PROJECTIVE SYSTEMS ON TREES AND VALUATION THEORY

OLAV ARNFINN LAUDAL

Introduction. It is our aim in this note to introduce methods from homological algebra in the study of some problems in valuation theory. In particular, we will use such methods to give a new, and, in some respect, simpler proof of a well-known theorem of Krull and Ribenboim; see (2). We shall also show that the same methods can be used to prove the Riemann-Roch theorem for algebraic curves and the Weierstrass product theorem.

In § 1 we study the functor \varprojlim on the category of projective systems of modules on an ordered set V. If V is a tree, we show, (1.2), that

$$\lim_{V \to 0} V^{(p)} = 0 \quad \text{for } p \ge 2$$

and we give an explicit formula for

$$\varprojlim_{V}^{(1)}$$
.

If V is either a finite tree or the ordered set of the integers, we give conditions on the projective system F such that we have $\lim_{t\to 0} F = 0$; see (1.4)

and (1.8). In § 2 we specialize to the case where V is the ordered set of valuations of a field. It is known that V is a tree, and we may therefore use the results of § 1. Using (1.4), respectively (1.2), the Krull-Ribenboim approximation theorem and a weak form of the Riemann-Roch theorem for algebraic curves come out. The last section contains a proof of a "global" approximation theorem. As an example, we show that this generalizes the existence part of the Weierstrass product theorem.

1. Let L be an unitary ring and let V be an ordered set. If M is a subset of V and v an element of V, we put

$$\begin{split} \tilde{M} &= \{ v' \in \ V | \ v' < v \in M \}, \\ \bar{v} &= \{ v \}, \\ V_v &= \{ v' \in \ V | \ v' > v \}. \end{split}$$

Let \underline{c} be the abelian category of all projective systems of L-modules on V. An object F of \underline{c} is then a family of L-modules $\{F_v\}_{v \in V}$, together with a family of homomorphisms $j_v^{v'}: F_{v'} \to F_v$, v' > v such that, for v'' > v' > v,

Received December 7, 1966.

$$j_{v}^{v''} = j_{v}^{v'} \circ j_{v'}^{v''}.$$

For the definition and the main properties of the projective limit functor:

$$\lim: \underline{c} \to \text{category of } L\text{-modules},$$

see (1). We denote by $\varprojlim^{(p)}$ the pth right derived functor of \varprojlim . By (1) we have

$$\operatorname{Ext}_{c}^{(p)}(I, F) \simeq \operatorname{Hom}(L, \operatorname{lim}^{(p)}F) \simeq \operatorname{lim}^{(p)}F,$$

where I denotes the constant projective system on V associated with the L-module L. If for each $v \in V$ we are given an L-module \bar{F}_v , then we may construct a projective system F on V by defining

$$F_v = \coprod_{v' \in V_v} \bar{F}_{v'}.$$

If $v_1 > v_2$, then the homomorphism $j_{v_2}^{v_1}: F_{v_1} \to F_{v_2}$ is induced by the inclusion $V_{v_1} \subseteq V_{v_2}$. We shall call such projective systems elementary.

We easily prove that if all \bar{F}_v are projective L-modules, then F is a projective object in c.

Definition 1.1. An ordered set V is called a tree if, for every $v \in V$,

- (1) \bar{v} is totally ordered,
- (2) there exists a subset R_v of V such that
 - (a) if $v' \in R_v$, then v' > v and $v' \neq v$,
- (b) if v'' > v, $v'' \neq v$, then there exist a unique $v' \in R_v$ such that v'' > v'.

PROPOSITION 1.2. Let V be a tree and suppose that for every $\bar{v} \in V$, \bar{v} is finite, then

(i)
$$\lim_{\longrightarrow U}^{(p)} = 0$$
 for $p \ge 2$,

(ii)
$$\varprojlim_{V}^{(1)} F = \operatorname{coker} \phi$$
,

where

$$\phi \colon \prod_{v \in V} F_v \longrightarrow \prod_{\substack{v \in V : \\ v' \in R_v}} F_{\min(v,v')}$$

is given by

$$\phi(\{f_v\})_{(v,v')} = fv - j_v^{v'} f_{v'}.$$

Proof. For every $v \in V$ let

$$\bar{p}^0_{\ v} = L \quad \text{and} \quad \bar{p}^1_{\ v} = \coprod_{v' \in R_n} L.$$

Denote by p^0 and p^1 the elementary objects of \underline{c} generated by the families $\{\bar{p}^0_{v}\}_{v\in V}$ and $\{\bar{p}^1_{v}\}_{v\in V}$, respectively. Let $\epsilon\colon p^0\to I$ be the morphism induced by the family of identity homomorphisms

$$\bar{p}^0_n \to I_n$$
.

