications such as
search and rescue using teleoperated robots, rapid visual responses to a potentially dynamically
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changing can be critical. Target locations should be assessed with time and bandwidth constraints
in mind. Inspired by ref. [53], a user study is conducted to assess the effect of peripheral quality
loss on search performance.

3. Verification through remote telemanipulation: Following an in-depth analysis of the proposed
system’s performance in terms of its Quality of Experience and suitability for visual search
tasks, we pursued a comprehensive evaluation. This evaluation aimed to investigate the system’s
impact on performance and execution times in real remote robotic telemanipulation scenarios.
To achieve this, we propose a pick-and-place task experiment, which is detailed in Section 6.

4.2. Experimental conditions
Three test foveation conditions were created, each having a different combination of the six regions
mentioned in Section 3.1.1, going from high-performance gain to high visual quality.

• F1: The point cloud has four partitions – Fovea, Parafovea, Perifovea, and the remainder. The
progressive foveated sampling in the regions follows Eq. (12). For the remainder of the point-
cloud region, it is sampled using the voxel sizes for the Far Peripheral region.

• F2: has five partitions – Fovea, Parafovea, and Perifovea, Near Peripheral, and then the
remainder, with a similar sampling strategy to F1.

• F3: includes all six partitions as seen in Table II – Fovea, Parafovea, Perifovea, Near-, Mid-, and
the Far Peripheral regions, with the corresponding sampling strategy.

In addition to the three conditions above, two further conditions are created to represent the two ends
of the sampling scale, i.e., full sampling (F0) and no sampling (FREF).

• F0: To simulate the approach of fully down-sampling a point cloud to allow the least streaming
costs, the whole point cloud is down-sampled using the voxel size of the Near Peripheral region
in Eq. (12).

• FREF: We used the state-of-the-art point-cloud compression method from ref. [26] as the base-
line reference and named FREF, for our comparisons across conditions F0 to F3. This approach
was selected because comparing our framework against uncompressed raw RGB-D data would
not provide a fair or practical evaluation due to the significantly larger data sizes associated
with raw RGB-D formats. Additionally, in this baseline condition, the entire visual field remains
unaltered, and our proposed framework is not applied.

4.3. Datasets
For the evaluation, four datasets were used. Sample images are shown in Figure 7. One of the datasets
is a dynamic scene where a balloon (BAL a) moves within a lab environment. Additionally, two static
datasets, shown in Figure 7, are synthetic online datasets representing static environments. These include
a living room (LIV) and an office scene (OFF), both of which come with ground truth data [54]. Figure 8
presents a dataset specifically gathered for conducting visual search experiments.

4.4. Evaluation metrics
The following objective and subjective metrics were used to evaluate the proposed framework:

1. Data transfer rate: measured as an overall value between the user and remote sites, using the
network data packet analysis tool, Wireshark [55].
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(a) (b) (c)

Figure 7. Sample frames from three of the four evaluation datasets.

Figure 8. Visual search: Target and distractors sharing similar color.

2. Latency: The end-to-end latency is composed of the sub-components in the framework: (1) at
the remote site - data acquisition (log-read RGB-D images), ray-casting, conversion (surfels into
PCL data structure), sampling, and encoding; and (2) at the user site – decoding, conversion,
and rendering. In addition, the pre-specified latency includes: (1) the eye tracker – around 8ms
(120 Hz); (2) the ROSbridge network to communicate the gaze pose to the remote site – 10ms
(100 Hz).

3. PSNR metric: The reduction of points degrades the visual quality of the peripheral region when
rendered to the user. To quantify this, the Point-to-Point peak signal-to-noise ratio (PSNR) based
geometry quality metric is a frequently used measure of distortion [56]. It is deemed insufficient
though, as it does not consider the underlying surfaces represented by the point clouds when
estimating the distortion. Further, it can be sensitive to size differences and noise when calcu-
lating the peak signal estimation. A new volumetric density-based PSNR metric is proposed,
which utilizes two volumetric densities for the data under consideration: (1) the general volu-
metric density (proposed in CloudCompare [57]), computed using the number of neighbors Nv

