PROJECTIVE SYSTEMS ON TREES AND VALUATION
THEORY

OLAV ARNFINN LAUDAL

Introduction. It is our aim in this note to introduce methods from
homological algebra in the study of some problems in valuation theory. In
particular, we will use such methods to give a new, and, in some respect,
simpler proof of a well-known theorem of Krull and Ribenboim; see (2). We
shall also show that the same methods can be used to prove the Riemann-Roch
theorem for algebraic curves and the Weierstrass product theorem.

In § 1 we study the functor h(_m on the category of projective systems of

modules on an ordered set V. If V is a tree, we show, (1.2), that
lim® =0 for p = 2
h_
vV

and we give an explicit formula for

lim®
lim™.

If V is either a finite tree or the ordered set of the integers, we give condi-
tions on the projective system F such that we have lim®F = 0; see (1.4)
—

and (1.8). In § 2 we specialize to the case where V is the ordered set of valua-
tions of a field. It is known that V is a tree, and we may therefore use the
results of § 1. Using (1.4), respectively (1.2), the Krull-Ribenboim approxi-
mation theorem and a weak form of the Riemann-Roch theorem for algebraic
curves come out. The last section contains a proof of a ‘‘global’’ approxima-
tion theorem. As an example, we show that this generalizes the existence part
of the Weierstrass product theorem.

1. Let L be an unitary ring and let V be an ordered set. If M is a subset
of V and v an element of V, we put
M={c Vv <ve M},
o= {o,
V,=1{v' € V]|v > o}
Let ¢ be the abelian category of all projective systems of L-modules on V.

An object F of ¢ is then a family of L-modules { Fy} ,¢v, together with a family
of homomorphisms j,”: Fy — F,, o' > v such that, for v/ > v > v,
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’

jvo "= jvv' Ojv'v”-
For the definition and the main properties of the projective limit functor:
lim: ¢ — category of L-modules,
—

see (1). We denote by ET@) the pth right derived functor of lim. By (1) we
have —

Ext,” (I, F) ~Hom (L, im® F) ~ lim®F,
= — —

where I denotes the constant projective system on V associated with the
L-module L. If for each v € V we are given an L-module F,, then we may
construct a projective system F on V by defining
F,=11F,.
v EVy

If 93 > vy, then the homomorphism j,,’: F,, — F,, is induced by the in-
clusion V,; & Vi,. We shall call such projective systems elementary.

We easily prove that if all ¥, are projective L-modules, then F is a pro-
jective object in c.

Definition 1.1. An ordered set V is called a tree if, for every v € V,
(1) v is totally ordered,
(2) there exists a subset R, of V such that
(@) ifv' € R,, then v’ > v and v’ # v,
(b) if v/ > v, v/ v, then there exist a unique v € R, such that
" > .

ProposiTiON 1.2. Let V be a tree and suppose that for every o € V, ¥ is finite,

then
@) Im® =0 for p 2 2,
14
(ii) LLnl(l)F = coker ¢,
14
where
¢: H Fv“)n Fam 0,01
A
s given by

¢‘({fv})(v.v') = f?) - jvv’fv'-
Proof. For every v € V let

p°% = L and P = ,LIL-
V' ER,
Denote by p° and p! the elementary objects of ¢ generated by the families
{D%} vev and {p!,} v, respectively. Let e: 9 — I be the morphism induced
by the family of identity homomorphisms
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P — 1.
Now, as for every v € V, V, is the disjoint union
U Rv’ U {7}} ’
v €Vy
we have
1 0
pho= 1 1, =1L
v’ €Vo—{v} v EVY

If {e,}wev, is a base for p9, then {e,},¢cr, is a base for p!,. Let d: pt — p°
be the morphism induced by the family of homomorphisms
1,0 Pty — p%
given by
zv<z l,,re,):> =Y ly(ey — e,).
V' ERy o' CRy

Obviously, eod = 0 so that d defines a morphism d*: p! — ker e. We shall
show that d* is an isomorphism. Let x € p!, and suppose that

x = Z Loy # 0.
v €Vo—{v}

If ¥’y is maximal among those v’ for which /,, % 0, then we may write

d(x) = lv’oev'o -+ Z l”,,ne,,u

P

so that d(x) ## 0. Therefore, d* is monomorphic. Let y € ker ¢, then
y=2 lse, with D I, =0.