Now, as for every $v \in V$, V_v is the disjoint union

$$\bigcup_{v'\in V_v} R_{v'} \cup \{v\},\,$$

we have

$$p^{1}_{v} = \coprod_{v' \in V_{v} - \{v\}} L, \qquad p^{0}_{v} = \coprod_{v' \in V_{v}} L.$$

If $\{e_{v'}\}_{v'\in V_v}$ is a base for p^0_v , then $\{e_{v'}\}_{v'\in R_v}$ is a base for \bar{p}^1_v . Let $d\colon p^1\to p^0$ be the morphism induced by the family of homomorphisms

$$i_v \colon \bar{p}^1_v \longrightarrow p^0_v$$

given by

$$i_v \left(\sum_{v' \in R_v} l_{v'} e_{v'} \right) = \sum_{v' \in R_v} l_{v'} (e_{v'} - e_v).$$

Obviously, $\epsilon \circ d = 0$ so that d defines a morphism $d^*: p^1 \to \ker \epsilon$. We shall show that d^* is an isomorphism. Let $x \in p^1$, and suppose that

$$x = \sum_{v' \in V_v - \{v\}} l_{v'} e_{v'} \neq 0.$$

If v'_0 is maximal among those v' for which $l_{v'} \neq 0$, then we may write

$$d(x) = l_{v'_0} e_{v'_0} + \sum_{v'' \neq v'_0} l''_{v''} e_{v''}$$

so that $d(x) \neq 0$. Therefore, d^* is monomorphic. Let $y \in \ker \epsilon_v$, then

$$y = \sum_{v' \in V_{v}} l_{v'} e_{v'}$$
 with $\sum_{v' \in V_{v}} l_{v'} = 0$.

For every $v' \in V_v$ we know, since \bar{v}' is finite, that there exists a finite maximal sequence

$$v = v_0 \nleq v_1 \nleq \ldots \nleq v_n = v'$$

such that $v_{i+1} \in R_{v_i}$ for $i = 0, 1, \ldots, n-1$. Then

$$e_{v'} - e_v = \sum_{i=0}^{n-1} (e_{v_{i+1}} - e_{v_i})$$

and

$$y = \sum_{v' \in V_{v}} l_{v'} e_{v'} = \sum_{v' \in V_{v}} l_{v'} (e_{v'} - e_{v}) = \sum_{\substack{v'' \in R_{v';} \\ v' \in V_{v}}} l_{v'', v'} (e_{v''} - e_{v'})$$

so that $y \in \text{im } d^*$. Therefore d^* is epimorphic, and we then know that

$$0 \to p^1 \xrightarrow{d} p^0 \xrightarrow{\epsilon} I \to 0$$

is an exact sequence of objects in \underline{c} . As p^0 and p^1 are projectives, we may calculate $\lim_{p \to \infty} p^{(p)}$ by using the complex $\operatorname{Hom}_{\underline{c}}(p \cdot, -)$. In particular, we find:

$$\varprojlim_{V}^{(p)} = 0$$

for $p \geq 2$, and

$$\underbrace{\lim_{U}^{(1)}}_{F} = \operatorname{coker} \left\{ \operatorname{Hom}_{\underline{c}}(p^{0}, F) \xrightarrow{\operatorname{Hom}(d, \operatorname{id}_{F})} \operatorname{Hom}(p^{1}, F) \right\}.$$

Now

$$\operatorname{Hom}_{\underline{c}}(p^0, F) \simeq \prod_{v \in V} F_v \quad \text{and} \quad \operatorname{Hom}_{\underline{c}}(p^1, F) \simeq \prod_{\substack{v' \in R_v; \\ v \in V}} F \min(v, v'),$$

and $\phi = \operatorname{Hom}(d, id_F)$ is given by $\phi(\{f_v\}_{v \in V})_{(v, v')} = f_v - j^{v'}_v f_{v'}$.

Suppose M is a subset of the ordered set V, and suppose F is a projective system on V, then there is a canonical homomorphism

$$F(V, M) : \varprojlim_{V} F \to \varprojlim_{M} F.$$

We shall use the following lemma.

LEMMA 1.3. Let M_1 , M_2 , and N be subsets of the ordered set V such that $\bar{M}_i = M_i$ for $i = 1, 2, V = M_1 \cup M_2$ and $N = M_1 \cap M_2$. Then we have an exact sequence

$$0 \to \varprojlim_{N} F/\operatorname{im} F(M_{1}, N) + \operatorname{im} F(M_{2}, N) \to \varprojlim_{V}^{(1)} F \to \varprojlim_{M_{1}}^{(1)} F \times \varprojlim_{M_{2}}^{(1)} F \to 0$$

$$\varprojlim_{N}^{(1)} F.$$

Proof. Let $W = \{0, a, b\}$ be the ordered set with the only non-trivial relations 0 < a, 0 < b. Let

$$\kappa \colon W \to PV$$

be the κ -functor given by $\kappa(a) = M_1$, $\kappa(b) = M_2$ and $\kappa(0) = N$. If G is a projective system on W, we find

$$\varprojlim_{W} G = G_a \times G_b, \qquad \varprojlim_{W} {}^{(1)}G = G_0/\text{im } \alpha + \text{im } \beta,$$

where $\alpha: G_a \to G_0$ and $\beta: G_b \to G_0$ are the obvious homomorphisms. The lemma now follows from (1.3.1) of (1).

Lemma 1.4. Suppose V is a finite tree, then the following statements are equivalent.

(i)
$$\varprojlim_{V}^{(1)} F = 0$$
.