P
for each point p in the point-cloud P that lie inside a spherical volume v, as seen in Eq. (14).
Figure 9 visualizes the concept, where the foveated point-cloud shows higher density around the
fovea region and lower density in the peripheral regions; and (2) its maximum volumetric density
as the peak signal. For the peak signal, the volumetric density is calculated with the k-nearest
neighbor approach, as seen in Eq. (15), to account for the distribution of the density across the
point cloud and avoid any skew in the values due to sensor noise.
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Figure 9. The foveated conditions and the color-coded map for the volumetric density estimation for
the LIV dataset using Eq. (14) and plotted by CloudCompare [57] using radius of R = 0.019809.

vd = 1

NP

∑
∀p∈P

Nv
P
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3
· π · R3

(14)

vdk
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= 1
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Nv
P1

4
3
· π · R3

,

vdmax
P1

= max
∀p∈P1

(
vdk

p

)
(15)

The value of k = 10 was found experimentally and the choice depends on the input dataset and
the resolution, as data with more depth measurement errors will likely perform better when the
value of k is higher. The value of the radius R, for consistency, is estimated by averaging the voxel
sizes across all the foveated regions in the F3 condition (Figure 9). For the symmetric density
difference calculation, for every point p in the reference (original) point-cloud P1 (FREF), the
closest corresponding point in the degraded cloud pnn ∈P2 (F0-F3) is found. The density vdP1

and vdP2 are then estimated using Eq. (14). The density-based PSNR is calculated as a ratio of
the maximum density of a reference point-cloud using the experinmental condition (FREF) to
the symmetric root-mean-square (rms) difference in the general densities. Eq. (16) provides the
equations; NP1 is the number of points in region P1.
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vdrms(P1,P2) =
√√√√ 1

NP1

NP1∑
i=1

[
vdi
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− vdi
P2

]2

vdsym(P1,P2) = max (vdrms(P1,P2)), vdrms(P2,P1))

PSNRvd = 10 · log10

(vdmax
P1

)2

(vdsym(P1,P2))
2 (16)

4. Metrics for Quality of Experience (QoE): We used the experimental conditions outlined earlier
to assess research questions RQ1 and RQ2 comprehensively. RQ2 specifically addresses the
question: “How do various combinations of foveated regions influence the subjective quality
of experience?” In this context, the independent variable is the real-time point-cloud stimulus
(foveated vs. non-foveated), while the dependent variable is the capacity to detect quality degra-
dation. Using the Double Stimulus Impairment Scale (DSIS) study approach [58] with the LIV
dataset, subjects were first presented with the FREF condition, followed by a 3-second pause,
and one of the altered conditions (F0-F3) following immediately after, the presentation of the
altered conditions was carefully changed using the Latin Squares design approach [59]. Both
FREF and the altered conditions had 450 frames and were shown for 35 s before and after the 3 s
pause. The subjects were then asked to rate the second presented stimulus on a 5-point scale [58],
on whether the alteration was: (5) imperceptible; (4) perceptible, but not annoying; (3) slightly
annoying; (2) annoying; and (1) very annoying. The arithmetic mean opinion score (MOS) was
calculated for each condition.

5. Metrics for Visual Search: Eye movements are influenced by various target features, including
color, size, orientation, and shape, as illustrated in Figure 8. Introducing distractors that share
these features with the target significantly affects performance, leading to longer response times
during search tasks. Therefore, reaction time was chosen as an evaluation metric for the visual
search experiment and it was evaluated using the dataset in Figure 8. Subjects were asked to
search for the target within the scene. Upon locating the target, they press the motion controller
trigger button, recording their reaction time. The sequence for introducing experimental condi-
tions between F0, F1, F2, F3, or FREF and the target-distractor position was carefully changed
using the Latin Squares design approach cited in ref. [59].

For the user study, there were 24 subjects (9 females and 15 males), aged 21–35 years and the mean
age (μ = 28.9 years) of the sample population had a standard deviation (σ = 4.3 years). All subjects
had a 20/20 or corrected vision, and the eye tracker was calibrated for all subjects. Based on the ITU-T
[58] recommendation, subjects were made familiar with the experimental setup using the OFF dataset,
with the VR headset and the gesture controller devices. Each subject performed two trials for each test
condition, within the QoE and visual search experiments. In addition, the experiment was designed as a
within-subjects study, with the experimental conditions presented in a pseudo-random order to minimize
carryover effects between them.