v €V v €E€VY

For every ' € V, we know, since 7’ is finite, that there exists a finite maximal

sequence
v=vo;v1;...§vn=v'
such that v;41 € R,; for 2 =0,1,...,n — 1. Then
n—1
Cy — €, = ‘Zo (€riin — €1:)
=
and
y = Z lyey = Z Ly(er — €,) = Z Lyryw (€ — €y)
v EVY v €Vr v’:EEtI,?m’;
v v

so that y € im d*. Therefore d* is epimorphic, and we then know that

0— pl i) Po LIy N 0
is an exact sequence of objects in ¢. As p® and p! are projectives, we may
calculate lim® by using the complex Hom,(p-,—). In particular, we find:
Jm ‘

Li_ﬂl(p) =0
v
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for p = 2, and
Liln_mF = coker{Homg(po, F) Hom(d, idy), Hom (p', F)} .
14

Now
Hom_c(po, F)~]] F, and Hom_c(pl, F)~]] Fmin(,7),
V€V

v €ERy;
vEV

and ¢ = Hom(d, 1di‘) is given by ¢({fv} vEV)(v,v’) =f0 _jwﬂfv’-

Suppose M is a subset of the ordered set V, and suppose F is a projective
system on V, then there is a canonical homomorphism

F(V,M): lim F — lim F.
- —-
v M

We shall use the following lemma.

_LEMMA 1.3. Let M1, M., and N be subsets of the ordered set V such that
M;,=M;fori=1,2,V=M\J M, and N = M, M,y Then we have an
exact sequence

0——>1(—'l_n1F/im F(M,, N) + im F(M2,N)—>lir_11(l)F—>(li_r_n_(1)F X &@(I)F—)O
N ) Vv Ml .A{g
limPF.
—

Proof. Let W = {0, a, b} be the ordered set with the only non-trivial
relations 0 < @, 0 < b. Let
k: W— PV

be the «-functor given by «(a) = My, «(b) = My and «(0) = N. If G is a
projective system on W, we find

limG = G, X Gp,  lm®G = Go/ima + im 6,
W Go W

where a: G, — Goand 8: G, — G are the obvious homomorphisms. The lemma
now follows from (1.3.1) of (1).

LeEMMA 1.4. Suppose V is a finite iree, then the following statements are equi-
valent.
(i) im®F = 0.
14
(ii) If v € V and Rv = {vy, ..., v,}, put

j
1 7 2 7
Mj = UIVW) Mj = ijn;
=
.., r — 1, we have

then, for every j = 1, .
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F, = im F(M}, ) 4+ im F(M}, 7).
Proof. Define the function #: V — Z* by k(v) = max{s| there exists in V
a sequence é V1 ; e ; 2o = v}. Suppose
lim®F = 0.
Jm
14
By induction on %(v) we shall prove that for every v € V,
lim®F = 0.
Jm
V,
If 2(w) = 0, then V, is a connected component of V, and therefore
Im@PF = lim™F = 0.
- —-
V, v
Suppose now that
lim®PF =0
(_._’_

for all v with () < #, and let v, be such that k(y,) = n. Since we may
suppose k(v,) = 1, there exists a unique v such that R, = {v1,...,v;}. Then

M=V, V,=M_ UM, and N=M_.NM-_, =5

As
lim™PF = 0,
(_:_.
]
we have
lim PF X lim PF~ lim PF X lim PF
S 3 T <72
]t[7~1 Mr—l r—1 Anly—l
lim®
-

By the induction hypothesis, we have

limF = 0,
pinisiang
v
thus Lemma 1.3 implies

Iim®PF = lim PF=0, and lim PF=0.
[ S — e

Vﬂr M%—l Mi—l
Therefore
Li_rq‘l)F =0 foreveryvé€ V.
V,
Now, since
Migy= MMM and M}PNM?=15 foreveryj=1,...,r—1,
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we may use the same method to prove that for every v € V and every
j=1,...,r — 1, we have that

lim PF = 0.

ST

M
But (ii) is then an immediate consequence of Lemma 1.3. Reversing every-
thing, we prove that (ii) implies (i).

CoRrOLLARY 1.5. Suppose that V is a finite tree and that

lim®F = 0.
“——
%4

If M is a subset of V, then

lim®PF = 0.
——

M
Proof. If T satisfies condition (ii) of Lemma 1.4, then so will M.

Suppose V is the ordered set of the positive integers Z+. Then, given a
projective system F, we define the completion F of F by
E, = ﬁm_mﬁmﬁﬁ
n>n
There is an obvious morphism
g:. F—F.
Now we have the following result.