(ii) If $v \in V$ and $Rv = \{v_1, \ldots, v_r\}$, put

$$M_j^{\ 1} = \bigcup_{i=1}^j \bar{V}_{v_i}, \qquad M_j^{\ 2} = \bar{V}_{v_{j+1}},$$

then, for every $j = 1, \ldots, r - 1$, we have

$$F_{v} = \text{im } F(M_{j}^{1}, \bar{v}) + \text{im } F(M_{j}^{2}, \bar{v}).$$

Proof. Define the function $h\colon V\to Z^+$ by $h(v)=\max\{s|\text{ there exists in }V\text{ a sequence }v_s\nleq v_{s-1}\nleq\ldots \lneq v_0=v\}.$ Suppose

$$\varprojlim_{V}^{(1)} F = 0.$$

By induction on h(v) we shall prove that for every $v \in V$,

$$\varprojlim_{V_n}^{(1)} F = 0.$$

If h(v) = 0, then V_v is a connected component of V, and therefore

$$\varprojlim_{V_n}^{(1)} F = \varprojlim_{V}^{(1)} F = 0.$$

Suppose now that

$$\varprojlim_{V_n}^{(1)} F = 0$$

for all v with h(v) < n, and let v_r be such that $h(v_r) = n$. Since we may suppose $h(v_r) \ge 1$, there exists a unique v such that $R_v = \{v_1, \ldots, v_r\}$. Then

$$M_{r-1}^2 = \bar{V}_{rr}, \ \bar{V}_v = M_{r-1}^1 \cup M_{r-1}^2$$
 and $N = M_{r-1}^1 \cap M_{r-1}^2 = \bar{v}$.

As

$$\varprojlim_{\overline{v}}^{(1)} F = 0,$$

we have

$$\underbrace{\lim_{\stackrel{\longleftarrow}{M_{r-1}^1}}}^{\scriptscriptstyle{(1)}}F\times\underbrace{\lim_{\stackrel{\longleftarrow}{M_{r-1}^2}}}^{\scriptscriptstyle{(1)}}F\simeq\underbrace{\lim_{\stackrel{\longleftarrow}{M_{r-1}^1}}}^{\scriptscriptstyle{(1)}}F\times\underbrace{\lim_{\stackrel{\longleftarrow}{M_{r-1}^2}}}^{\scriptscriptstyle{(1)}}F$$

By the induction hypothesis, we have

$$\varprojlim_{V_n}^{(1)} F = 0,$$

thus Lemma 1.3 implies

$$\varprojlim_{V_{n_r}}^{(1)} F = \varprojlim_{M_{r-1}^2}^{(1)} F = 0$$
, and $\varprojlim_{M_{r-1}^1}^{(1)} F = 0$.

Therefore

$$\varprojlim_{V_v}^{\text{(1)}} F = 0 \quad \text{for every } v \in V.$$

Now, since

$$M_{j+1}^1 = M_j^1 \cup M_j^2$$
 and $M_j^1 \cap M_j^2 = \bar{v}_0$ for every $j = 1, \dots, r-1$,

we may use the same method to prove that for every $v \in V$ and every $j = 1, \ldots, r - 1$, we have that

$$\underbrace{\lim_{M_{i+1}^{1}}^{(1)}F} = 0.$$

But (ii) is then an immediate consequence of Lemma 1.3. Reversing everything, we prove that (ii) implies (i).

COROLLARY 1.5. Suppose that V is a finite tree and that

$$\varprojlim_{V}^{(1)} F = 0.$$

If M is a subset of V, then

$$\varprojlim_{M}^{(1)} F = 0.$$

Proof. If V satisfies condition (ii) of Lemma 1.4, then so will M.

Suppose V is the ordered set of the positive integers Z^+ . Then, given a projective system F, we define the completion \hat{F} of F by

$$\widehat{F}_n = \underbrace{\lim_{n' > n}} F_n / \operatorname{im} j_n^{n'}.$$

There is an obvious morphism

$$g: F \to \hat{F}$$
.

Now we have the following result.

THEOREM 1.6. If

$$\lim_{Z^{+}}^{(1)} F = 0,$$

then g is epimorphic. If F is monomorphic and g is epimorphic, then

$$\underbrace{\lim_{Z^{+}}^{(1)}}F=0.$$

Proof. If

$$\lim_{Z^{+}}^{(1)}F=0,$$

then, using the fact that

$$\lim_{Z^+}^{(p)} = 0 \quad \text{for } p \ge 2$$

and applying \lim_{z^+} to the exact sequence

$$0 \to \operatorname{im} j_n^{n'} \to F_n \to F_n/\operatorname{im} j_n^{n'} \to 0$$
,

we easily find that

$$g_n: F_n \to \varprojlim_{n' > n} F_n/\operatorname{im} j_n^{n'}$$

is onto, so that g is epimorphic. Now, if F is monomorphic, then

$$(\ker g)_n = \bigcap_{n'>n} \operatorname{im} j_n^{n'}$$

so that ker g is constant.

If, in addition, g is epimorphic, we have an exact sequence

$$0 \to \ker g \to F \to \hat{F} \to 0.$$

As ker g is constant,

$$\lim_{\stackrel{\longleftarrow}{}_{} \overline{Z^{+}}}^{(1)} \ker g = 0$$

so that

$$\varprojlim_{Z^{+}}^{(1)} F = \varprojlim_{Z^{+}}^{(1)} \widehat{F}.$$

But we always have

$$\underbrace{\lim_{Z^+}}^{(p)} \hat{F} = 0 \quad \text{for } p \ge 0.$$

In fact, consider the projective system H on $Z^+ \times Z^+$ defined by

$$H_{m,n} = F_{\min(m,n)} / \text{im } j_{\min(m,n)}^{\max(m,n)}$$

We have $H_{m,m}=0$ for $m\in Z^+$ and therefore

$$\varprojlim_{Z^+ \times Z^+}^{(p)} H = 0 \quad \text{for } p \ge 0.$$

However, by (1.3.2) of (1), there exists a spectral sequence converging to

$$\underbrace{\lim_{Z^{+} \times Z^{+}}^{(\cdot)} H}_{\text{with}} \text{ with } E_{p,q}^{2} = \underbrace{\lim_{m \in Z^{+}}^{(p)} \underbrace{\lim_{n \in Z^{+}}^{(q)} H_{m,n}}}_{n \in Z^{+}}.$$