5. Results and discussion
Following a recommendation by ref. [60], five randomized HMD positions with varying distances to
the center of the datasets were used for the objective metrics evaluation. Four hundred frames were
tested for each HMD position from each dataset. The Shapiro–Wilk test was performed to assess the
normality of the evaluation metrics across all experiments. Results indicated normal distributions for
all metrics except in the case of the visual search experiment. For this experiment, The Shapiro–Wilk
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Table III. Mean number of points per frame.

Table IV. Compressed bandwidth (MBytes/sec; top row) and latency (ms; bottom row).

test p-values were below 0.05 for all conditions (F0, F1, F2, F3, and FREF), suggesting a potential devi-
ation from normal distribution. However, after applying a log transformation to the data, the variables
exhibited a log-normal distribution. Therefore, a two-way Student’s t-test was employed to analyze the
log-transformed data. Likewise, the same test was applied to the other evaluation metrics.

5.1. Data transfer rate
Table III shows the relative reduction in the number of points per frame and Table IV reports the average
bandwidth required for streaming (MBytes/sec), and the relative percentage reduction in bandwidth as
compared to the FREF condition. From these results, it can be seen that the mean bandwidth required
for the F1 condition gives an average 61% reduction as compared with FREF. The numbers are similar
for the F2 condition, with an average 61% reduction, while F3 offers a lower 55% reduction. Statistical
t-test analysis showed that these reductions are significant at 95% CI (p-values < 0.05). Within the
three conditions, although F1 is the most advantageous, the difference between the three reductions
is not statistically significant (p-value = 0.3). On the other hand, as expected, the foveation conditions
perform worse than the F0 condition, which offers the highest bandwidth reduction, at up to 81%.
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Table V. Sample comparison of averaged system components execution times per frame for the OFF
and LIV datasets.

OFF LIV
Component F0 F1 F2 F3 FREF F0 F1 F2 F3 FREF
RGB-D reader 4 4 4 4 4 4 4 4 4 4
Partitioning 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Conversion 46 59 43 51 56 54 53 47 46 56

Remote Sampling 21 22 23 25 0 30 21 22 22 0
Encoding 60 88 114 111 319 104 73 109 119 396
Decoding 25 36 46 47 121 47 38 59 58 158

User Conversion 0.7 1.3 1.8 2 7 1 1.2 1.6 1.6 6
Rendering 18 18 18 18 18 14 14 14 14 14

Total(ms) 175 228 250 258 525 254 204 257 265 634
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Figure 10. Volumetric density-based peak signal-to-noise ratio for all experimental conditions and
data-sets.

5.2. Latency reduction
The mean latency values for our framework are listed in Table IV. Again, the foveation conditions offer
between 60% (F3) and 67% (F1) speedup over the FREF condition. However, they also perform worse
than the F0 condition, being between 20% and 35% slower. These speedups (and slowdowns) are statisti-
cally significant, p-values < 0.05. A more detailed system component level evaluation is seen in Table V.
The most time-consuming elements are related to data conversion and compression. As expected, the
numbers show an upward trend from F0 to FREF. It is noted that this trend is not linear - latency increases
at a greater rate with increasing point-cloud density.

5.3. PSNR metric
Figure 10 illustrates the volumetric density-based PSNR metric that helps objectively discriminate
between the test conditions in terms of the costs they impose on the visual quality. In all cases, the
F0 PSNR is significantly worse (p-value < 0.05), which negates the bandwidth and latency advan-
tages it offers. The foveation conditions offer progressively better PSNR values, averaging 69.5 dB
(F1), 70 dB (F2), and 71.6 dB (F3), over the four datasets. The F3 PSNR is significantly better than F1
(p-value < 0.05), but not F2 (p-value = 0.64).
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Figure 11. Mean opinion score (MOS) and Standard deviation (SD) with error bars for the Quality of
Experience (QoE) metric.

5.4. QoE metric
Figure 11 shows the mean opinion score (MOS), averaged over the 24 subjects. It is seen that all three
foveation conditions have a MOS > 3. For the F1 and F2 conditions, the foveation is certainly perceptible,
but it may not hinder the users’ experience, since the perceived degradation is only “slightly annoying”
(F1) or “perceptible, but not annoying.” With a MOS > 4, the F3 condition shows that subjects are not
able to easily perceive the degradation, and even if they do, it is “not annoying.” The F0 condition has
a MOS < 3, implying the degradation can be annoying for subjects, which further negates the benefits
it offers on the other metrics.