THEOREM 1.6. If

lim®PF = 0,
7?

then g is epimorphic. If F is monomorphic and g is epimorphic, then
lim™PF = 0.
7+
Proof. 1f

then, using the fact that ‘
lim” =0 for p = 2
7+
and applying limgz+ to the exact sequence’
— ‘
0 — im j,* — F, — F,/im j,* — 0,
we easily find that '
gt F,— lim F,/imj,
n>n
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is onto, so that g is epimorphic. Now, if F is monomorphic, then
(ker g), = (N im j,"
n’'>n
so that ker g is constant.
If, in addition, g is epimorphic, we have an exact sequence
0—>kerg— F— F—0.
As ker g is constant,
lim® ker g = 0
Wi
so that
imPF = [im@F.
71 ‘Z?
But we always have
lim”F =0 for p = 0.
7+
In fact, consider the projective system H on Z*+ X Z+ defined by

. -max(m,n)
Hm.n = len(m,n)/lm]mln(m,n)-

We have H,,, = 0 for m € Z+ and therefore

lim “H=0 for p =0.
(__—__
Ztx z*

However, by (1.3.2) of (1), there exists a spectral sequence converging to

HMW)H with E;,=_ lim © lim “H,,.
Ztx zZt meZt neZt

It follows that Ez,,, = 0 for all p, ¢ = 0 and, in particular,
s P _ 2
1(L_Zm$ F=E,o=0 for p =0.

THEOREM 1.7. Let F be a projective system of topological abelian groups and
continuous homomorphisms on the ordered set Z*+. Suppose that

@) for all n € Z*, F, is complete metrizable,

(i1) for all ' > m, im 7. is dense in F,,
then we may conclude that g: F — Fis onto.

Proof. We fix an #n € Z*+ and we shall prove that g,: F, — F, is onto. Let

Up: F, — F,/im ji*"
be the canonical homomorphism, and fix an element f = {},,} € F£,. For each
m € Z*, let f, € F, be such that u,(f») = fn. We then have:

fms1 — fm € im 72" for all m € ZT,
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Let 6,, be the metric on F,in, and put fo = 0. Since im j2+! is dense in F,, we
may find an element gio € F,41 such that if go; = j2+1(g10), then

1
60(fi — fo+ g1, 0) < % = 1.
Put fi = f1 + go1; then we have:
ur(fr) = ui(f1) = fu, fo = Ji € im g+,
Thus we may find an element kyo € F,41 such that ko, = jit1(hio) = fo — fi.

Since all j,* are continuous, we may, using (ii), find an element g2 € Frpo
such that if

g = juii(g),  gox = Ju(g20),
then
do(fe — f1 4 202, 0) < 3,

1
01(h1o + g11,0) < 5) = 1.

Put _72 = f2 + Zoo, then
us2(f2) = us(fo) = ]?2, fai—f€ imj:“.

Continuing this process, we construct elements f, € Fy,, hy; € Fopsi 47 =m,
grs € Foyr, v+ s =m 4+ 1, such that:

8(hr o1+ g:.5,0) < 3r for 7+ s =m,
Pdiaty) = by, 30" Ono) = farr — Jn
P (grs) = gvstty Un(Fn) = Un(fn) = Fur  Frpr — Jm € im j2F™,
By construction,
f= ; (i = To) = ; (ho,i + go,4+1)

exists. Further, by construction,

h; = Z_:o (hji + g5.041)
exists, k; € F,4j; and we have

- o : ]—1 - - -
F—= ) = ;}fzﬂ —fi=1T1s
therefore,we have _ )
u;(f) = u;(f;) =f; for all j € Z+
This means that g,(f) = f and the proof is complete.
CoROLLARY 1.8. Under the hypotheses of Theorem 1.7, if F is monomorphic,
then
limPF = 0.
am
Z

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-096-x

992 OLAV ARNFINN LAUDAL

2. Let K be a field and let V be the ordered set of all non-archimedean
valuations of K.

If v € V, we denote by m, the maximal ideal of the valuation ring &,,
and by T, the linearly ordered value group of v.

For every v € V, we then have an exact sequence of abelian groups

(1) (1} > U, > K*5T,—0,

where U, is the multiplicative group of units in &,.

Obviously, the families {@ 4}y, {Uswey, and {T',},cv define projective
systems of abelian groups on V. We shall denote these by O, Uy, and T,
respectively. Then we have an exact sequence of projective systems of abelian
groups:

(2) {1} - Ux — K* — I'r — 0.