It follows that $E_{p,q}^2 = 0$ for all $p, q \ge 0$ and, in particular,

$$\lim_{\longleftarrow Z^+} \widehat{F} = E_{p,0}^2 = 0 \quad \text{for } p \ge 0.$$

Theorem 1.7. Let F be a projective system of topological abelian groups and continuous homomorphisms on the ordered set Z^+ . Suppose that

- (i) for all $n \in \mathbb{Z}^+$, F_n is complete metrizable,
- (ii) for all n' > n, im $j_n^{n'}$ is dense in F_n , then we may conclude that $g: F \to \hat{F}$ is onto.

Proof. We fix an $n \in \mathbb{Z}^+$ and we shall prove that $g_n : F_n \to \hat{F}_n$ is onto. Let

$$u_m: F_n \to F_n / \text{im } j_n^{m+n}$$

be the canonical homomorphism, and fix an element $\hat{f} = \{\hat{f}_m\} \in \hat{F}_n$. For each $m \in Z^+$, let $f_m \in F_n$ be such that $u_m(f_m) = \hat{f}_m$. We then have:

$$f_{m+1} - f_m \in \operatorname{im} j_n^{m+n}$$
 for all $m \in \mathbb{Z}^+$.

Let δ_m be the metric on F_{n+m} , and put $f_0 = 0$. Since im j_n^{n+1} is dense in F_n , we may find an element $g_{10} \in F_{n+1}$ such that if $g_{01} = j_n^{n+1}(g_{10})$, then

$$\delta_0(f_1-f_0+g_{01},0)<\frac{1}{2^0}=1.$$

Put $\bar{f}_1 = f_1 + g_{01}$; then we have:

$$u_1(\bar{f}_1) = u_1(f_1) = f_1, \qquad f_2 - \bar{f}_1 \in \operatorname{im} j_n^{n+1}.$$

Thus we may find an element $h_{10} \in F_{n+1}$ such that $h_{01} = j_n^{n+1}(h_{10}) = f_2 - \bar{f}_1$. Since all $j_n^{n'}$ are continuous, we may, using (ii), find an element $g_{20} \in F_{n+2}$ such that if

$$g_{11} = j_{n+1}^{n+2}(g_{20}), \qquad g_{02} = j_n^{n+2}(g_{20}),$$

then

$$\delta_0(f_2 - \bar{f}_1 + g_{02}, 0) < \frac{1}{2},$$

$$\delta_1(h_{10}+g_{11},0)<\frac{1}{2^0}=1.$$

Put $\bar{f}_2 = f_2 + g_{02}$, then

$$u_2(\bar{f}_2) = u_2(f_2) = \hat{f}_2, \qquad f_3 - \bar{f}_2 \in \text{im } j_n^{n+2}.$$

Continuing this process, we construct elements $\bar{f}_m \in F_n$, $h_{ij} \in F_{n+i}$, i+j=m, $g_{rs} \in F_{n+r}$, r+s=m+1, such that:

$$\begin{split} \delta_r(h_{\tau,s-1}+g_{\tau,s},0) &< \frac{1}{2}r \quad \text{for} \quad r+s=m, \\ j_{n+i-1}^{n+i}(h_{ij}) &= h_{i-1,j+1}, \qquad j_n^{n+m}(h_{m,0}) = f_{m+1} - \bar{f}_m, \\ j_{n+\tau-1}^{n+\tau}(g_{\tau,s}) &= g_{\tau-1,s+1}, \quad u_m(\bar{f}_m) = u_m(f_m) = \hat{f}_m, \quad f_{m+1} - \bar{f}_m \in \text{im } j_n^{n+m}. \end{split}$$

By construction,

$$\bar{f} = \sum_{i=0}^{\infty} (\bar{f}_{i+1} - \bar{f}_i) = \sum_{i=0}^{\infty} (h_{0,i} + g_{0,i+1})$$

exists. Further, by construction,

$$h_j = \sum_{i=0}^{\infty} (h_{ji} + g_{j,i+1})$$

exists, $h_j \in F_{n+j}$, and we have

$$\bar{f} - j_n^{n+j}(h_j) = \sum_{i=0}^{j-1} \bar{f}_{i+1} - \bar{f}_i = \bar{f}_j,$$

therefore, we have

$$u_{j}(\overline{f})\,=\,u_{j}(\overline{f}_{j})\,=\,\widehat{f}_{j}\quad\text{for all }j\in Z^{+}.$$

This means that $g_n(\bar{f}) = \hat{f}$ and the proof is complete.

COROLLARY 1.8. Under the hypotheses of Theorem 1.7, if F is monomorphic, then

$$\varprojlim_{Z}^{(1)} F = 0.$$

2. Let K be a field and let V be the ordered set of all non-archimedean valuations of K.

If $v \in V$, we denote by m_v the maximal ideal of the valuation ring \mathcal{O}_v , and by Γ_v the linearly ordered value group of v.