The Shapiro–Wilk normality tests for each condition revealed significant deviations from nor-
mality (F0 : p = 0.00118, F1 : p = 7.179e − 05, F2 : p = 0.0001979, F3 : p = 0.0001523). Given these
results, the Friedman test, which indicated significant differences between conditions (Friedmanchi −
squared = 42.347, p = 3.386e − 09). Pairwise comparisons using the Wilcoxon signed-rank test showed
significant differences between the following condition pairs: F0 versus F1 (p = 0.000237), F0 versus
F2 (p = 0.000419), F0 versus F3 (p = 0.000055), and F1 versus F3 (p = 0.003), while F1 versus F2
(p = 0.137) and F2 versus F3 (p = 0.010) were not significant after Bonferroni correction, with adjusted
p-values of 0.001422, 0.002514, 0.000330, 0.822, 0.018, and 0.060, respectively.

5.5. Visual search metric
As shown in Figure 12, the mean and standard deviation of participants in condition F0 gives a mean
of (μ = 1219.6, σ = 883), showing that participants were very slow and the large standard deviation
indicates that the reaction time in this condition is farther away from the mean. The mean and stan-
dard deviation for the F1 condition is (μ = 512, σ = 198), for F2 (μ = 442.4, σ = 283), F3 (μ = 288.9,
σ = 138.2), and FREF (μ = 248.8, σ = 120.8).

The Shapiro–Wilk normality test results revealed that F0 (W = 0.86143, p − value = 0.0001218)
and F2 (W = 0.78733, p − value = 2.405e − 06) are not normally distributed, while F1 (W = 0.96261,
p − value = 0.183) is approximately normally distributed and F3 (W = 0.92441, p − value = 0.008433)
is not normally distributed. Consequently, the Friedman test was employed, yielding a chi-squared
value of 77.699 with 4 DOF and a p-value of 5.349e − 16, indicating significant differences
among conditions. Post-hoc pairwise comparisons using the Wilcoxon signed-rank test, adjusted
for multiple comparisons with Bonferroni correction, showed significant differences between F0
and all other conditions (F1 : p − value = 0.00036, F2 : p − value = 0.00016, F3 : p − value = 1.3e −
08, FREF : p − value = 1.7e − 06), between F1 and F3 (p − value = 8.7e − 08) and FREF (p − value =
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Figure 12. Reaction time as a function of experimental conditions.

Figure 13. Benefit-cost ratio against different conditions.

2.3e − 06), and between F2 and F3 (p − value = 0.00921) and FREF (p − value = 0.00012), with no
significant differences between F1 and F2 and between F3 and FREF.

5.6. Discussion
The five metrics analyzed here offer a cost-benefit understanding of the tested conditions, that is, the
benefits in bandwidth and latency versus the costs in PSNR and QoE. For instance, the F0 condition,
as expected, offers the most benefit for bandwidth and latency, but the costs in PSNR, QoE, and visual
search are the highest. Although the FREF condition is the best in terms of PSNR and QoE, the over-
all analysis demonstrates that the foveated conditions together provide the optimal cost-benefit ratio, as
compared to both the F0 and FREF conditions. The perceived degradations are seen not to impact QoE
significantly. A deeper analysis shows that the F3 condition performs significantly better in the benefit
metrics, while its costs are not significantly worse than FREF. As expected, the F1 condition falls at the
lower end within the three conditions but still offers significantly higher benefits on latency and band-
width. The three test foveation conditions created by combining the six regions offer a key advantage:
real-time usage requirements and a user-selectable approach that allows users to choose among the three
conditions and switch among them as required. As shown in Figure 13, The F2 condition offers a good
cost-benefit compromise between the two conditions.
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Figure 14. Teleoperation experimental setup, a virtual model of the robot, and point clouds streamed
in FREF and F2 experimental conditions.

6. Verification through remote telemanipulation
To evaluate the impact of the proposed system on the performance and execution times during real
remote telemanipulation tasks, we propose a pick-and-place task experiment. This experiment uses the
cost-benefit analysis results from five metrics in Figure 13 and uses the F2 as optimal experimental con-
dition, while the reference condition FREF is compared with it. This approach enables the validation
of the proposed system through teleoperation experiments. The framework was then tested on a sepa-
rate real-world setup, based on a dynamic pick-and-place remote telemanipulation user trial (termed as
Teleop), as explained in the following below.