Suppose that the subset IV of V has a least element, then we have

limPK* = 0.
Jm
N
Applying the functor limy to the exact sequence (2) we then get the exact
sequence -
3) (1) = lim U — K2, fi 1 5 i@ 7 0.
N N N

Definition 2.1. Let N be a subset of 1, then we shall call N an A-set (approxi-
mation set) if for every

’YEli_rTlI‘K
N

there exists an element x € K* such that (V) (x) = v.

Lemma 2.2, Suppose N contains o least element, then N is an A-set if and
only if
li_rrlm Ug = 0.

Proof. This follows immediately from the definition and from the exact
sequence (3).

Let Vo = Vo be a subset of V, then ¥, has an induced order. If IV is a
subset of V,, let D(V, V,) denote the subset of 7, consisting of all ' such
that & N N = {4}, where # is the trivial valuation.

Definition 2.3. Let N & T, be subsets of V. We shall say that NV is a GA-set
(global approximation set) with respect to V,, if for every
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To/D(N, Vo)

there exists an element x € K* such that (V) (x) = 7.

LeEMMA 2.4, Let N © V, then N is a GA-set with respect to Vo if and only
if the canonical homomorphism

EE(I)UK N (_EI’_H (I)UK
Vo D(N, Vo)

15 monomorphic.

Proof. We may assume that D(N, V) # V,. Applying the functors

lim and lim
P —
Vo Vo/D(N, Vo)

to the exact sequence (2) we get a commutative diagram of exact sequences

(1} = lim Ug — K* — lim Te ——— Iim® U — 0
Vo Vo Vo
L’ } L
{1} — lim Te>  1m®  Ug—o.
Vo/D(N, Vo) V/DWN, Vo)

Now N is a GA-set with respect to Vyif and only if fo's = jot = 0. s being
an isomorphism, this is equivalent to £ = 0. From the exact sequence

. lim Ug— Im® Ue blim®Ux— 1im® Ue—o...,
—— — ~ —
D, Vo) VDNV - TV, DV, 7o)

it follows that ¢ = 0 if and only if

imPUx—  lim  Ug
P —
VO D(Ny VO)

is monomorphic.

LeMMA 2.5. Suppose that N is a finite subset of V, containing a least element
vo. Consider the field k = O ,,/m,, and let M = {v/vo|v € N} be the set of
valuations on k associated with N. Then

im®P U, ~ lim®U,.
- -
N M

Proof. Let Uy = {x|x € K,1 —x € m,}, then Uy Z U, for all v € N
and Uk, /00y = Ux,,/Uo. The family of exact sequences

{1} = Uo— Ug,o —~ Us,0/00) — {1}

defines an exact sequence of projective systems on the ordered set N ~ M.
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Since
im®Us = 0 for p 2 1,
N
it follows that
li_nl(l) U ~ li_rrl(l) U..
N M
LEMMA 2.6. Suppose that N is a finite subset of V, and let v € N. If
R, ={vy,...,v,] and

7 2
Nnu Mj = ij+1:

C-

Mjl=

1

-
]

then for every j =1,...,r — 1,

UK.v = N UK,o'- N UK.v’-

o’ €M;L v’ €M 2
Proof. We must prove that for every x € Uk,, there exist
x1€ N Ugy and x2€ N Ug,y

v’ eM;l v’ €M;2
such that x = x;1-x.. As N is finite, the function #: N — Z+ has a maximum
no (see the proof of Lemma 1.4). If h(v) = n,, then R, = § and there is
nothing to prove. Suppose that the lemma has been proved for all v € N
such that k(v) = m 4+ 1 and let v € N be such that k(v) = m. By Lemma
1.4 we know that the conclusion of the lemma is equivalent to

H(_;_m(l)UK = 0.

N,
By Lemma 2.5 we may therefore suppose that v is the trivial valuation. Let
us, s =1,..., k&, be the maximal elements of M,;2 and let w,, t =1,...,],
be the maximal elements of M. Foreach7 = 1,...,, let v,/ be an element
of V such that v < v/ < v; and such that v/ is of rank 1. By (4, Lemma 1,
Chapter VI, § 7) we may find elements y,, s = 1,...,k andz,t = 1,..., |,
in K such that

us(ys) =0, us(yy) >0 for s = ¢
and
v/ (y5) >0 fori=1,...,7, s=1,...,k;

w;(zl) = O, wt(zt') > O fOI' t # t,,
and
u,(2;) >0 fors=1,...,k t=1,...,1

We may suppose that v;41(x) =< 0. If this is not the case, we might consider
x~% Since v/, ¢ = 1,...,7, are of rank 1 we may, by taking high enough
powers of the y,, assume thatv;/(y,) > —v,/(x) forz = 1,..., . This implies
that w,(y;) > —w,(x) fort =1,..., ! Since v,,1(x) < 0 we have u,(x) <0
fors=1,...,k Put
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1 k
X1 = Z 3y +Z Vs X.
t=1 s=1