For every $v \in V$, we then have an exact sequence of abelian groups

$$\{1\} \to U_v \to K^* \xrightarrow{v} \Gamma_v \to 0,$$

where U_v is the multiplicative group of units in \mathcal{O}_v .

Obviously, the families $\{\mathcal{O}_v\}_{v\in V}$, $\{U_v\}_{v\in V}$, and $\{\Gamma_v\}_{v\in V}$ define projective systems of abelian groups on V. We shall denote these by \mathcal{O}_K , U_K , and Γ_K , respectively. Then we have an exact sequence of projective systems of abelian groups:

(2)
$$\{1\} \to U_K \to K^* \to \Gamma_K \to 0.$$

Suppose that the subset N of V has a least element, then we have

$$\varprojlim_{N}^{(1)} K^* = 0.$$

Applying the functor \varprojlim_{N} to the exact sequence (2) we then get the exact sequence

(3)
$$\{1\} \to \varprojlim_{N} U_{K} \to K^{*} \xrightarrow{v(N)} \varprojlim_{N} \Gamma_{K} \to \varprojlim_{N}^{(1)} U_{K} \to 0.$$

Definition 2.1. Let N be a subset of V, then we shall call N an A-set (approximation set) if for every

$$\gamma \in arprojlim_N \Gamma_K$$

there exists an element $x \in K^*$ such that $v(N)(x) = \gamma$.

Lemma 2.2. Suppose N contains a least element, then N is an A-set if and only if

$$\varprojlim_{N}^{(1)} U_K = 0.$$

Proof. This follows immediately from the definition and from the exact sequence (3).

Let $V_0 = \bar{V}_0$ be a subset of V, then V_0 has an induced order. If N is a subset of V_0 , let $D(N, V_0)$ denote the subset of V_0 consisting of all v' such that $\bar{v}' \cap \bar{N} = \{*\}$, where * is the trivial valuation.

Definition 2.3. Let $N \subseteq V_0$ be subsets of V. We shall say that N is a GA-set (global approximation set) with respect to V_0 , if for every

$$\gamma \in \varprojlim_{V_0/D(N, V_0)} \Gamma_{\kappa}$$

there exists an element $x \in K^*$ such that $v(N)(x) = \gamma$.

Lemma 2.4. Let $N \subseteq V_0$, then N is a GA-set with respect to V_0 if and only if the canonical homomorphism

$$\varprojlim_{V_0}^{(1)} U_{\kappa} \to \varprojlim_{D(N, V_0)}^{(1)} U_{\kappa}$$

is monomorphic.

Proof. We may assume that $D(N, V_0) \neq V_0$. Applying the functors

$$\overline{V_0}$$
 and $\overline{V_0/D(N, V_0)}$

to the exact sequence (2) we get a commutative diagram of exact sequences

$$\{1\} \to \varprojlim_{V_0} U_K \to K^* \to \varprojlim_{V_0} \Gamma_K \xrightarrow{j} \to \varprojlim_{V_0}^{(1)} U_K \to 0$$

$$\uparrow i \qquad \qquad \uparrow t$$

$$\{1\} \to \varprojlim_{V_0/D(N, V_0)} \Gamma_K \xrightarrow{S} \longleftrightarrow_{V/D(N, V_0)} U_K \to 0.$$

Now N is a GA-set with respect to V_0 if and only if $t \circ s = j \circ i = 0$. s being an isomorphism, this is equivalent to t = 0. From the exact sequence

$$\dots \underbrace{\lim_{D(N, V_0)} U_{\kappa} \to \varprojlim_{V_0/D(N, V_0)} U_{\kappa} \to \varprojlim_{V_0}^{(1)} U_{\kappa} \to \varprojlim_{V_0}^{(1)} U_{\kappa} \to \varprojlim_{D(N, V_0)}^{(1)} U_{\kappa} \to \dots, }$$

it follows that t = 0 if and only if

$$\varprojlim_{V_0}^{(1)} U_K \to \varprojlim_{D(N, V_0)} U_K$$

is monomorphic.

LEMMA 2.5. Suppose that N is a finite subset of V, containing a least element v_0 . Consider the field $k = \mathcal{O}_{v_0}/m_{v_0}$ and let $M = \{v/v_0 | v \in N\}$ be the set of valuations on k associated with N. Then

$$\varprojlim_{N}^{(1)} U_{K} \simeq \varprojlim_{M}^{(1)} U_{k}.$$

Proof. Let $U_0 = \{x \mid x \in K, 1 - x \in m_{v_0}\}$, then $U_0 \subseteq U_v$ for all $v \in N$ and $U_{k,(v/v_0)} \simeq U_{K,v}/U_0$. The family of exact sequences

$$\{1\} \to U_0 \to U_{K,v} \to U_{k,(v/v_0)} \to \{1\}$$

defines an exact sequence of projective systems on the ordered set $N \simeq M$.