A user study was conducted in a real-world scenario and at the remote site Figure 14(a), we used a
remotely teleoperated manipulator (the 7 DOF Franka Emika Panda with its gripper), along with balls
at specific locations, a bowl as target drop-off point, and other objects were used for a pick-and-place
task. At the user site, participants were provided with a VR interface that included a virtual model of the
actual robot and the point clouds streamed in different modes as illustrated in Figure 14(b) for FREF and
Figure 14(c) is the experimental conditions F2. This experimental setup allowed for a comprehensive
analysis of the system’s impact on user performance in the context of pick-and-place tasks. To objec-
tively assess the effectiveness of the tasks, the execution time for each task was recorded, along with
manipulation or grasping errors. These errors included inaccurate positioning, failed grasps, premature
dropping of objects, or placing objects in incorrect locations.

Participants viewed the remote scene through the HTC Vive Pro Eye, and the remote area used the
Intel Realsense RGB-D camera to capture the remote 3D data in real-time. The scene consisted of dif-
ferent objects, and included three color-coded tennis balls at specific locations, and a bowl at a target
location. A sample scene is seen in Figure 14. At the “Go” signal from the experimenter, with the robot
starting from a home location, the participant picked up the tennis ball, based on the requested color
code (red, yellow, or blue), and placed it inside the bowl. Participants released the grasped ball, based
on their judgment of the end-effector location vis-a-vis the target location. At the end of each condition
(3 sequential pick-ups and drop-offs), the experimenter gave a “relax” signal to the participants. The
robot end-effector was moved to the home location, and the balls and the bowl were replaced for the
next condition; their locations were randomized across trials using the Latin Squares design approach.
Additionally, the conditions were alternated for all subjects.

6.1. Remote telemanipulation result
Figure 15 displays the task completion time for the FREF and F2 conditions, providing valuable insights
into the system’s effectiveness in teleoperation tasks. The FREF condition took 84 s, while the F2 condi-
tion performed better, taking approximately 43 s each. The Student’s t-test results indicated statistically
significant differences in execution time (p-values < 0.05) with the FREF condition. In other words,
the F2 condition was more efficient than the FREF condition in terms of task completion time. The
Student’s t-test results showed that there was a significant difference in execution times between the two
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Figure 15. Participants’ execution time results for FREF and F2 conditions.

Figure 16. Percentage of errors per number of trials in FREF and F2 conditions.

conditions. This suggests that the F2 condition is a better choice for teleoperation tasks, as it is faster
and more effective than the FREF condition.

Figure 16 presents the grasping errors observed during the study, with error rates calculated as a
percentage of the total number of trials (three trials per condition). For example, if a subject made one
error (such as during picking, moving, or dropping off) in one trial and had no errors in the remaining two
trials, the error rate would be 33%, indicating one error out of three trials in that specific condition. Based
on the collected data, the mean error rates were calculated as follows: FREF = 39.4% and F2 = 30.3%.
Statistical analysis using the Wilcoxon rank-sum test, which is appropriate for non-normally distributed
data, revealed a significant difference between the FREF and F2 conditions. These findings indicate that
the error rates for FREF are higher.

7. Conclusion
This work presented a systematic approach that successfully leverages the vast potential of immersive
remote teleoperation interfaces and the human visual system for foveated sampling, streaming, and
intuitive robot control that allows the user to optimize bandwidth and latency requirements without
sacrificing the quality of experience. In addition, the proposed work enables users to freely explore
remote environments in VR to understand better, view, locate, and interact with the remote environ-
ment to make it adaptable for demanding telerobotic domains, for example, disaster response, nuclear
decommissioning, telesurgery, etc.
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The experimental results reveal significant enhancements in visual search experiments. Moreover,
latency and throughput were reduced by more than 60% and 40%, respectively. Furthermore, a user study
focusing on remote telemanipulation showed that the framework has minimal impact on the users’ visual
quality of experience while significantly enhancing task performance. The users reported no compro-
mise in the quality while experiencing improved efficiency in task execution. The proposed framework
demonstrates its substantial benefits by reducing task execution time and highlighting its effectiveness
and practicality in real-world scenarios. Although the QoE scores do not reflect it, future investigations
will prioritize addressing distortion and aliasing issues resulting from discontinuities at region bound-
aries and over-sampling in the peripheral regions. Further user trials in contextual tasks with end-users
will help establish the utility and suitability of the framework in real-world applications.
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