We then have w,(x;) =0for ¢t =1,...,1] so that

X1 E m UK.D’!
v’ €M1
and
ug(x1) = us(x) fors=1,...,k
Let x; = x/x;, then the last relations imply that #,(x;) = O0fors=1,...,k
so that
X2 € N Ux.u'-
v’ EM;2

It follows that the conclusion of the lemma is true for all v € N.
From this lemma we easily deduce the following well-known theorem.

TrEOREM 2.7 (Krull-Ribenboim). If v, ¢ = 1,...,r, are valuations of a
field K, and if for every < = 1,...,r, v, is an element of T,; such that for each
couple (1, j) the image of v, and v, in the value group of v; A v; coincides, then
there exists an element x € K* such that v;(x) =y, for all 1 =1,...,r.

Proof. Let N be a finite subset of V containing all v, 2 =1,...,7, and
being closed under the operation A. The conclusion of the theorem is by
Definition 2.1 and Lemma 2.2 equivalent to

lim® Uy = 0.
N
But this follows from Lemmas 1.4 and 2.6.

We now let V' be a subset of V consisting of discrete valuations of rank 1.
Let D(V’) denote the free group generated by V’. If

D = Zn,,v,

1344
we put

d(D) = Z My, ‘I)(D) = Ny
vEV’

Let V* = V' and let L(D) be the projective system of abelian groups on
V* given by
LD), = {x € K|v(x) 2 —o(D)} if v € V7,

L(D)* = K.

Note that V* = V' U {}, where * is the trivial valuation. If D; and D; are
elements of D(V’), then, by definition, Dy = D, if for every v € V7,
(D) < v(D,). Suppose that D; £ D,, then there is an exact sequence of
projective systems on V*
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0—L(D1) = L(D:) > P—0,
where P is given by:
Ev ~ m,0PD [y~ 0P,
If we put
T , ERRTIN¢))
LD) =lmLD), I'D)=lm®LD),
V* *
then the above exact sequence induces an exact sequence
0 — L(Dy) — LDs) =[] me@ /m 7@ 2 (Dy) — I'(Ds) — 0.
€V’

By Proposition 1.2 we have
o) = coker{ [1LD),—T] L(D)mm.,,s}
vV T 0V

v €Ry

~]] K {K +11 é(D)u} :

vEV’ VeV’

Let I(D) denote the subgroup of I’(D) consisting of those elements x with
representatives

{xv} eV’ 6 H K

vEV’

such that for all but a finite number of the v’s, x, € &,. Then we easily
find that imd C I(D;) and that I(D;) — I(D,) is epimorphic. It follows
that we have the exact sequence

0 — L(Dy) = L(Ds) =[] m,”® /m,;*®? — (D) — (D) — 0.

Suppose that K contains a subfield % such that all valuations of V' are trivial
on k. Suppose further that:

(i) dim,L(0) < o,

(i1) dim,7(0) < o,

(iii) for every v € V', ¢, = dim (0 ,/m,) < ».
Then

dimg [ [ 7,70 /m, P9 = 37 (@(Ds) — v(D1))e,
VeV’ vEV’

and for every D € D(V’)

(D) = dimL(D) < =, (D) = dim, I (D) < o,
and

I(Ds2) — i(Ds) = U(D1) — #(Dy) +”EZV, (@(D2) — v(D1))e,.

From this, the “weak’ form of the Riemann-Roch theorem for non-singular
algebraic curves follows easily; see (3, Chapter 2).

TaeoreM 2.8. If K is an algebraic function field over the algebraically closed
field k, then, if D is a divisor, we have that
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I(D) —i(D) =1 —1(0) + d(D),

where 1(D) = dimI(D), I(D) ~ R/K + R(D), and R is the k-algebra of
repartitions.

3. Suppose we are given a sequence of fields
m
K(}QKlQ...QKiQ...QK: mK'[-
i=1

Let V; and V be the ordered set of all non-archimedean valuations of K;,
respectively K. Then there is a sequence of epimorphisms of ordered sets:

Let V°; be a subset of V such that V°; = V°,, and such that s,(V°;) € V9%,.