Since

$$\varprojlim_{N}^{(p)} U_0 = 0 \quad \text{for } p \ge 1,$$

it follows that

$$\varprojlim_{N}^{(1)} U_{K} \simeq \varprojlim_{M}^{(1)} U_{k}.$$

Lemma 2.6. Suppose that N is a finite subset of V, and let $v \in N$. If $R_v = \{v_1, \ldots, v_r\}$ and

$$M_{j}^{1} = \bigcup_{i=1}^{j} \bar{N}_{v_{i}}, \qquad M_{j}^{2} = \bar{N}_{v_{j+1}},$$

then for every $j = 1, \ldots, r - 1$,

$$U_{K,v} = \bigcap_{v' \in M_i^1} U_{K,v'} \cdot \bigcap_{v' \in M_i^2} U_{K,v'}.$$

Proof. We must prove that for every $x \in U_{K,v}$ there exist

$$x_1 \in \bigcap_{v' \in M_i^1} U_{K,v'}$$
 and $x_2 \in \bigcap_{v' \in M_i^2} U_{K,v'}$

such that $x = x_1 \cdot x_2$. As N is finite, the function $h: N \to Z^+$ has a maximum n_0 (see the proof of Lemma 1.4). If $h(v) = n_0$, then $R_v = \emptyset$ and there is nothing to prove. Suppose that the lemma has been proved for all $v \in N$ such that $h(v) \ge m+1$ and let $v \in N$ be such that h(v) = m. By Lemma 1.4 we know that the conclusion of the lemma is equivalent to

$$\lim_{\overline{N}_{v}}^{(1)}U_{K}=0.$$

By Lemma 2.5 we may therefore suppose that v is the trivial valuation. Let u_s , $s = 1, \ldots, k$, be the maximal elements of M_j^2 and let w_t , $t = 1, \ldots, l$, be the maximal elements of M_j^1 . For each $i = 1, \ldots, j$, let v_i' be an element of V such that $v < v_i' < v_i$ and such that v_i' is of rank 1. By (4, Lemma 1, Chapter VI, § 7) we may find elements y_s , $s = 1, \ldots, k$, and z_t , $t = 1, \ldots, l$, in K such that

$$u_s(y_s) = 0$$
, $u_s(y_{s'}) > 0$ for $s \neq s'$

and

$$v_i'(y_s) > 0$$
 for $i = 1, ..., j, s = 1, ..., k$;

$$w_t(z_t) = 0$$
, $w_t(z_{t'}) > 0$ for $t \neq t'$,

and

$$u_s(z_t) > 0$$
 for $s = 1, ..., k, t = 1, ..., l$.

We may suppose that $v_{j+1}(x) \leq 0$. If this is not the case, we might consider x^{-1} . Since v_i' , $i=1,\ldots,j$, are of rank 1 we may, by taking high enough powers of the y_s , assume that $v_i'(y_s) > -v_i'(x)$ for $i=1,\ldots,j$. This implies that $w_t(y_s) > -w_t(x)$ for $t=1,\ldots,l$. Since $v_{j+1}(x) \leq 0$ we have $u_s(x) \leq 0$ for $s=1,\ldots,k$. Put

$$x_1 = \sum_{t=1}^{l} z_t + \sum_{s=1}^{k} y_s \cdot x.$$

We then have $w_t(x_1) = 0$ for t = 1, ..., l so that

$$x_1 \in \bigcap_{v' \in M_i^1} U_{K,v'},$$

and

$$u_s(x_1) = u_s(x)$$
 for $s = 1, ..., k$.

Let $x_2 = x/x_1$, then the last relations imply that $u_s(x_2) = 0$ for $s = 1, \ldots, k$ so that

$$x_2 \in \bigcap_{v' \in M_j^2} U_{K,v'}.$$

It follows that the conclusion of the lemma is true for all $v \in N$.

From this lemma we easily deduce the following well-known theorem.

THEOREM 2.7 (Krull-Ribenboim). If v_i , $i = 1, \ldots, r$, are valuations of a field K, and if for every $i = 1, \ldots, r$, γ_i is an element of Γ_{v_i} such that for each couple (i, j) the image of γ_i and γ_j in the value group of $v_i \wedge v_j$ coincides, then there exists an element $x \in K^*$ such that $v_i(x) = \gamma_i$ for all $i = 1, \ldots, r$.

Proof. Let N be a finite subset of V containing all v_i , $i=1,\ldots,r$, and being closed under the operation \wedge . The conclusion of the theorem is by Definition 2.1 and Lemma 2.2 equivalent to

$$\varprojlim_{N}^{(1)} U_K = 0.$$

But this follows from Lemmas 1.4 and 2.6.

We now let V' be a subset of V consisting of discrete valuations of rank 1. Let $\underline{D}(V')$ denote the free group generated by V'. If

$$D = \sum_{v \in V'} n_v v,$$

we put

$$d(D) = \sum_{v \in V'} n_v, \qquad v(D) = n_v.$$

Let $V^* = \bar{V}'$ and let $\underline{L}(D)$ be the projective system of abelian groups on V^* given by

$$\underline{L}(D)_v = \{x \in K | v(x) \ge -v(D)\} \quad \text{if } v \in V',$$

$$L(D)_v = K.$$

Note that $V^* = V' \cup \{*\}$, where * is the trivial valuation. If D_1 and D_2 are elements of $\underline{D}(V')$, then, by definition, $D_1 \leq D_2$ if for every $v \in V'$, $v(D_1) \leq v(D_2)$. Suppose that $D_1 \leq D_2$, then there is an exact sequence of projective systems on V^*

$$0 \to \underline{L}(D_1) \to \underline{L}(D_2) \to \underline{P} \to 0$$
,

where \underline{P} is given by:

$$\underline{P}_{v} \simeq m_{v}^{-v(D_{1})}/m_{v}^{-v(D_{2})}.$$

If we put

$$L(D) = \varprojlim_{V^*} L(D), \qquad I'(D) = \varprojlim_{V^*} L(D),$$

then the above exact sequence induces an exact sequence

$$0 \to L(D_1) \to L(D_2) \to \prod_{v \in V'} m_v^{-v(D_1)} / m_v^{-v(D_2)} \xrightarrow{\partial} I'(D_1) \to I'(D_2) \to 0.$$

By Proposition 1.2 we have

$$I'(D) = \operatorname{coker} \left\{ \prod_{v \in V^*} \underline{L}(D)_v \to \prod_{\substack{v \in V^*; \\ v' \in R_v}} \underline{L}(D)_{\min(v, v')} \right\}$$
$$\simeq \prod_{v \in V'} K / \left\{ K + \prod_{v \in V'} \underline{L}(D)_v \right\}.$$

Let I(D) denote the subgroup of I'(D) consisting of those elements x with representatives

$$\{x_v\}_{v\in V'}\in\prod_{v\in V'}K$$

such that for all but a finite number of the v's, $x_v \in \mathcal{O}_v$. Then we easily find that $\operatorname{im} \partial \subseteq I(D_1)$ and that $I(D_1) \to I(D_2)$ is epimorphic. It follows that we have the exact sequence

$$0 \to L(D_1) \to L(D_2) \to \prod m_v^{-v(D_1)}/m_v^{-v(D_2)} \to I(D_1) \to I(D_2) \to 0.$$

Suppose that K contains a subfield k such that all valuations of V' are trivial on k. Suppose further that:

- (i) $\dim_k L(0) < \infty$,
- (ii) $\dim_k I(0) < \infty$,
- (iii) for every $v \in V'$, $e_v = \dim_k(\mathscr{O}_v/m_v) < \infty$.

Then

$$\dim_k \prod_{v \in V'} m_v^{-v(D_1)} / m_v^{-v(D_2)} = \sum_{v \in V'} (v(D_2) - v(D_1)) e_v$$

and for every $D \in \underline{D}(V')$

$$l(D) = \dim_k L(D) < \infty$$
, $i(D) = \dim_k I(D) < \infty$,

and

$$l(D_2) - i(D_2) = l(D_1) - i(D_1) + \sum_{v \in V'} (v(D_2) - v(D_1))e_v.$$

From this, the "weak" form of the Riemann-Roch theorem for non-singular algebraic curves follows easily; see (3, Chapter 2).

Theorem 2.8. If K is an algebraic function field over the algebraically closed field k, then, if D is a divisor, we have that

$$l(D) - i(D) = 1 - i(0) + d(D),$$

where $i(D) = \dim_k I(D)$, $I(D) \simeq R/K + R(D)$, and R is the k-algebra of repartitions.

3. Suppose we are given a sequence of fields

$$K_0 \supseteq K_1 \supseteq \ldots \supseteq K_i \supseteq \ldots \supseteq K = \bigcap_{i=1}^m K_i$$

Let V_i and V be the ordered set of all non-archimedean valuations of K_i , respectively K. Then there is a sequence of epimorphisms of ordered sets:

$$V_0 \xrightarrow{S_0} V_1 \xrightarrow{S_1} \ldots \longrightarrow V_i \xrightarrow{S_i} \ldots \longrightarrow V_i$$

Let $V^0{}_i$ be a subset of V such that $\bar{V}^0{}_i = V^0{}_i$, and such that $s_i(V^0{}_i) \subseteq V^0{}_{i+1}$. We put

$$V^{0} = \bigcup_{i=1}^{\infty} \operatorname{im}(V^{0}_{i} \to V).$$

Denote by t_i the map $V^0{}_i \to V^0$ and let κ_i : $V^0 \to PV^0{}_i$ be the κ -functor defined by $\kappa_i(v) = \{v_i \in V^0{}_i | t_i(v') \leq v\}$. Then there are natural homomorphisms:

$$\underbrace{\lim_{\kappa_{i+1}(v)} U_{\kappa_{i+1}}}_{K_{i+1}(v)} \to \underbrace{\lim_{\kappa_{i}(v)} U_{\kappa_{i}}}_{K_{i}(v)},$$

$$\underbrace{\lim_{V_{i+1}} U_{K_{i+1}} \rightarrow \varprojlim_{V_i} U_{K_i}}.$$

If N is a subset of V and $N_i = t_i^{-1}(N)$, then there are also natural homomorphisms

$$\underbrace{\lim_{D(N_{i+1}, V_{i+1})} U_{K_{i+1}}} \to \underbrace{\lim_{D(N_i, V_i)} U_{K_i}}.$$

Theorem 3.1. If for every $i \in \mathbb{Z}^+$, N_i is a GA-set with respect to V^0 , then N is a GA-set with respect to V^0 if the natural homomorphism

$$\underbrace{\lim_{Z^{+}}}^{(1)} \underbrace{\lim_{V \to i}}^{(1)} U_{K_{i}} \to \underbrace{\lim_{Z^{+}}}^{(1)} \underbrace{\lim_{V \to i}}^{(1)} U_{K_{i}}$$

is monomorphic.