We put
V= U im(V%— V).
i=1

Denote by ¢; the map V% — V° and let «;: VO — PV?; be the «-functor
defined by «;(») = {v; € V%] ¢;,(') < v}. Then there are natural homo-

morphisms:
lim Ug,,, — lim Ug,

Kip1(0) «:(v)

(_liriUKnl - l(i_rr}_UKi'

Vi Vi
If N is a subset of V and N, = ¢t;"1(N), then there are also natural homo-
morphisms

lim  Ug,, — lim Uk;-

o — e
D(Nﬂ_l, V1+1) D(N1, V‘i)

THEOREM 3.1. If for every 1 € Z*+, N, is a GA-set with respect to VO, then
N is a GA-set with respect to V° if the natural homomorphism

lim ® lim Ug, —»1im®  lim Uk.
<F 5 | SF S oo
Z V i Z D(Niy V ‘l)

s monomorphic.

Proof. By Lemma 2.4 we know that, for every 7 € Z*,

].1': !i_mO_(I)UKi ’—)(_ lim O_(I)UK‘-
V', DN, V%)

is monomorphic, and we have to prove that
i Lllnﬁ)_ Ug— _1limY  Ug

Ve D(N, V°)
is monomorphic.

https://doi.org/10.4153/CJM-1968-096-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-096-x

998 OLAV ARNFINN LAUDAL

By (1.3.1) of (1) we have a commutative diagram of exact sequences:

O~—>hm()th —>11m(1) Uk, ——>11m hm() Ug,—0

Ki VO V K'l
R P
0— lim “PlimUg— lim P Ug — lim lim Ug, —0.
5T * 5 T '
DWN,V®) ks DWN,V) DN, V") «i

As j; is monomorphic, /; is monomorphic, and therefore, so is the homo-
morphism
¢ lim lim @ lim Ug, — lim _lim D lim Ug..
Srem Sr 0~ i
ARR S Z D(N 74
Using the same spectral-sequence argument as above (1, (1.3.2)), we

find abelian groups G and H and a homomorphism ¢: G — H such that the
following diagrams are commutative.

T

lim® fim fim U, s, lim®
Zt V0 ok A
G ¢

11m hm( b l(l_rE Ug, 1 hm
Z+ VO Ki

O —

0

l

hm( Y lim lim Uk, LR 11m

pasio el el
0"
V VAR

l

¢ -2
lim im® lim Uk, —
SpoF “—
V Z Kiq

0
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o dim lim hm Uk,

D (N,V") Kl
l
H
l

lim @ lim Uk,

7T DNy o

0

0

l

()hmy_rEUK

DNV ZF%
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Now we can easily find:

lir_n lim Ug, >~ hm Uk,
K V i
lim lgn Uk, >~ lim Uk,
DI, 7« DN, V%)

lim lim Ug, o Uk, for v€ v
7" @)

As [ is monomorphic and as, by assumption, s is monomorphic, the first
diagram shows that ¢ is monomorphic. Therefore, the second diagram shows
that ¢ is monomorphic.

COROLLARY 3.2. If for every © € Z+, N, is a GA-set with respect to V°,, then
N is a GA-set with respect to VO if

hm 11m Uk, = 0.
ZF v
As an example, we prove the product theorem of Weierstrass. Let K be
the field of meromorphic functions on an open and connected subset D of
the complex plane. Let D, ¢ € Z+, be relatively compact open connected
subsets of D such that
D = U+Di, D—z g D«H,l, ’l E Z+.
i€z
Let K; be the field of meromorphic functions on D, ¢ € Z+, then we have
a sequence of fields
Ki2...2K,2...2K=NK.
1€Z
Let V°, = D, be the set of valuations on K, corresponding to the points
in D, and put VV° = D. Let IV be a subset of V° such that vV, = N M\ V°; is
finite for every # € Z*. Then we know that N; is a GA-set with respect to
V0, (this is the obvious rational case), and, therefore, a condition for N to
be a GA-set with respect to T is:

() hm UK = 0.
Z+ T
But,

111;111_UK,
v

is the multiplicative group of units U; in the complete metrizable algebra

A, of all holomorphic functions on D,, with the topology of uniform con-

vergence on compact subsets. Now, 4 ;1 is a dense subset of 4,, ¢ € Z+. It

can then be seen that U; are all complete metrizable and that U, is a

dense subset of U, thus, by Corollary 1.8,
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Iim® U; =0

Vi
and this implies the existence part of the Weierstrass product theorem.
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