Proof. By Lemma 2.4 we know that, for every $i \in \mathbb{Z}^+$,

$$j_i : \varprojlim_{\overline{V_i^0}}^{(1)} U_{K_i} \longrightarrow \varprojlim_{\overline{D(N_i, V_i^0)}}^{(1)} U_{K_i}$$

is monomorphic, and we have to prove that

$$t: \varprojlim_{V^0}^{(1)} U_K \to \varprojlim_{D(N, V^0)}^{(1)} U_K$$

is monomorphic.

By (1.3.1) of (1) we have a commutative diagram of exact sequences:

$$\begin{split} 0 &\to \varprojlim^{(1)} \varprojlim_{K_i} U_{K_i} \to \varprojlim^{(1)} U_{K_i} \to \varprojlim_{V^0} \varprojlim_{K_i} U_{K_i} \to 0 \\ & \qquad \qquad \downarrow l_i \qquad \qquad \downarrow j_i \qquad \downarrow \\ 0 &\to \varprojlim_{D(N,V^0)} \varprojlim_{K_i} U_{K_i} \to \varprojlim_{D(N,V^0_i)} U_{K_i} \to \varprojlim_{D(N,V^0)} \varprojlim_{K_i} U_{K_i} \to 0. \end{split}$$

As j_i is monomorphic, l_i is monomorphic, and therefore, so is the homomorphism

$$\iota \colon \varprojlim_{Z^+} \varprojlim_{V^0} \overset{\text{(1)}}{\underset{\kappa_i}{\varprojlim}} U_{\kappa_i} \to \varprojlim_{Z^+} \longleftrightarrow_{D(N,V^0)} \overset{\text{(1)}}{\underset{i}{\varprojlim}} U_{\kappa_i}.$$

Using the same spectral-sequence argument as above (1, (1.3.2)), we find abelian groups G and H and a homomorphism $\phi: G \to H$ such that the following diagrams are commutative.

Now we can easily find:

$$\varprojlim_{V^0} \varprojlim_{\kappa_i} U_{\kappa_i} \simeq \varprojlim_{V^0_i} U_{\kappa_i},$$

$$\varprojlim_{D(N, V^0)} \varprojlim_{\kappa_i} U_{\kappa_i} \simeq \varprojlim_{D(N_i, V^0_i)} U_{\kappa_i},$$

$$\varprojlim_{Z^+} \varprojlim_{\kappa_i(v)} U_{\kappa_i} \simeq U_{\kappa,v} \text{ for } v \in V^0.$$

As l is monomorphic and as, by assumption, s is monomorphic, the first diagram shows that ϕ is monomorphic. Therefore, the second diagram shows that t is monomorphic.

COROLLARY 3.2. If for every $i \in \mathbb{Z}^+$, N_i is a GA-set with respect to V^0_i , then N is a GA-set with respect to V^0 if

$$\varprojlim_{Z^+}^{(1)} \varprojlim_{V_i^0}^{U_{K_i}} = 0.$$

As an example, we prove the product theorem of Weierstrass. Let K be the field of meromorphic functions on an open and connected subset D of the complex plane. Let D_i , $i \in Z^+$, be relatively compact open connected subsets of D such that

$$D = \bigcup_{i \in \mathbb{Z}^+} D_i, \quad \bar{D}_i \subseteq D_{i+1}, \qquad i \in \mathbb{Z}^+.$$

Let K_i be the field of meromorphic functions on D_i , $i \in \mathbb{Z}^+$, then we have a sequence of fields

$$K_0 \supseteq \ldots \supseteq K_i \supseteq \ldots \supseteq K = \bigcap_{i \in Z^+} K_i$$
.

Let $V^0{}_i = D_i$ be the set of valuations on K_i corresponding to the points in D_i , and put $V^0 = D$. Let N be a subset of V^0 such that $N_i = N \cap V^0{}_i$ is finite for every $i \in Z^+$. Then we know that N_i is a GA-set with respect to $V^0{}_i$ (this is the obvious rational case), and, therefore, a condition for N to be a GA-set with respect to $V^0{}_i$ is:

$$\underbrace{\lim_{Z^{+}}^{(1)}}_{V_{i}}\underbrace{\lim_{U_{K_{i}}}}_{V_{i}}U_{K_{i}}=0.$$

But,

$$\underbrace{\lim_{V \to i} U_{K_i}}_{V_i}$$

is the multiplicative group of units U_i in the complete metrizable algebra A_i of all holomorphic functions on D_i , with the topology of uniform convergence on compact subsets. Now, A_{i+1} is a dense subset of A_i , $i \in Z^+$. It can then be seen that U_i are all complete metrizable and that U_{i+1} is a dense subset of U_i , thus, by Corollary 1.8,

$$\varprojlim_{Z^+}^{(1)} U_i = 0$$

and this implies the existence part of the Weierstrass product theorem.

References

- O. A. Laudal, Sur la théorie des limites projectives et inductives, Ann. Sci. Ecole Norm. Sup. 82 (1965), 241-296.
- P. Ribenboim, Le théorème d'approximation pour les valuations de Krull, Math. Z. 68 (1957), 1-18.
- 3. J.-P. Serre, Groupe algébriques et corps de classes (Hermann, Paris, 1959).
- 4. O. Zariski and P. Samuel, Commutative algebra, Vol. II (Van Nostrand, New York, 1960).

University of Oslo, Oslo, Norway; Syracuse University, Syracuse, New York